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CONSTANT MEAN CURVATURE SURFACES
BOUNDED BY A CIRCLE

RAFAEL LOPEZ

Introduction. The structure of the space of compact constant mean
curvature surfaces with prescribed boundary is not known, even in the
simplest case: when the boundary is a round circle with, for instance,
unit radius. Heinz [4] found that a necessary condition for existence
in this situation is that |H| < 1. The only known examples are the
umbilical ones: the flat disc if H = 0 and the two spherical caps with
radius 1/|H| if H # 0; and some non-embedded surfaces of genus bigger
than two whose existence was proved by Kapouleas in [7].

We shall consider a connected compact surface ¥ and ¢ : ¥ — R? an
immersion of constant mean curvature H such that ¢ : 0¥ — ¢(0X) is
a diffeomorphism. We will say in this situation that X is an H-surface
with boundary T, where ' = ¢(9%).

When the boundary is a circle of radius one, we shall suppose that
it is in the z-plane, and we shall denote by S! the circle {(z,y,0) €
R3;2% +y? = 1}. Given 0 < |H| < 1, the two spherical caps bounding
S1 are stable, but it is not known if they are the only ones bounded
by S'. There is no even answer to this question for immersed discs.
In [2] it appears the question to find sufficient conditions of stability
for a domain. Following ideas of Ruchert [9], Barbosa and do Carmo
prove that if ¥ is a simply-connected surface immersed in R? with
constant mean curvature and [, |o|? dX < 87, then ¥ is stable, where o
denotes the second fundamental form. Also repeated with the problem
of stability, Koiso [8] has proved that the spherical caps are the only
surfaces with minimum area in the family of surfaces with constant
volume and boundary S!. In this paper we prove the following result.

Let ¢ : ¥ — R3? be an immersion from a compact disc in R? with
constant mean curvature and such that ¢(9%) is a circle of radius one.
If o is the second fundamental form and [j|o|?dX < 8, then ¢ is
umbilical.
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1. Preliminaries. Consider an immersed oriented surface ¢ : ¥ —
R3, and let N be a unit normal vector field. Given a normal variational
vector field fIN, where f is a smooth function on ¥ with compact
support, we define the area and volume functional:

A(t):/Z s, V(t):/EXM ®*(d, Ay).

Here ® : ¥ x (—¢,¢) — R? is a smooth variation of ¥ = ®(Z x 0) by
immersed surfaces ¥; = ®(X X t), coming from the variational vector
field fN. Also d¥%; and dAy denote the area form of ¥ induced by
®, and the volume form of R®. Thus V(t) measures the algebraic
volume between ®; and ®;. It is well known that ¢ has constant
mean curvature if and only if A’(0) = 0 for volume preserving normal
variations.

We define stability of a constant mean curvature surface ¥ to mean
all compact proper domains 2 C X are relative minima of the area
functional for volume preserving variations of ¥ supported in 2. In fact
this is equivalent to A”(0) > 0 for all volume preserving variations of X.
Barbosa and do Carmo [2] have shown that the study of stable surfaces
begins with the quadratic form associated to the second variation

A7(0) =: Q(f) = / (V2 - o2 2) ds,

and their statement that a constant mean curvature compact surface
is stable means

Q) = / (V2 — o £2) d= > 0
>
Vfe (%),
= 19)> d¥ = 0.
f=0 on 0%, /E fds =0

According to this definition, the spherical caps are stable.

Let ¥ be an H-surface with boundary S!' and IV its Gauss map. We
represent by A the Weingarten endomorphism field corresponding to
N. The Euclidean inner product (,) of R3 induces, by means of ¢, a
Riemannian metric ds? on 3. Let V2 and A be respectively the Hessian
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and Laplacian operators associated to that metric. We consider now
the function A : ¥ — R? given by

h={($AN,a), acR3al=1,

that is, the normal component of the Killing field on R? corresponding
to the rotations around the vector a. For each p € ¥ and v € T),X, we
have

(dh)p(v) = ((d¢),(v) A N(p),a) — (d(p) A Apv, a).

From here, one can compute the Hessian V2h of the function h. In
fact, if p € ¥ and u,v € T, %,

(V2h)p(u,v) = —((d)p(v) A Apu,a) — ((dd)p(u) A Apv, a)
= (6(p) A (VA)p(u, ), @) = (Apu, Apv)h(p),

where VA is the covariant derivative of the endomorphism field A.
Taking trace in this equality, we conclude that

Ah = —2(¢ AVH,a) — |o|*h.

Hence, in the constant mean curvature case, we have that the function
h satisfies an elliptic equation which is nothing but the Jacobi equation
corresponding to the second variation operator of the area functional.
Moreover, the variation in Y with variational vector field AN is the
normal projection of the variational vector field in R? associated with
the 1-parameter family of rotations around to the straight line given
by the vector a. Thus [;, hdX = 0. In other words,

Lemma 1.1. Let ¢ : ¥ — R3 be an immersion of constant mean
curvature and N : © — R3 the Gauss map for ¢. Then the function
h = (¢ A N,a) for any a € R® satisfies

Ah 4+ |o]*h =0,

o being the second fundamental form of ¢. Moreover, if a = (0,0,1)
and ¢(0X) is the circle S, the function h vanishes along 0%. If the
function h =0 on X, the surface is rotationally symmetric with respect
to the axis a, i.e., it is umbilical.
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The function h of Lemma 2.1 is an eigenfunction of the elliptic
operator L = A + |o|? and then its nodal lines are piecewise smooth
curves. Also, as h = 0 along 93, the boundary is a nodal line. If h has
one nodal domain, this domain will be all the surface and then h will
have sign. But [;;hd¥ = 0 and then h is constantly zero in the whole
surface, and, therefore, it is umbilical.

2. The main theorem. We are going to prove the main result of
this paper.

Theorem 2.1. Let ¥ be an H-disc with boundary S*, and let o be
the second fundamental form. If

/ o|?dY < 8m,
)

then the immersion is umbilical.

As we stated in the introduction, the hypotheses would imply that %
is stable. In this theorem we assure that the surface is umbilical, i.e.,
a flat disc or a spherical cap.

Proof. We have three possibilities:

a) The function h vanishes in whole ¥ and, in this case, ¥ is a flat
disc or a spherical cap.

b) h # 0 and the function h has exactly one nodal domain. Then A
has sign, but this is impossible because fz hdY = 0.

¢) h Z0on ¥ and it has more than one nodal domain. In this case we
will get a contradiction. The hypotheses tell us that one nodal domain,
named, for example, Q, verifies [, |o]? dZ < 47.

We consider the metric d5? = |o|?>/2ds®>. The surface (%,ds?)
has Gauss curvature K < 1 and the equality holds if and only if
¢ : (X,ds*) — R? is an umbilical immersion. Let v = hjg be the
restriction on  of h. From Lemma 2.1, we have

Av+20=0 on €,
v=0 on 09Q,
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where A is the Laplacian operator with respect to the d5? metric.
Because v has sign in © and it is an eigenfunction of the Laplacian A,
the function v is an eigenfunction for the first eigenvalue with Dirichlet
boundary condition. If we denote by \;(Q) the first eigenvalue of the
Laplacian with Dirichlet condition in (2, ds?), we have

A (Q) =2.

On the other hand,

2
/di:/ﬂdzgzw.
Q Q 2

Let Q* be a geodesic disc in the unit sphere S?(1) with
area (Q*) = area (9, d5?).

We compare the first eigenvalue of Q* with the first eigenvalue of the
hemisphere: since area (2*) < 27, we obtain A\;(Q2*) > 2. Because Q*
is simply-connected and 2 is a subset of a simply-connected surface,
the result on comparison of the first eigenvalue in [1] leads to

A(2) < M(Q)

and the equality is true if (€2, ds?) has constant Gauss curvature equal
to 1. Then A\ (2*) =2 = \1(R2) and K = 1. But it means that ¢(X) is
an umbilical surface and then A = 0 on X, which gives a contradiction.
]

It is clear that the function h gives information about an H-surface
immersed with the boundary a circle. If h changes sign and if the
surface is stable, from the Courant theorem [3], h has exactly two
nodal domains. The following proposition studies the topology of the
nodal domains of the function h.

Proposition 2.2. Let ¥ be a stable H-disc in R3 with the boundary
a circle. Then the surface is a flat disc, a spherical cap or the two nodal
domains of h are simply-connected.
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Proof. Consider that the surface is not umbilical. Let 2,2, be the
nodal domains. To prove that they are simply-connected, it is sufficient
to prove that there is a nodal line intersecting 0%.

Let v be the interior conormal along S!. We orient ¥ and ¥
such that {¢.(t),v, N} and {¢.(t), ¢,a} are positive oriented frames
of R3, where t is a unit field tangent to &X. Since hjgs = 0, we have
(dh)p(tp) = 0 for each p € 9X. On the other hand,

(dh)pvp = (vp A N(p), a) + (é(p) A dNpvp, a) = o (t,v)(p).

In the following step, we prove the map from 9% to S!' given by
p — o(t,v)(p) has at least one zero. For that, we assume that o(t,v)
don’t vanish on 9%. Then neither point of the boundary is umbilical
nor are {t,v} principal directions along 0%. We represent by k; and
ko the two principal curvature functions on ¥ corresponding to the
choice of unit normal field N. Remember that they are continuous
functions such that k; < H < ko and the equalities occur only at the
umbilical points. Corresponding to these principal curvatures we have
two fields of line elements (unidimensional distributions) on 3, namely,
D; = ker(A — k;I), i = 1,2, which have a finite number of singularities
since the surface is not umbilical [6]. Then D; are transverse to the
boundary. By using the Poincare-Hopf theorem, the index of D; in each
umbilical point is not positive [5, pp. 137-139]. Then the sum of index
is not positive, in contradictions with that ¥ has Euler characteristic 1.

Therefore o(t, v) vanishes at least once. If o(t, v) is not constant zero,
it changes sign. In this case, and because 0% is a closed curve, o(t,v)
has at least two zeros.

If p € 02 is a point where o(¢,v) vanishes, then the point p is a
critical point of the eigenfunction h. Now we notice that either another
nodal line different from 9% starts at the point p or h is identically zero
on Y. In fact, if h does not change its sign in each neighborhood of the
point p, there would exist a neighborhood U of p in ¥ where h would
be, for instance, nonnegative. So

Ahjy = —|o*hjy <0,

and, using the maximum principle, A cannot attain its minimum 0
either at an interior point or at p because (dh), = 0 unless that h
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were identically zero on U and hence on ¥, in contradiction with the
hypotheses. ]

To finish, we remark that there is another notion of stability, which
is not equivalent with the above one. More precisely, we define strong
stability with the same definition as the one given in the preliminaries,
but omitting the condition “volume preserving.” Then the quadratic
form associated for the second variation agrees, but the functions f do
not verify necessary the condition fz fd¥ = 0. With this definition, a
domain on the sphere which contains a hemisphere is not strong stable
and a domain included in a hemisphere is: it is an easy consequence of
the Rayleigh’s characterization of the first eigenvalue of the Laplacian
with Dirichlet condition and the property of decreasing of the first
eigenvalue with respect to the inclusion of sets. We ask for strongly
stable H-surfaces with boundary a unit circle, and we shall characterize
the small spherical cap of radius 1/|H| as the only strongly stable H-
surface with boundary a unit circle. This result is a consequence of the
properties of the function h = (¢ A N, a).

Theorem 2.3. The only strongly stable H-surface with boundary S*
is the flat disc and the small spherical cap of radius 1/|H]|.

Proof. We consider the function h. If h is a constant zero in
the surface, the surface is umbilical. In other cases, we will get a
contradiction.

If h is not a constant zero, h changes sign because fz hd¥ = 0.
Therefore, the function h is an eigenfunction of the operator L =
A+|o|?* for the Dirichlet boundary condition and with eigenvalue A = 0.
As Q(f) > 0 for any smooth function f vanishing in the boundary, then
A = A1(2) = 0 and h is the first eigenfunction. Then h does not change
sign and we have a contradiction. ]
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