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GLOBAL EXISTENCE AND BLOW-UP OF SOLUTIONS
FOR A SEMILINEAR PARABOLIC SYSTEM

SHAOHUA CHEN AND WILLIAM R. DERRICK

ABSTRACT. We discuss the initial-boundary value prob-
lem (ui): = Au; + fi(u1,...,um), with uijjpg = 0 and
ui(z,0) = ¢i(z), i =1,... ,m, in a bounded domain 2 € R",
with n > 1 and m > 1. Under suitable assumptions on the
nonlinear terms f; we will prove that, if 0 < ¢; < Ay; with
A < 1, then the solutions are global, while if ¢; > A¢; with
A > 1, then the solutions must blow up in finite time, where
the 1; are positive solutions of AY; + f; (¥1,... ,¥m) = 0 with
Yiloa = 0.

In this paper we study the initial boundary-value problem

w=Au+f(u), z€Q,t>0,
(1) u(z,t) =0, z € 0Q,t >0,
11(:6,0) = d)(x)v z €,

where € is a bounded domain in R™ with smooth boundary and n > 1,
and u = (u1,... ,um), £ = (f1,-.., fm) are vectors with m > 1. Tt is
well-known that, for some small initial values, the solution may exist
globally, while for some large initial values the solution may blow-up in
finite time if the nonlinear term f(u) increases superlinearly, see [2-6,
8, 14] and [17]. For a large class of nonlinearities, considerably less is
known as to when solutions exist globally or blow-up in finite time.

If m =1 and f(u) = |u[P"'u with p > 1, Levine [14] proved that
solutions of (1) must blow-up in finite time, if ¢(z) is large enough in
the sense that its “energy,”

1 1
E(¢) = §||V¢||§ - mWHZﬁ

is negative. Weissler [18] proved that for n = 1 blow-up occurs only
at the point x = 0 if ¢ = k¢ and p, k are sufficiently large, where 1
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is a positive solution of ¥, + ¥P = 0, ¥|sq = 0 with Q = (—1,1). In
[19], he also proved that, for n < 2 or p < (n + 2)/(n — 2) there exists
a constant ¢ > 0 such that

w(x,t) < (T — )~/ =1,

if > 0 is radially symmetric and A¢+@P > 0. For more general cases,
see [4].

If m = 2 and f(u) = (vuy, —ufuy) with 8 > 1, Hollis, Martin
and Pierre [13] have shown that solutions of (1) exist globally. If
f(u) = (1 — u2)g(ur), (1 — u2)g(uy)) with g(u;) = e*t, Bebernes
and Lacey [2] have shown that solutions of (1) blow up in finite time.
Later, in [3] they extended their results to more general g(u;). If
f(u) = (u}, uf), Escobedo and Herrero [8] have proved that all solutions
of (1) are global if pg < 1, while if pg > 1, both global solutions and
solutions that blow-up in finite time can occur, depending on the initial
values. Later Caristi and Mitidieri [5] obtained the following estimates:

uy (z,t) < (T — t)—(p+1)/(pq—1)7 ug(z,t) < (T — t)—(q+1)/(pq—1)7

if pg > 1, where T is the blow-up time.

Lu and Sleeman [15] gave several sufficient conditions to get the blow-
up property for the one-dimensional parabolic system with m = 2

Ou; d%u; .
8—1;:04,-8—;4-]0@'(“1,@), —a<zr<a, o >0, i=1,2.

However, in order to get blow-up solutions, many authors, see [9], for
example, need to assume that Ju/0t > 0 or A¢ + £f(¢p) > 0, for n > 1
(where u > 0 means u; > 0 for all i). So there is a gap between the
global solutions and the blow-up solutions. For the Cauchy problem,

up = Au + u?, x €R", t>0,
u(z,0) = ¢(z), x € R",
with p > (n 4+ 2)/(n — 2) and n > 3, Gui, Ni and Wang [11] have
obtained the following perfect results:

(i) if ¢ < u, and @ # u, for some a, then ||ul|eo — 0 as t — oo;
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(ii) if ¢ > uq and ¢ # u, for some «, then v must blow-up in finite
time, where u,, is a positive solution of Ay + ¥? =0, ¥(0) = a.

The purpose of this paper is to fill in this gap for the initial-boundary
problem (1). We assume that
(i) ¥(z) is a positive solution of A + f(¢») = 0, with ¥|sq = 0.
(i) ¢(z) € C*(Q, R™), with ¢|oo =0 for 0 < a < 1.
(iii) £ : R — R’ is locally Lipschitz continuous, f(0) = 0, and

filw)/u; > fi(v)/v; forany u>v>0 and i=1,...,m.

(iv) fi(u)/ug > ¢p >0forsome o >1landallu>0,i=1,... ,m.

Our result is:

Theorem. If0 < ¢; < \Y; for all i, with A < 1, and the assumptions
(i)—(iii) hold, then the solution u of (1) is global with exponential decay.
If ¢; > Mp; for all i, with A > 1, and the assumptions (i)—(iv) hold,
then the solution u of (1) must blow-up in finite time.

Proof. First we prove global existence. Since ¢ € Cg(f), from
standard parabolic PDE theory, there exists a unique solution u(z,t) €
C(Q2x[0,7])NC*(Q x (0,7]) for some 7 > 0, see [1 or 10] and u > 0,
see [17]. Set v;(z,t) = (A + ct)¥;(z) — u;(z, t) with ¢ large enough such
that

[(A+ 1)M - @| <c¢ inQx(0,7).
(0 Y

Then

(Ui)t - Avi = C"/}i - (Ui)t — ()\ + Ct)A’g[)Z + Aui

fily)  fi(w)
:¢i[c+ At et) 2P TR,
( ) ¥ Y

for t < min(1/e,7). By the maximum principle, v; > 0. Choose t;
sufficiently small such that A + ct; < 1. Then (A + ct)y;(z) > u;(z,t)
for t < t;. Now, for any number n, set

(2) gr(t) = /Qu?“(:c,t)d;i_”(x) dQ, forte|0,t].
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Then ¢7'(t) is well defined, and ¢'(¢) € C|0,t1], because u;(z,t) €
C(Q x [0, 7]). Differentiating (2), substituting in the equations (1) and
integrating by parts (notice that the boundary values are always zero),
we have

d
—qg = 2 ntly,—n A i i ds)
L (t)=(n+ )/ﬂuz Y " (Au; + fi(u))

= (n—|—2)/ ul T f; (u) dO
Q
+(n+ 2){n / uf e Ve Vi dQ
Q
- 1 (Vadlv/ ﬂdQ}
(n+1) [ urvVa
= (n+2)/ u?"'Zz/)i_"M dn
Q

Ug

i+ 1)(n+2) / WO Vs — us Ve ? A
Q
3) ~ (042 [ W VTG e
Q
H+ D+ 2) [ vl ao
Q

<(n+2) /Q w1 g

Uq

+(n+1)(n+2) / ul T2 T2 V|2 d
Q
. 2){(n 1) [ v ao
Q
- / uf PP A, dQ}
Q

- _(n+2)/ﬂu?”¢i"<% - @) Q2 <0,

for t < ty. Thus, we get
gi'(t) < gi*(0) for t € (0,11].
Taking the nth roots and letting n — oo, we have

ui(z,?) < sup& < supﬂ <A, forte(0,t].

4) ¥i(x) Q Y~ o %
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We can extend u; from ¢ to to by the same method since u;(x, t) /v;(x) <
A. Hence, (4) holds for all ¢ > 0 for which the solution u; exists. By
[1] or [12], we can extend u; to oo as long as u; is bounded.

Now we prove that u;(x,t) decays exponentially. For any € > 0, let
Q. = {z € Q| dist (z,09) < e}. Since A < 1, by assumption (iii), there
exists a ¢, > 0 such that
(5) fitd) _ fiw) _ fi() <1 _ fi(u)/ui> > e
¥ u; ¥ fi(Y) /i

for z € Q — Q.. Using (3), we define g ,(t) by

%g?(t) < —(n+2)ece /Q_QE ul ) " dQ = —(n + 2)cegl (1)
Then .
240 < () < g7(0) = (n+2)e. | ()
which implies that, for fixed n,
1

max ¢

/ ult?dQ < goi(t) — 0 ast— oo,
Q-0.

Since u;(x,t) = 0 on the boundary, we have [, w2 dQ — 0 as t — oo.

If limy, 0 fi(¥)/¢i = 0 by [12], u;(z,t) decays exponentially. If
fi() /1 > cp > 0 for any x € Q, applying (5) to (3), we obtain

d
0l < —eln -+ 2)g7(0)
which also implies that w;(x,t) decays exponentially.

Now we prove the blow-up property. Similar to the argument above,
we set

i (t) = / Y2 (2)u] " (x, t) A
Q
Then

—n(n+ 1)/ Yrug "2 e Vi — wi V|2 dQ < 0.
Q
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So u;(z,t) > Mp;(x) for A > 1 and all ¢ > 0 such that u(z,t) exists. By
assumption (iii), there exists ¢; > 0 such that

fi(ah) /4 S

1———="—2>c.

fi(w)/u; ~

From (6) with n = o — 1 and assumption (iv), we get

d . fi(u) fi(¥) /i
—h{T't) < —(0 -1 gt 1- dq
e e R
< —c / P dQ.
Q
Hence
Ryt
0 <hI7Ht) < hTTH0) — ct/ YItdQ, or t< %
Q c o dQ
which means t cannot increase to infinity. The proof is complete. a

Example. It is easy to see that, if fi = (1 + uz)u? and fo =
(1 + up)u3, then f = (f1, f2) satisfies the conditions (iii) and (iv) and
that b = (11, ¥2) can be chosen such that 1; = ¥9 and 1); is a positive
solution of A¢; + (1 4 ;)¥? = 0 with ¢;]sq = 0.

Remark . For general f, the system A + f() = 0 with |sq = 0
might have no positive solutions, see, for example, [16, Theorem 4.1]
or the work of [7]. However, when n = 1, such solutions always exist
for many kinds of f.

APPENDIX

We need some results from the theory of analytic semigroups, see [1]
and [12]. Suppose the Laplace operator A is the infinitesimal generator
of an analytic semigroup {e'® | 0 <t < co}. Then there exist positive
constants ¢y, cs and d, independent of ¢, such that

(7) le" ) < cre™,  [lAeS < exe™ /1,
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where || - || is the norm of X = LP for p > 2. This implies the existence
of the integral

1 oo
(8) ATH = —/ TH=le™ dr,
L(u) Jo

for every p > 0, where I'(z) is the gamma function. It follows that
each A™# is an injective continuous endomorphism of X. Hence
A* = [A7#]71 is a closed bijective linear operator in X. If ¢ € D(A*),
the domain of A*, then

JA%eBg] < cet0][ Ak

A2 < et e™|g)|.

(9)

Now set X = [LP(2)]™ with the L? norm |- || and D(A) = [WgP (Q)]™.
We have the following lemma:

Lemma. Suppose that n/(2p) < B < 1/2. Then Xz = (D(AP),
Il - 1g) is embedded into [C*(2)]™ with 0 < p < 28 —n/p.

Proof. The proof is similar to that of [1]. It follows from Friedman
[10, Theorem (1.10.1)] that
el ey < clluliyesllulss?,
where v = p/2 + n/(4p) < B. If we let u = A=Pv with v € [LP(Q)]™,
we obtain from (7)—(9),

l oo
APy = < —/ B1 ey =, dT
18 lony < 57 . 1€ oy

oo
o [ A ol 5 dr
0

IN

IN

oo
c/ === dr||v|| Lo
0

Hence ||ul|c. ) < c/[APul| = c||u||g, and the assertion follows. o

Since ¢ € Cg(Q), we have ¢ € D(A®). From [12], u(t) €
C(]0, 7], D(A%)), which implies that u(z,t) € C(Q x [0,7]) by the
lemma with 8 = a.



456 S. CHEN AND W.R. DERRICK

REFERENCES

1. H. Amann, Nonlinear analysis: A collection of papers in honor of Erich Rothe,
Academic Press, New York, 1978, 1-29.

2. J. Bebernes and A. Lacey, Finite time blowup for a particular parabolic system,
SIAM J. Math. Anal. 21 (1990), 1415-1425.

3. , Finite time blowup for semilinear reactive-diffusive systems, J. Differ-
ential Equations 95 (1992), 105-129.

4. H. Bellout, A criterion for blow-up of solutions to semilinear heat equations,

SIAM J. Math. Anal. 18 (1987), 722-727.

5. G. Caristi and E. Mitidieri, Blow-up estimates of positive solutions of a
parabolic system, J. Differential Equations 113 (1994), 265-271.

6. S.-H. Chen, Large time existence and behavior of solution for systems of
nonlinear reaction-diffusion equations, Acta Math. Sci. (English ed.), 8 (1988),
35—44.

7. S-H. Chen and G.-Z. Lu, Existence and nonexistence of positive radial
solutions for a class of semilinear elliptic systems, to appear in Nonlinear Analysis.

8. M. Escobedo and M.A. Herrero, A semilinear parabolic system in a bounded
domain, Ann. Mat. Pura Appl. (4) 165 (1993), 315-336.

9. M. Escobedo and H. Levine, Critical blow-up and global existence numbers
for a weakly coupled system of reaction-diffusion equations, Arch. Rational Mech.
Anal. 129 (1995), 47-58.

10. A. Friedman, Partial differential equations, Holt, New York, 1969.
11. C. Gui, W.-M. Ni and X. Wang, On the stability and instability of positive

steady states of a semilinear heat equation in R™, Comm. Pure Appl. Math. 45
(1992), 1153-1181.

12. D. Henry, Geometric theory of semilinear parabolic equations, Springer-
Verlag, Berlin, 1981.

13. S. Hollis, R. Martin and M. Pierre, Global ezistence and boundedness in
reaction-diffusion systems, SIAM J. Math. Anal. 18 (1987), 744-761.

14. H.A. Levine, Some nonezistence and instability theorems for solutions of
formally parabolic equations of the form Put = —Au+ F(u), Arch. Rational Mech.
Anal. 51 (1973), 371-385.

15. Lu Gang and B.D. Sleeman, Non-ezxistence of global solutions to systems of
semi-linear parabolic equations, J. Differential Equations 104 (1993), 147-168.

16. E. Mitidieri, Nonexistence of positive solutions of semilinear elliptic systems
in R™, Differential Integral Equations 9 (1996), 465-479.

17. C.V. Pao, Nonlinear parabolic and elliptic equations, Plenum Press, New
York, 1992.

18. F.B. Weissler, Single point blow-up for a semilinear initial value problem, J.
Differential Equations 55 (1984), 204-224.



GLOBAL EXISTENCE AND BLOW-UP OF SOLUTIONS 457

19. , An L°° blow-up estimate for a nonlinear heat equation, Comm. Pure
Appl. Math. 38 (1985), 291-295.

DEPARTMENT OF MATHEMATICS, SIMON FRASER UNIVERSITY, BURNABY, BC,
V5A 1S6, CANADA

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MONTANA, MissouLAa, MT
59812, USA



