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MULTIPOINT PADE-TYPE APPROXIMATION:
AN ALGEBRAIC APPROACH

P. GONZALEZ-VERA AND M. JIMENEZ PAIZ

ABSTRACT. In this paper multipoint Padé-type approxi-
mants are formally introduced by defining a linear functional
on the space of certain rational functions with prescribed
poles. Some expressions for the numerator, a compact for-
mula and some error formulas are also given.

1. Introduction. In [1], Brezinski introduced the so-called Padé-
type approximants in one point, giving an algebraic development for
such a rational approximation. The basis of this approach consisted in
defining a linear functional on the space of usual polynomials. Following
the same procedure, Draux [3, 4] and Gonzdlez-Vera [5] constructed
two-point (zero and infinity) Padé-type approximants, starting from a
linear functional defined on the space of Laurent-polynomials. In [12],
see also [13], Van Iseghem extended the former cases to the multipoint
one following a different technique, namely, the Hermite polynomial
interpolation.

In this paper we introduce multipoint Padé-type approximation in
a similar way to Brezinski, using an idea employed by Njastad in [9]
to construct multipoint Padé approximants. We shall define a linear
functional acting on the space of R-functions [8], when none of the
points where the approximant is to be built on is infinity, or on the
space of generalized R-functions (G R-functions), [10], otherwise. Since
R-functions can be considered as a particular case of G R-functions, we
shall restrict ourselves to this general case.

In Section 2 we shall define multipoint Padé-type approximants
(MPTA) and introduce the notation to be used in the paper, recalling
also the definition of GR-functions. Section 3 is concerned with the
construction of MPTAs, of type (k — 1,k), i.e., the numerator is of
degree £k — 1 and the denominator of degree k at most, and using
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the functional introduced with this purpose. We also give expressions
of the numerator which allow the computation of the approximants.
Illustrative numerical examples are given. The results introduced in
this section are the starting point for the construction of approximants
with numerators and denominators of arbitrary degrees, developed in
Section 4. Compact and error formulas analogous to the one-point case
are obtained in the last section.

We shall use the term “formal” in the same sense as Brezinski in [1],
i.e., when a power series appears in one of the sides of an identity, then
the corresponding function represents either the sum of the series, if it
converges, or its analytic continuation (if it exists), otherwise.

For an alternative approach to multipoint Padé-type approximation
via interpolation and quadrature formulas, see [7].

2. Definitions and notations. Let us consider p + 1 formal
power series Li,...,Lp, L1 that we globally denote by L, L =
(L17 s aLpaLp+1)a

(21) Li(t) = ZCi’j(t — ai)j (t — ai),

1=1,2,...,p,
o0
(2.2) L) =Y et 7 (t = o0),
j=1
where ay,...,a, are distinct points of the complex plane C. Then,

given a polynomial Qg(t) of degree k such that Qg(a;) # 0 for
i=1,2,...,p, we say that the rational function Py _1(t)/Qk(t), with
Pj,_1 € II_;1 a polynomial to be determined, (II,, denotes the space of
polynomials of degree at most n) is a (k — m/k) multipoint Padé-type
approximant, (k — m/k)-MPTA, of order (ki,...,kp;m), k;’s and m
nonnegative integers such that > %_, k; = k — m, to L, whenever

(1) — 1(t) — a;)k a
ny L0 G =0 —a)) ()
1=1,2,...,p
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and

P 4(t)
Qr(t)

We shall denote this rational function by

=0(t™H)™)  (t— o0).

(2.4) Lpa(t) -

(k = m/k)Liky,... kpim)(t)s (K —m/E)L(t)

or by (k —m/k)(t), for short.

Conditions (2.3) and (2.4) allow us to pose a Hermite rational inter-
polation problem with prescribed poles which possess a unique solution
under the conditions stated above, [8, 11, 14]; thus, we shall not be
concerned with uniqueness in what follows.

Remark 1. The notation above is an extension of the two point (zero
and infinity) situation [5]. Here k — m is the order of correspondence
at the points of the finite plane and k is the degree of the denominator.
When m = 0 (infinity is not considered), we shall use a notation as in
the one point case [1], i.e.,

Pip1/Qk = (k — 1/k)L(ky,... kps0)-

Here k — 1 is the maximum degree of the numerator. ]

Now we recall how the spaces of GR-functions are defined and set
some notations to be used below. G will denote the space of GR-
functions, that is, of all rational functions of the form

R(t) = ZiLjLia.(t,a)j _ P
(2.5) Pt (t —a;)d o J Q(t)’

Qj, 045 € C,

where a is an arbitrary complex or real point, which we shall assume to
be zero in the sequel. We denote by G(k1,... , kp;m) the subspaces of
all GR-functions of the form (2.5) with P < >"7 k; + m. We say that
R € G(ky, ... ,kp;m) is degenerate if the degree of its numerator is less
than )7 k; +m. The subspace of all degenerate functions is denoted by
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GO(k1,. .. ,kp;m). If we take m = 0 in (2.5), the space R of R-functions
results. In the notation of [9], G(k1,... ,kp;0) = R(k1,... , kp).

The sets

Cl(kl,... ,k'p;m)

and

e i) = 1 t 12 _
2(F1, -« 5 Kpym) = Biem(t)” Bi—m(t)’ Bi—m(t)’ " Br_m(t) J’

with Bi_m(z) = (z — a1)® - (z — a,)*» are obviously bases for
G(k1,... ,kp;m). The corresponding bases for the degenerate space will
be denoted by C?(k1, ... ,kp;m) and C3(k1,... , kp;m), respectively.

3. Construction of the (kK — m/k)-MPTA. Let ® be a linear
functional on the space of the GR-functions G, defined by

Q(J’.J) = —Cj+1, .7 =0,1,2,

3.1 )
B (e —a) =y =L2 =L

Consider the generating function (z — ¢)~!. Writing

(x—t)"' = ((x —a;) — (t — a;)) Zm—a Lt — a;),

(3.2)

1=1,...,p,
and
(3.3) (x —¢)~ ijt i1

it is easy to prove, at least formally, the following

Lemma 1 [7]. If ® acts on = and t is a parameter, then ®((z —
)" =L;(t),i=1,2,... ,p+1,as(t = a;),i=1,...,p and (t — o)
fori=p+1.
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Now let Hy(z) = Qk(z)/Bi—m(z) be a given GR-function belonging
to G(ki,...,kp;m), Qr(t) being precisely the denominator of the
MPTA that we want to construct and, where By_,, is as above, the
polynomial

(3.4) Bim(z) = (z — a1)™ -+ (z = ap)*

recall that Y?  k; = k — m). The main result of this section is the
i=1
following.

Theorem 1. The (k — m/k)L(k,,... k,;m) MPTA is given by the
rational function Py_1(t)/Qr(t) = —Hj_,(t)/Hk(t), where

Hy(z) Hk(t)>'

(35) i) = o P

Proof. In order to apply the functional ® in (3.5), let us prove that

Hk(x) — Hk,(t)

(3.6) —

belongs to G%(k1, ..., ky;m) both in z and in t. Put

(3.7) Sk_1(z,t) = Qk(I)Bk—m(t:)E : tQk(t)Bk—m(-T) ‘

The numerator of (3.7) is a polynomial in z (and in ¢) of degree at most
k that vanishes for =t and therefore it is divisible by (x — ¢). Then
Sk—1(z,t) is a polynomial in z (and in t) of degree at most k — 1. But

Hk(w) — Hk(t) _ Skfl(x,t)
r—t Bk—m(I)Bk—m(t)’

(3.8)

and hence the lefthand side in (3.8) is a GR-function of z (and of ¢) in
GO(k1, ... kp;m).

Now applying the functional ® to the GR-function (3.6), with z
as the variable and t as a parameter, we get a new GR-function
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H} [(t) € G°(k1,...,kp;m) defined by (3.5), associated with Hy(z).
Indeed, from (3.8) and (3.5),

. 1 Sk-1(z,t) Pi—1(t)
(3.9) Hy_,(t) = Bkm(t)q)< Bi_m(z) > T Biw()

where P;,_1(t) € IIy_;. The meaning of the minus sign will be apparent
below.

Now, from Lemma 1, (3.2) and (3.5), we can write

L,»(t)+H’: 1 (2) — ()Y 4+ kl(t)(p(Hk(l")—Hk(t))

Hi (1) -
B +Hk — Hi(t)
- oM e
_ 1 Hi(z)
Ha>¢<x—t>
) Qr(z)
=00 ¢<Bkm<x><m—t>>
 Biom(t) & Qulz) o
= Q) §J®<Bkm(x><w—ai>f'+l (t~a)
-1 ud —a ks - Qk(x)
~elolle-a) ;¢<Bk—m(fv)($ )
s#1

where the latter equality is a consequence of the fact that Qg (a;) # 0
fori=1,2,...,p. Hence, conditions (2.3) are fulfilled. The remaining
condition (2.4) can be proved using Lemma 1 and (3.3). Indeed, the
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following holds

Pk_l(t) - T — —1 H;ck—l(t)
Lyii(t) — 0t S((z—t) )+ THi (1)
—d((z—t) )+ Hkl(t)<1><H’“(mi - tH‘“(t))
_ ]. Hk,(x)
= Hk<t>q’< x—t)

(o]

B mt
= ’“ Z@Hk (z)2i= 1)t
=1

= 0((75*1)"‘“),

where the latter equality is due to the fact that Bg_.,(t)/Qk(t) =
ot 1H)m). o

The result just obtained can now be used to compute the numerator
of the approximant by giving two representations of the associated
GR-function H} ,(t). The first one, which uses the coefficients of
the partial fraction decomposition of H}_,(t), is the natural extension
of that obtained in the one point case. The second representation
supplies an algorithm to compute the coefficients of the polynomial
—Pj,_1(t). Observe that these two sets of numbers are the components
of the associated G'R-function with respect to the algebraic bases
CY(k1, ... kp;m) and CI(k1,... ,kp;m), respectively.

Theorem 2. The GR-function associated to Hy(t) with respect to
the functional ® is given by

m—1 P ki
Bi,i
3.10 HE (1) = 1
(3.10) SORS SYES 3) peee
s=0 i=1 j=1
where
/Bs:_ Z anCn-s, $=0,1,...,m—1,
n=s+1
(3.11)

i
61’,]’:* E Qi nCin—j, J:laakza Z:]-v"'apa
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and

i

m P ki
(3.12) H() =Y at +3 Y 0
s=0

. t* az
i=1 ]:1

Proof. From (3.5) and (3.12), one has

HE Zas <x ts>
+zz’;ai,j@<<””“")i_§”’“)-

i=1 j=1

Setting u = (z —a;)"' and v = (t — a;)7!, or u = ¢ and v = ¢, the
identity

W s
=uw T+t w40

u—v

along with (3.1), allows us to write

m
Hy_,(t) = Z Oés@(xsil L gt tsfl)
s=1

S (S (o) )

i=1

(3.13) o
_Y < ancns>ts
s=0 n=s+1
ki, ki
(S (S o=
)t —a;)i

i=1 j=1 s=

Since H; ,(t) € G°(k1,...,kp;m), it can be expressed in the form

(3.10). This fact and (3.13) easily yield (3.11). O

The coefficients for the numerator of the approximant can be obtained
with the aid of the following lemma. Notation is as in (3.7) and (3.9).
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Lemma 2. The identity Sk—1(z,t) = so(z) + s1i(z)t + -+ +
sg_1(z)t* =1 holds, where
(3.14)
k—1 j—1

sp—j(x) = Z < Z (qh—sbits—jr1 — bsti+sj+1)>xia

1=0 " s=max{j—i—1,0}
i=1,2,... k

Qr(x) = qo + - + qux* and By_ () = bo + - -+ + bp_pmx®™™ is the
polynomial (3.4). If j > k — m, we take b; = 0 in (3.14).

Proof. Let Sg_1(z,t) = Tx(z,t)/(t — z). Then

Tiy(z,t) = Qu(t) Be-—m(z) — Qu(@)Br-m(t) = er(x)tj’
where
(315) T‘j(l‘) = Z(q]b’ - qibj)xi, _7 = 0, Ces ,k.

Since Ty (x,t) is divisible by (¢ — ), the Horner’s algorithm furnishes
the recursive formula

sk—1(z) = ri(z)
(3.16) S 3(@) = T g41(2) + 25k s41(2)
j=2,3,... k.

In order to establish (3.14), we proceed by induction on j. The result
clearly holds for j = 1, since from (3.15) and (3.16) one has

k—1

sk-1(z) = Z(kai — qibi)z".

=0
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Suppose now that (3.14) is true for j = n — 1 < k. Again from (3.15)
and (3.16), and by inductive hypotheses,

n—2
Sk—n(x) = (Z(Qk—sbk—l—s—n—i-l — bk:—s‘]k-l—s—n—i—l))mk

s=1
k-1
+ Z <an+1bi = bkont10s
i=1
n—2

+ Z (qk—sbi—l—s—n—i-l - bk—sqi+s—n+1)>xi

s=max{n—i—1,0}

+ (qk—n+1b0 — br—n+t190)-

But
n—2 n—2
Z bkfsqk+sfn+1 = Z qkfsbk+sfn+1;
s=1 s=1
and therefore s;,_,,(z) € II,_;. The coefficients of z° fori = k—1,... 1,

turn out to be

(qr—nt1bi — bp—nt1G:)

n—2

+ Z (@r—sbits—nt1 = Ok—sQits—n+1)
s=max{n—i—1,0}

n—1

= Z (qk—sbi+s—n+1 - bk—sQi—l—s—n—i—l),

s=max{n—i—1,0}

the constant term being gr—n4+1bop — bk—ny190. The proof is thus
complete. u]

The coeflicients of —Pj,_1 are now given by the following theorem.

Theorem 3. The GR-function associated to Hy(t) with respect to
the functional ® is given by

k—1 t]
Hy_(t) = ijm,

Jj=0
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k—1 j—1
Pk—j = Z ( Z (bk—sQits—j+1 — kabi+sj+1>%'

=0 “s=max{j—i—1,0}
i=1,2,... k,
(3.18)
l‘i i—k+m ) p ks
=g ) == 2 e+ 2D ke,
Bk_m(w) j=0 s=1n=1

i=0,1,...,k—1.

The numbers nj(-i) and s

base C3(k1,. .. ,ky;m) with respect to the base Co(k1, ..., kp;m), again,
bj=04fj>kand>!=0ifj<i, and

(@)

n are the components of the elements of the

k 4
Hk(t) = qu Bk,m(t)'

i=0

Proof. Write

k-1
Pkfl(t) = ijtj.
7=0

From (3.9) and Lemma 2, we have

Hiy (1) = Z o(30) 5

Jj=

and therefore

(3.19) m:@(%), j=0,...,k—1

Formula (3.17) is a consequence of (3.14), (3.18) and (3.19). O
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Remark 2. In short, for a given polynomial Qg (t) = Zf:o git* such
that Qx(a;) # 0, for i = 1,...,p, the corresponding multipoint Padé
type approximant is

k—1 t]
E—m/k)t)=—=)> pji=—r,
( / )( ) J;J ]Qk(t)
where the coeflicients p; are given by (3.17). O

Remark 3. For p =1, a; =0, k; = k and m = 0, one-point Padé-type
approximants, as defined by Brezinski [1] result. Indeed, taking

Hi(z) = =5 = Qu(a™),

where Qk(ac) = z8Qp(z~1), the Padé-type approximants with gener-
ating function (1 — 2t)~!, here z = 1/z, and generating polynomial
Qk(z), are obtained.

In a similar way, two-point Padé-type approximants, m > 0, result if
the generating G R-function is now given by

k(z m N
Hy(z) = mkEm) = 2™ Qr(z ).
In other words, Hy(z) is now a Laurent polynomial. o

To illustrate, next we give two numerical examples. Comparison
with one point Padé-type approximation (1PTA) is provided. For a
connection with quadrature formulas, see [6].

Example 1. Consider f(t) = e~t. Taking its Taylor expansions

L;(¢t) at several points a; and the denominator

(3.20) Qult) = (1 + %)k

for which the 1PTA sequence (k — 1/k) at the origin converges to f(t),
see [12], we have the following numerical results. In Table 1, E1pr4
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TABLE 1.

t| Eipra | E2pra

-1.1 | 3.21072 | 5.2102

-0.9 | 1.01072 | 1.91072

-0.1 | 4.510~7 | 1.4107°

0.1 |3.41077 | 5.910°¢

0.5 | 1.2107% | 1.210°°

0.9 | 7.110~* | 3.81077

1.1 1.21073 | 1.310~¢

1.5 | 2.41073 | 9.710°°

2.0 | 3.61073 | 7.510~*

3.0 | 3.11073 | 5.31073

TABLE 2.

t| Eipra Espra | Espra
-1.1| 3.5107° | 2.21077 | 2.810°7
-0.9 | 1.3107° | 8.810~% | 3.710°7
-0.1 | 2.210~'* | 2.310~8 | 1.710°7
0.1 |2.0107'* | 3.011078 | 1.610 7
0.5 | 2.610°7 | 4.8107% | 2.010¢
0.9 | 7.010-% | 2.6107° | 3.3107
1.1 | 2.1107° | 4.2107° | 5.410°7
1.5 | 1.010~* | 6.010°° | 2.8107°
2.0 | 4.2107% | 4.8107° | 2.110°*
3.0 | 2.6107% | 1.51072 | 1.91073

543

are the errors for the (3/4)-1PTA at the origin, and Espra are the
errors for the (3/4)-2PTA with a; =0, az = 1 and k; = k2 = 2, both
with denominator Q4(t) given by (3.20). The data in Table 2 represent
the errors for the (5/6)-1PTA at the origin, (5/6)-2PTA with a1 = 0,
ag = —1, ky = k2 = 3, and (5/6)-3PTA with a; =0, ap = -1, a3 =1
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and k; = ke = k3 = 2. Such approximants have the same denominator
Q¢(t), again given by (3.20).

Example 2. Now let f(t) be the function ¢t~!log(1 + t), and let its
corresponding Taylor expansions near t = 0 and ¢ = 2 be
1 1 1

— _ _2__3 ...
Lit)=1-gt+ 58— 5+ (t=0)
1 1 1
Lo(t) = = log 2 - — -1 t—2
2(0) = log2+ (5~ 1log3) -2

_ <%_%10g3>(t—2)2+--- (t —2).

The (3/4)-1PTA at the origin to f(¢) with denominator Q4(t) =
t* 4+ 1013 + 35¢% 4 50t + 24 yields better results even than that obtained
by using the [1/2] one-point Padé approximant for the same function,
see [2]. As before, in Table 3, we present the results for the (3/4)-1PTA
and the (3/4)-2PTA, with a; = 0, a2 = 2 and k; = k3 = 2. In both
approximants, the denominator has been taken to be Q4(t).

TABLE 3.

t| Eipra | Eopra
-0.8 | 5.91072 | 5.3102
-0.5 | 1.010~3 | 8.6103
-0.1 | 2.210-7 | 1.010*
0.1 |8.71078 | 5.710—°
0.6 | 9.210~7 | 5.010—°
1.1 | 1.4107%* | 3.610~*
1.5 | 4.710~* | 1.310~*
1.9 | 1.01073 | 5.510°
2.1|1.31073 | 5.51076
3.0 | 2.0102 | 5.210~*

4. Construction of approximants of arbitrary degrees. In
view of the formal series (2.2), it is apparent that when MPTA in-
cluding the point at infinity are considered, the rational approximants
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should have degrees k —1 and k£ in the numerator and denominator, re-
spectively. In this section we shall be concerned with the construction
of approximants of arbitrary degrees and, therefore, we shall only deal
with approximants at points of the finite plane, i.e., with m = 0. Ac-
cordingly, the corresponding term will be omitted in the notations, see
Remark 1. The definitions of Section 2 extend easily for (r/s)-MPTA
in the following sense. Given the p formal power series L (2.1), and a
polynomial Q(t) of degree s with Qs(a;) #0fori=1,2,...,p, we say
that the rational function P.(t)/Qs(t) with P, € II, is an (r/s) mul-
tipoint Padé-type approximant of order (ri,...,7,) (r;, nonnegative
integers such that > %, r; =7 +1) to L, if

20

L= 5.0

—O0((t—a)™) (t—a), i=1,2...,p.

In this section such approximants will be constructed following the
procedure given in [1] for the one point case.

The procedure consists in obtaining a new series L by means of “shift-
ing” the series L, and calculating a multipoint Padé type approximant
to those series, following the techniques of Section 3.

Of course, only one of the series L can be shifted; however, this
requires the knowledge of more of its coefficients, so the necessary
information will be distributed among several or all of the series. For
simplicity, we shall assume that all the series are taken into account in
this process.

4.1. (k+n/k)-MPTA. Let kq,...,k, be nonnegative integers such
that >*  ki=k+n+1, and

(41) mi:kifni, 221,2, y P

where the nonnegative integers n; are such that > - n; = n+ 1 and
(m)

1 ’

m; > 0 for every i. Now let us consider the formal power series L
i=1,...,p, m=1,2,..., constructed by the recursive formula

L") g

t—ag

Lgm)(t): ’ stl <mSN57

(4.2)
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with the convention that LEO) (t) = L;(t) for i = 1,...,p, and where

(4.3) No=0, Ne=Y m;, s=12,...,p

These series are obtained by shifting n; times the series Ly, no times
the series Lgm), n3 times the series L§"1+”2) = LY?, etc.

Writing

d(m) t—a;),
(4.4) Z
i:l,...,p, m=0,1,2,...,
form=1,2,..., we have
m m—1 .
dm = d{m j=0,1,...,
(45) qdy) = (@57 —d5™) /(@i —a,)) i#s,
A" = (a; — ag)d +d its; j=1,2,....
Now, put
= n Li(t) - Wa(t) .
(4.6)  Lit)=L"() = L2 =1L, p,
?:1(75*%')"3
where
p i—1 n;—1
(4.7) =Y (H t—a;)" Z dig ai)j>,

1=1 r=1

is a polynomial of degree n. Here we assume that [][" =1and > =0
if m < n. Consider the rational function

(4.8) R(t) H t—a;)" (k — 1/k); (t),
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where (k —1/k); () is the (k — 1/k)-ATPM of order (my,... ,my), m;
given by (4.1) to L = (Ly,...,L,) and generating R-function

Qr(z)
Bk(ac)’

Hy(z) =
where

Bu(e) = (o = a))™ -+ (o = a,)"

Then we have

Theorem 4. The function R(t), given by (4.8), is the (k + n/k)-
MPTA of order (ki,... ,kp) to the series L, with Y % _ k; =k+n+1
andn=20,1,2,....

Proof. From (4.1), (4.6), (4.8) and the definition of MPTA, for
t1=1,...,p, we obtain

L;(t) — R(t) =

(t = a;)" (Li(t) — (k = 1/k) (¢))

P
=1
P
=(t—a)" Ht—a O((t —a;)™)
j=1
J#i
= O((t = ai)"™).

This and the fact that the numerator of R(t) is a polynomial of degree
at most k + n, yield the desired result. a

Setting (k — 1/k);(t) = Pr—_1(t)/Qx(t), and defining the linear
functional
(49) "V ((z —a) V) =d"T), i=1,...,pi=12,...

where d( i i b

R-function

are the coefficients of L;, we can write for the associated

Hi_y (1) = ‘PE;—ES) _ gntD) <w>
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Because of the uniqueness of the approximant, the same (k + n/k)-
MPTA of order (ki,... ,k,) to L can be obtained for different choices
of the numbers n;, provided that > - _;n; = n+ 1 (or different m;).
Therefore, both the functional <I>("+1) and the R-functions Hj and
H}_, depend on this decomposition of n + 1 (or of k).

Remark 4. From (4.5), it can be seen that the only coefficients
of L used in the construction of R(t) in Theorem 4 are ¢;; with
j=0,1,...,ki—1,i=1,...,p. O

Remark 5. The polynomial W,,(t) defined by (4.7) is the Hermite
interpolation polynomial that solves the problem: “Find P € II, such
that

d’ P(t)
dt] t=ai

=jleijy, 7=01,...,n;—-1;¢=1,...,p.7

Indeed, setting 7(t) = [[j_,(t — a;)™, and taking into account that
R(t) is the (k + n/k)-MPTA of order (ki,...,k;,) to L, we have

Wi (t) — Li(t) + w(t)(k — 1/k);,(t) = O((t — a;))*), i=1,...,p.

But

(k—1/k)g(t) Zd”“) @) +O((t — a))™), i=1,...,p,
and consequently,

m;

Wn(t) - lZ dn+1) )

—Tr(t)O((t—ai) D+ 0((t - ai)™)
O((t — ai)™) + O((t — ai)™ ™) + O((t — a;)*)
O((t—a;)™), i=1,...,p,

because m; + n; = k; and 7(t) = O((t —a;)™) fori =1,...,p. O
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4.2. (k/k + n)-MPTA. Now we start the construction by setting
n—1=5%"% n; sothat

(4.10) mi;=k;+n;, i=1,...,p.

Next the following formal power series can be iteratively computed
™) = (t—a) L™ V@), i=1,2,...,p,

with LEO) = L;, and where s = r if N,_; < m < N,, N; being as in

(4.3). In the notation of (4.4), the coeflicients can be computed from
the relations

g =0,d" = dm} i=1,2,...
(4.11) A = (a; - a,)dy Y i#s
d =d D + (@i —a)dT Y its j=1,2,....

(4.12)  Lit)=r"V) = ﬁ(t — )" Li(t), i=1,...,p,

and consider the rational function
p
(4.13) R(t) = H(t—aj)_"j(k+n—1/k+n)i(t)
j=1

where (k+n —1/k 4+ n);(t) is the (k +n — 1/k + n)-MPTA of order
(my,...,mp) to L and generating R-function Hy (%) = Qpin(z)/
Biyn(z), with Biyn(z) = (z — a1)™ -+ (z — ap)™, m; given by
(4.10). The (k/k + n)-MPTA is obtained from the uniqueness of the
approximant and the following two results.

Theorem 5. The function R(t) given by (4.13) satisfies L;(t) —
R(t) = O((t — ag)¥), i =1,2,... ,p.
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Proof. From (4.10), (4.12), (4.13) and the definition of MPTA, for
t=1,...,p, we have

Li(t) = R(t) = [ (¢ —a) ™ (Li(t) = (k +n — 1/k + n)g (¢))

J=1

hS|

= (t—a)™™ | [(t—a)""O((t — ai)™)

=0((t— ai)ki). |

I
N

Theorem 6. Let the coefficients dg;-_l) be as in (4.4). Then
dn Y =0,j=01,...,m-1,i=1,...,p.

Proof. By induction on k, we shall prove that

dN =0, i=12... k j=0,1,...,n; 1.

If k = 1, then Ny = ny. By construction and (4.11),

diW =0, d¥ =dt =0 ifj<n -1

Assume this holds for k = m, i.e.,
(4.14) dN™ =0, i=1,...,m; j=01,...,n 1

Let us prove it for kK = m + 1. If ¢ < m + 1, then, by inductive
hypotheses,

: = (a; — am+1)d; = (ai = apyr)" Ny =
dip™ = (@i = ams)dig™" ™Y = (@i = amia)" g™ =0,

1=1,...,m.
On the other hand, again by (4.11),

d(Nerl) d(f\_’m+1—1)
Z’J

= dfm Y + (a5 — agya)dm Y

s 1,j—s?

min{j,nm41}

(nm+1 > (ai - am+1)nm+1fsd(Nm)
s=0

i=0,1,....
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This and (4.14) prove that d Nmt1) — 0 for j = 0,1,...,n; — 1 and
i=1,...,m. By construction and (4.11), for i = m + 1 the following

holds '
dngis) =0, dl) = dg T =0

ifj<nmy— 1. O

The numerator of the approximant can also be obtained by defining
the linear functional

(415) U ((z—a) ) =d"TY, i=1,...,pj=12...,

and by observing that the associated R-function to Hyy, can be
determined by

Hpi o q(t) = B (t) 1) <Hk+n(x) — H;H_n(t))‘

BkJrn(t) r—t

Remark 6. The only coefficients in the series L required to carry out
this process are ¢; j, with j =0,1,... ,k; —1,i=1,...,p. ]

In short, the multipoint Padé-type approximant (r/s) of order
(r1,-..,rp) to L can be written, in general (compare with [1, p. 12] for
the one point case), as

(4.16) (r/s)L(t) = H (t—a;)"(s—1/s)i(t),

provided that the formal series L are conveniently constructed and the
approximant on the righthand side is of order (mq,... ,my). If r > s,
we decompose 7 — s + 1 in a sum of nonnegative integers n;, such that
r—s4+1= Zle n; and W,_; is the polynomial of degree less than
or equal to r — s, given by (4.7) with n = r —s. If r < s, we take
r—s+1= Zle n;, where n; are nonpositive integers and W,_; = 0.

Formula (4.16) holds true also for (r/0)-MPTA if (s —1/s) = 0 when
s = 0 since, in this case, W,_, is the Hermite polynomial that solves
the interpolation problem stated in Remark 5.
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The generating R-function for the (r/s)-MPTA is of the form

H,(z) = Qult)

(o= an) (o = ap)

with s; = r; — ng, Zlen =r+1, Zleni =r—s+1,n; >0 for all
iifr>s,n; <0 for all i if r < s. The functional " —**+1) defined by
(4.9) or (4.15), with n = r — s, allows us to write

HY () = dUr=s+D) (M)

r—t
whence

(r/shule) = Woa(t)+ ][0 - 0y il

Jj=1

5. Compact formula and error expressions. As in the one
point case, it is possible to obtain a compact formula for representing
the (k — m/k)-MPTA of order (ki,...,ky,;m) to the formal series L.
This is done in the following.

Theorem 7. Let {r,(z)}f_, = {gu(2)/Br_m(x)}r_y be k + 1
GR-functions of G(ki,... ,kpy;m) with k —m = >k, dg, = n,
n=0,1,...,k and Bi—p(z) = (x — a1)® - (x — a,)*. Let V be
a square matrix of order k with terms

Uiy = @((x—t)Ti_l(m)rj_l(w)), ’L,_] = ].,... ,k;

let u and w be the vectors of components u; and w;, i = 1,...,k,
respectively, where

and
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respectively. Then
(5.1) (k —m/k)L(t) = (u, V'w),

where (-,-) denotes the scalar product of vectors and Hy, = Qr/Bk_m,
Qr(t) is the denominator of the approzimant.

Proof. From (3.9) and Theorem 1, we can write

(k—m/k)L(t) = _le(t) ® (Sgk_l:jz’vt)) >’

where Si_1(z,t) is a polynomial in x of degree at most £ — 1 and co-
efficients depending on ¢. Since ¢, (z) has degree precisely n, and since
the set of rational functions {r,(z)}*Z{ is a base for G°(k1, ... , ky;m),
we can write

S t)
Qk(k)flgkxm ZSJ 1 7‘] 1
whence
(5.2) (k—m/k)L Zsj 1)@ (rj—1(x)).

On the other hand, from (3.8) and (3.9), for i = 1,... , k, we have

(o)) = el g7 )

Then

Sj_l(t)q)((m7t)Ti_1(I)T‘j_1(£E)), = ]., ,k,

w; = —

VR
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and hence,
k
(53) Sj_l(t)vid' = —w;, 1= ]., e ,k.
j=1
Let s denote the vector of components s;(t), j = 0,...,k — 1. From

(5.3) we have s = —V~lw, and from (5.2),

(k —m/k)L(t) = —(s,u).

This yields (5.1). u]

By choosing the base Ca(k1,... , k,;m), we have

Vij = ‘?(ﬁ) B t¢<%>

2m—1
= Z (B — BT )y g
r=0
p 2k o o
30 (D08 a8 ) e s, b=k
s=1 r=1

where ,87«"), ,BSZ) are the components of the rational functions z"/
(Br—m(z))?, with respect to the base Ci(2ki,...,2k,;2m — 1) of
G(2k1,...,2kp;2m — 1). Observe that we can take ¢;, = 0 for r =
ksy...,2ks—1,s=1,...,pand cpy1, =0forr=m+1,...,2m—1,
since the (kK — m/k)-ATPM does not depend on them.

Defining now the matrices A = (®(zr;_1(z)rj_1(z)))f,;—, and B =
(@(ri_l(x)rj_l(x)))ﬁjzl, and assuming that the matrices (A — a;B),
t=1,...,p and B are nonsingular, we can give an expression for the
coeflicients ¢; ; of the formal series L. In fact, from Theorem 7 it follows
that V = A — tB and, therefore,

(k —m/k)L(t) = (u, (A —a;B) = (t —a;)B) 'w

= (u,((A —a;B)(I— (A —a;B) " (t —a;)B) *w)
= (u,(I-(A—-aB) *(t—a;)B) A —-aB)'w)
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u, (A~ tB) 'w)
u, B '(AB ! —I) 'w)
ATIBTHETTABT - 1) tw)

(k= m/k)L(t) =

o~ o~

=

(u,-B Y AB 1)/ tw)t I,

o

~
Il
—

Thus, '
cij = (u,((A - a;B)"'B)/(A —a;B)"'w),
F=0,1, .. ki—1;i=1,...,p
Cp+1,j = _<uaB71(AB71)j71W>, j=1,...,m.

As an immediate consequence of the proof of Theorem 1, in Theo-
rem 8 below we get a first expression for the error of approximation.

Theorem 8.

Li(t) — (k —=m/k)L(t) = mq’

1 <Hk(w)

Hence, these approximants can be deduced as in the one point case,
replacing (z — ¢)~! by (Hi(t) — Hi(z))/(Hr(t)(z — t)) in Li(t) =
O((z—t)"Y),i=1,...,p+1,see [1, p. 20].

Observing that

(t—=a;), i=1,...,p

- Zq»(xﬂ'—lHk(m))t‘j, (t — 00),

from Theorem 8 we obtain
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Corollary 1.

Li(t) = (k= m/R)n(t) = —— " d 5 (t — as),

Hi (1) 2
(t — ai)7 i = 5 2
1 oo
= H (t) de-!-l it (t - Oo)a
k(1) =
with
_ Hy,(x)
di; = q>< e
m—j—1 P ks
= - Bﬁl’])cp-l—l,r-i-l + Z <ZB§?;’])CS,T—1>
r=0 s=1 “r=1
s#£1
kiti+1
+ 3 By, =0, i=1,.,p
r=1

dpi1,; = —P (2’ Hp ()
mbi-1
= > Y1
r=0

P ks
3 (S ) =12
s=1 r=1

where ﬁﬁi’j) are the coefficients of the quotient polynomial of Qr(z)/

Bi—m(z)(z — a;)? T, §f;j) are the coefficients of the partial fraction
decomposition of the remainder polynomial, and 777(7 ) and ngr) are the
analogous coefficients for Qp(x)z? 1 /Bi_m(x).

Furthermore, as a consequence of Theorem 8, we have the following
error formula for (r/s)-MPTA when infinity is not considered.

Corollary 2.

Li(t) . (T/S)L(t) — H(t _ aj)"j Hsl(t) (I>(T—s+1) (Zsfmt)>’

Jj=1
1=1,...,p,
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where

Qs(t)
@a (- ap)
8; = 1r; — Ny, Zleri =r+1, Zleni =r—s+1,n; >0 forall i if
r>sandn; <0 for all i if r < s, and the functional ®"—511) given
as in (4.9) or (4.15).

Hy(z) =

Proof. From (4.16) and Theorem 8, one has

P

Li(t) — (r/s)L Ht*ag Li(t) — (s — /)¢ (t))

P
=1,. O

Finally, if f(t) is a function of one complex variable ¢, holomorphic in
certain simply connected domains D;, i =1,...,p+ 1, of the extended
complex plane C, such that a; € Di, i =1,...,p, © € Dp+1 and
D;ND;j = @ for ¢ # j and L are the Taylor expansions of f in those
points, then the preceding formulas give an integral representation of
the error. Indeed, let C;, ¢ = 1,...,p+ 1 be p + 1 pairwise disjoint
closed Jordan curves such that a; is interior to C; and C} is interior to
D;, fori =1,... ,p+1. By the Cauchy integral formula and Lemma 1,
we can write

=

1 1 p+1
z—1 2mi Jo x — t
Then, at least formally, from this expression and Theorem 8, we get

/f
271'sz J;—t

+1
il (pZ/ o))
= de | ).
T — t
This formula is actually the error expression given in [14, p. 186]
concerning rational interpolants with prescribed poles.

f@t) = (k =m/k)r(?)
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