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DIFFERENT EXPONENTIAL SPECTRA
IN BANACH ALGEBRAS

L. LINDEBOOM (GROENEWALD) AND H. RAUBENHEIMER

ABSTRACT. We compare the exponential spectrum of
a Banach algebra element with the usual spectrum of the
element.

1. Preliminaries. The exponential spectrum of a Banach algebra
element was introduced by Robin Harte [11]. Since 1976, various
authors have studied the relationship between the usual spectrum and
the exponential spectrum in the setting of Banach algebras, see [8,
9, 10, 13, 16]. Although in general the exponential spectrum of an
element in a Banach algebra is different from the usual spectrum [11,
18], it shares many properties with the usual spectrum. The present
paper contributes to results which strengthen this viewpoint. In [18]
it was shown how the exponential spectrum turns up naturally in a
number of diverse applications, especially in the context of Toeplitz
operators.

If A is a complex Banach algebra with unit 1, we denote the group of
invertible elements by A~! and the connected component of 1 in A~!
by Exp A. Recall that Exp A is a normal open and closed subgroup
of A~! generated by elements e®, a € A. The exponential spectrum of
a € Ais the set €(a,A) :={A € C| X —a ¢ Exp A} and the spectrum
of a is denoted in the usual way by o(a, 4) :={A€ C|A—a ¢ A71}.
As observed in [11], €(a, A) is compact, and we have the inclusions

Oe(a, A) C o(a,A) C e(a, A) C nol(a, A)

where 0 denotes the boundary for subsets of the complex plane C and
1 the connected hull of compact sets in C.

If K C C, we use the symbol acc K to indicate the set of accumulation
points of K and the symbol iso K for the set of isolated points of K.
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By an ideal in A we mean a two-sided ideal in A. An ideal J in A is
called inessential [2, p. 106] whenever

beJ= acco(b,A) C {0}
and J will be called special in A if, for every b € J, —1 ¢ o(b, A).

The radical of A will be denoted by Rad A and A is said to be
semi-simple if Rad A = {0}. An element a € A is quasinilpotent if
o(a,A) = {0}. The set of these elements will be denoted by QN (A).
Recall that if J is a closed ideal in A, then b € A is called Riesz relative
to Jifb+J e QN(A/J), see [3, Section R.1.].

An element a # 0 in a semi-simple Banach algebra is called rank
one if there exists a linear functional 7, such that aza = 7,(z)a for all
z € A. For properties of these elements we refer to [19]. If A and B
are Banach algebras, then a linear map 7' : A — B is a homomorphism
if T(ab) = TaTb for all a,b € A and T1 = 1.

The paper is organized as follows. In Section 3 we investigate how
the exponential spectrum of b € B C A depends on the algebra if B
is merely a subalgebra of A with the same unit as A and also in the
case where B has a unit element different from the unit element in A.
Section 4 deals with the exponential spectrum in quotient algebras. In
Section 5 we study the behavior of the exponential spectrum under per-
turbation by radical elements, rank one elements and Riesz elements.
In our final section it is observed that the exponential spectrum shares
many analytic properties with the ordinary spectrum.

2. Homomorphisms and Exp. If A and B are Banach algebras
and T : B — A is a bounded homomorphism, then it is easy to see
that TExp B C Exp A. We will show that this is true even if T is not
bounded.

Lemma 2.1. Let T : B — A be a homomorphism with B a Banach
algebra and A a commutative Banach algebra. Suppose b € B and U is
a neighborhood of o(b,B). If f : U — C is an analytic function, then
Tf(b) — f(Tb) € Rad A.

Proof. If ¢ is a multiplicative linear functional on A, then ¢T is
a multiplicative linear functional on B and so both ¢ and ¢T are
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continuous. If I' is a closed rectifiable curve in U winding +1 round
a(b, B), then

(6T)7(b) = ¢T[2im. [ree-o dz]

_ ¢[% /F f(z)(z — Tb) ! dz].

Hence ¢[Tf(b) — f(Th)] = 0 for every multiplicative linear functional ¢
and so T'f(b) — f(Tb) € Rad A. o

In order to prove our next result we need the following fact. If A is
a Banach algebra, then Exp A + Rad A C Exp A. Indeed, if a € Exp A
and r € Rad A, then a +r = a(l + a~'r). Since the spectrum of
1+a~!r consists of the point 1 only, it follows from [20, Theorem 10.30]
that 1 4+ a~!'r € ExpA. Since Exp A is closed under multiplication,
a+r € Exp A.

Lemma 2.2. Let T : B — A be a homomorphism with B a Banach
algebra and A a commutative Banach algebra. Then T'Exp B C Exp A.

Proof. If e* € Exp B, then by Lemma 2.1 Te® = e 4 r with
r € Rad A. By the remarks preceding the lemma, Te® € Exp A. O

Theorem 2.1. Let T : B — A be a homomorphism with B and A
Banach algebras. Then T Exp B C Exp A.

Proof. Let e¢® € expB, and let C be a maximal commutative
subalgebra of B containing b. Let D be a maximal commutative
subalgebra of A containing T'C. By the previous lemma, Te® €
Exp D C Exp A because D is a closed subalgebra of A. The theorem
follows from the fact that T is a homomorphism and Exp A is closed
under multiplication. O

Corollary 2.1. Let B and A be Banach algebras such that 1 € B C
A. Then Exp B C Exp A.
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3. Subalgebras. In [10] it was investigated how the exponential
spectrum depends on the algebra in the case that A and B are Banach
algebras with B a closed subalgebra of A and such that A and B have
the same unit element. We are going to investigate how the exponential
spectrum depends on the algebra if B is merely a subalgebra of A and
A and B have the same unit element.

Proposition 3.1. Let A and B be Banach algebras such that
1€ BC A. Thene(z,A) C e(x, B) for every x € B.

Proof. This follows from Corollary 2.1. o

We give an example to show that the inclusion in Proposition 3.1
may be strict.

Example 3.1. It follows from [1, Example 3.7] that there exists a
Hilbert space H, a compact operator T on H and a subalgebra B of
the algebra A := BL(H) of bounded linear operators on H such that
T € B, o(T, A) is countable but ¢(T, B) D {A € C | |A\| = 1}. Hence,

e(T, A) = o(T, A) G o(T, B) C (T, B).

Proposition 3.2. Let A and B be Banach algebras such that
1€ BCA. Ifx € B and if D is a nonvoid clopen subset of e(x, B),
then D Ne(z, A) # .

Proof. If D is a nonvoid clopen subset of e(z, B), then DNo(z, B) is a
clopen subset of o(z, B). Also, it is nonvoid because D N de(x, B) # @
and 0¢(z, B) C o(z, B). By [7, Corollary 2.3|, DNo(z, B)No (z, A) # @
and so DNe(z, A) # 2. u]

Corollary 3.1. (i) The set isoe(z,B) C e(x,A), and hence
iso (e(z, B)\e(z, A)) = @.

(ii) If e(z, B)\e(x, A) # @, then it is uncountable.
(iii) of e(x, B) is totally disconnected, then e(x, B) = e(z, A).
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The following results deal with the situation when A and B do not
have the same unit element. Note that if p is an idempotent in A with
0 # p # 1 and if B := pAp, then B is a closed subalgebra of A with
identity p. If x € B, then the exponential function of z in B is denoted
by e% and it coincides with p + Y o7 (2" /n!) while the exponential
function of z in A is denoted (as usual) by e” and it coincides with
L4+ Y07, (2 /).

Proposition 3.3. Let A be a Banach algebra with p an idempotent
in A such that 0 £ p # 1. If B := pAp, then BN A™! = @, and so we
have 0 € e(x, A) for every = € B.

Proof. If x € BN A™1, then ! exists in A. Since z(1 — p) = 0,
it follows that 0 = z7'z(1 —p) = 1 —p and so p = 1 which is a
contradiction. Hence, 0 € o(z, A) C e(z, A). o

Proposition 3.4. Let A be a Banach algebra with 0 # p # 1
an idempotent in A that commutes with every element in A, and let
B :=pA. Then

(i) pExp A = Exp B C Exp 4,
(ii) e(x, B) C e(z, A) for every x € B.

Proof. (i) If * € pExp A, then for some ¢ € A* and using the fact

that p is an idempotent which commutes with every element of A, we
have

gj:pecl...eck :pkecl...eck :e%cl...e%ck € Exp B.

The inclusion Exp B C pExp A follows similarly. By [13, Theorem 6],
pExp A C Exp A.

(ii) f x € B and if A ¢ e(x, A), then A — 2 € Exp A. By (i)
Ap—xz =p(\—z) € pExp A = Exp B,
ie, A ¢e(z,B). O

If A is a Banach algebra and J is a proper ideal of A endowed with an
identity p with 0 # p # 1, then o(z+a, A) = o(x + ap, J) U{a} for any
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z € J and any a € C, [5, Proposition 5]. For the exponential spectrum
we have the following. Although in general e(p(z), A) C pe(z, A) where
p(z) is a complex polynomial ([11, 3.2]), it follows that e(z + o, A) =
g(z, A) + a for every a € C.

Proposition 3.5. Let A be a Banach algebra, and let J be a proper
ideal of A endowed with an identity 0 # p # 1 such that p commutes
with every element of A. Then J is closed and e(x + ap, J) U {a} C
e(z+ a, A) for any x € J and any a € C.

Proof. Since J = pJp = pAp we have that J is closed in A. If z € J
and a € C, thene(z+a, A) = ¢(z, A)+a and e(z+ap, J) = e(z, J) +a.
This together with Proposition 3.4(ii) and Proposition 3.3 proves our
result. o

Proposition 3.6. Let A be a Banach algebra, and let J be an
inessential ideal of A endowed with an identity 0 # p # 1. Then J
is closed and e(x + a, A) = e(z + ap, J) U {a} for any ¢ € J and any
aeC.

Proof. Tt follows in the same way as in the proof of the previous result
that J is closed in A. Since J is inessential, o(z, A) is either finite or a
sequence converging to zero for every x € J and so o(z, A) = (z, A)
for every « € J. This together with [5, Proposition 5] and the remarks
preceding Proposition 3.5 proves the assertion of the proposition. a

4. Quotient algebras. In this section we investigate how the
exponential spectrum behaves in quotient algebras. The key matter in
this section is the fact that elements in inessential ideals have a simple
spectrum.

It is well known [5, Proposition 1] that if J; and J are closed ideals
in a Banach algebra A, then for alla € A

0’(a+Jl,A/Jl)UU(a+J2,A/J2) :U(a-f—JlﬂJz,A/JlﬂJz).

For the exponential spectrum it follows from J; NJs C J;, 4 = 1,2, and
[2, Theorem 3.3.8] that

a+JiNJs EEXp(A/JlﬂJQ) = a4+ J; EEXp(A/Jl)
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and
a+ Jy € Exp (A/Js)

and so
E(Cl + Jl,A/Jl) U E(Cl + JQ,A/JQ) C s(a +JiN JQ,A/(Jl n Jz))

Our next example shows that this inclusion can be strict.

Example 4.1. Let I' := {z € C | |z| = 1} and A be the Banach
algebra C'(T") of complex valued continuous functions with the sup
norm. Let f € A with f(2) =2, 2€ . f Fp = {z €' |Imz > 0}
and Fi = {z € T | Imz < 0}, then Jy := {g € A | g(Fp) = 0}
and J; = {g € A | g(F1) = 0} are both closed ideals in A.
Furthermore, ¢(f + Jo,A/Jy) = Fy and e(f + J1,A/J1) = F1 and
soe(f+ Jo, A/ Jo)Ue(f+J1,A/J1) =T G D={2€C|[z] <1} =
s(f+JoﬂJ1,A/J0ﬂJ1). O

If we combine the remarks preceding the example it follows that
0’((1 +JiN Jz, A/(Jl n Jz)) C s(a + Jl, A/Jl) U s(a + JQ, A/JQ)
C 8(a + J1 N Ja, A/(Jl n JQ))

To prove our main results in this section, we need the following lemma.

Lemma 4.1. If J is an inessential special ideal in a Banach algebra
A, then Exp A+ J C Exp A.

Proof. If b € ExpA and j € J, then b+ j = b(1 + b 1j). Since J
is inessential, the spectrum of 1 4+ b~1j is either finite or a sequence
converging to 1. Because J is special, 0 ¢ o(1 + b~!5) and so, by
[20, Theorem 10.30], 1 + b~!j € Exp A. Since Exp A is closed under
multiplication, b + j € Exp A. O

Our next result improves [9, Proposition 2.1].

Theorem 4.1. Let J; and Jy both be closed ideals in a Banach
algebra A with Jy inessential and special. Then, for all a € A,

a4+ JyNJs EEXp(A/JlmJQ) << a+J; EEXp(A/Jl)
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and

a+ Jy € Exp (A/Js).

Proof. For the nontrivial implication suppose a + J; € Exp (4/J1)
and a+ J> € Exp (4/Jz). By [5, Proposition 1], we already know that
a+JiNJy € (A/JiNJz)~L. In view of [2, Theorem 3.3.8], there exist
b1 € Exp A and j1,j2 € J; such that bya = 1+ j; and ab; = 1 + jo.
Also there exist by € Exp A and kq, ks € Jo such that bsa = 1+ k; and
a62 =1 +k2 Then (b1 —jlbg)a =1 _.jlkl and a(b1 — b2j2) =1- k2j2.
Since jlkla kzjg € JiNJy and by — jlbg, by — szg c EXpA (Lemma
4.1) it follows that a + J1 N J2 € Exp (4/J1 N J2). O

Corollary 4.1. Let J; and Jy both be closed ideals in a Banach
algebra A with Jy inessential and special. For all a € A,

E(Cl + Jl N JQ,A/(Jl N JQ)) = E(Cl + Jl,A/Jl) U E(Cl + JQ,A/JQ).

Let A and B be Banach algebras such that 1 € B C A. If J is an
ideal in both A and B, we will denote the closure of J in A by J4 and
the closure of J in B by Jg. It is well known [7, Theorem 3.4] that if
J is an inessential ideal in both A and B, then for every b € B,

o(b,B) =0o(b,A) Uo(b+ Jp,B/JB).

To derive an analogous result for the exponential spectrum, note that
if J is an ideal in B and b € B, then in view of Proposition 3.1 and the
fact that the canonical homomorphism from B onto B/Jg is bounded

e(b,A)Ue(b+ Jp,B/Jp) C (b, B).

Our next example shows that the above inclusion can be strict.

Example 4.2. Consider the Banach algebras A and B in Example
31 with1 € B C A, T € B with ¢(T, A) countable and &(T, B)
uncountable. Since B has a finer norm than A, see [1, Example
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3.7, ExpB C ExpA. Let C be the subalgebra of B generated by
T. Since C is a closed subalgebra of B, ExpC C ExpB C Exp A.
If J := TC, then J is an ideal in C and the spectrum of 7" in C' is
uncountable because the spectrum of T in B is uncountable. Then
e(T,A)Ue(T+ Je,C/Jc) =e(T, A) U{0} is countable while (T, C) is
uncountable. Hence (7', C) 2 e(T, A) Ue(T + Je,C/Jc).

Let A and B be Banach algebras such that 1 € B C A. Suppose J
is an ideal both in A and in B. If z € B, ¢(z,B) = e(z,A) Ue(z +
Jp,B/Jg) and e(xz + Ja,A/Ja) = €(x + Jp,B/Jg), then ¢(z, B) =
e(z, A).

Theorem 4.2. Let A and B be Banach algebras such that1 € B C A.
If Jg is special in B, then, for every x € B,

zr€ExpB<=xc€ExpA and z+ Jg € Exp(B/Jp).

Proof. The forward implication follows from Corollary 2.1 and the
fact that the canonical homomorphism from B onto B/Jp is bounded.
If € Exp A and x+Jp € Exp (B/Jg), it follows from [7, Theorem 3.4]
that * € B!, By [2, Theorem 3.3.8] there exist elements b € Exp B
and j € Jp such that z = b+ j. Since Jp is inessential [2, Corollary
5.7.6] and special in B, it follows from Lemma 4.1 that z € Exp B.
[}

Corollary 4.2. Let A and B be Banach algebras such that 1 € B C
A. If J is an inessential ideal in A and B and if Jp is special in B,
then for every x € B,

e(z,B) =¢e(z,A)Ue(xz + Jg,B/JB).

Corollary 4.3. Let A and B be Banach algebras such that 1 € B C
A. Suppose J is an inessential ideal in A and B such that Jg is special
in B. If t € B and if Jgp C Ja, then

e(z, B)\e(x + Jp,B/Jp) C e(z, A)\e(x + Ja, A/ Ja).
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5. Perturbation results. In this section we study the behavior of
the exponential spectrum under perturbation by radical elements, rank
one elements and Riesz elements.

It is well known [14, Theorem 2.5] that if A is a Banach algebra, then
RadA={z€cA|A'+2C A '} Ifac Aand bc Rad A, then

a € ExpA<=a+beExpA.

To prove the forward implication, note that a +b = a(1 + a~b). Since
the spectrum of 1 + a~'b consists of the point 1 only, it follows from
[20, Theorem 10.30] that 1 + a='b € Exp A. Since Exp A is closed
under multiplication a +b € Exp A. To prove the converse implication,
note that a = a + b — b. Hence, e(a + b, A) = e(a, A) for every a € A
and b € Rad A.

This observation together with [2, Theorem 3.3.8] shows that the
canonical homomorphism A — A/Rad A is exponential preserving. In
order to prove our first main result in this section, we need the following
lemma.

Lemma 5.1. Let A # C be a semi-simple Banach algebra, and let
b be a rank one element in A. Ifa € Exp A, then a+b ¢ ExpA &
m(a™t) = —1.

Proof. If a € Exp A, then a + b= a(1 + a~'b). Since Exp A is closed
under multiplication, by [19, Lemmas 2.7, 2.8] a+ b ¢ ExpA < —1 €
e(a™tb, A) = o(a=tb, A) = {0,7(a71)} & 7p(a™t) = —1. O

Theorem 5.1. Let A be a semi-simple Banach algebra and a € A.
Ifb € A is rank one, then acce(a + b, A) C ne(a, A).

Proof. By Lemma 5.1, £(a + b, A)\e(a,A) = {N € C\e(a,4) |
7_p((A —a)~!) = —1}. Since the function 7_,(A — a) ! + 1 is analytic
and the set (a + b, A) compact, it follows from [6, Theorem 3.7] that
the set e(a+b, A)\ne(a, A) consists of isolated points of £(a+ b, A) and
so acce(a+b,A4) Cne(a,A). O
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The proof of Theorem 5.1 is a modification of the proof of Theorem
2.4 in [15] which is the analogue of Theorem 5.1 for the Browder
spectrum and the ordinary spectrum. See also [12, Theorem 5]. Our
next example shows that the inclusion in Theorem 5.1 may be strict.

Example 5.1. Let A be the Banach algebra BL(I?(Z)) of bounded
linear operators on [?(Z). If e, is the nth vector of the canonical basis
of 1(Z), define elements a and b in A as follows:

0 if n=-1,
ae, = {
€n+1 ifn # _17

€0 if n= —1,
be,, = {
0 ifn#-1.

Then b is a rank one element in A, e(a+b,A) ={z € C | |z| =1} and
e(a,A) = {z € C| 2| < 1}. Hence, acce(a+b,4) G (a, A).

Theorem 5.2. Let J be a closed inessential ideal in a Banach algebra
A and a € A. Ifb € A is Riesz relative to J and ab = ba, then
acce(a+b,A) C ne(a, A).

Proof. 1t follows from [17, Theorem 5.3] and [2, Theorem 5.7.4(iii)]
that acco(a+b,A) Cno(a+b+ J,A/J). Since b+J € QN(A/J) and
b+ J and a + J commute in A/J, o(a+b+ J,A/J) =0c(a+ J,A/J).
If we combine these remarks, then

acce(a+b,A) C nacce(a+ b, A)
=nacco(a+b, A)
Cno(a+b+J,A/J)
=no(a+ J,A/J)

C no(a, A)
=ne(a, A). o

Note that the commutativity condition in the above theorem cannot
be omitted. It follows from [8, Example 1] that there exists a Banach
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algebra A and elements a and b in A with ab # ba and b Riesz in A
relative to some closed ideal in A such that

acce(a + b, A) = V2D S D =ne(a, A)

with D = {\ | |A] < 1}. For another perturbation result involving the
exponential spectrum, subspaces and quotient spaces, we refer to [16,
Theorem 3.9].

6. Analytic properties of the exponential spectrum. In this
final section we will indicate briefly that the exponential spectrum
shares many analytic properties with the ordinary spectrum. For
compact subsets K7 and Ky of C, the Hausdorff distance between K;
and K> is defined by

A(Kq, Ky) = max{ sup dist (2, K1), sup dist (2, K2)}.
z€EK> z€K,

Let » > 0 and K be a compact subset of C. If K + r denotes
{z | dist (2, K) < r}, then K7 C K + A(K1, K3). We shall say the
function = — e(z, A) is continuous at a € A if for every € > 0 there
is a 6 > 0 such that ||z — a|| < ¢ implies A(e(z, A),e(a, A)) < e. As
usual, we say = — ¢(x,A) is continuous on E if it is continuous at
every point of E. If, for given ¢ > 0,the number § is independent of
a € E, then we say that x — e(z, A) is uniformly continuous on E.
The examples in [2, pp. 48, 49] show that in general the exponential
spectrum function is not continuous and if it is continuous it need not
be uniformly continuous.

Results concerning analytic properties of the spectrum function in
a Banach algebra appear in [2, Chapter III]. We formulate some
analogous results for the exponential spectrum. Since the proofs are
easy modifications of the corresponding proofs for the spectrum, we
omit the proofs.

Theorem 6.1. Let A be a Banach algebra and suppose x,y €
A commute. Then e(y,A) C e(z,A) + r(z — y) and consequently
Ae(w, A),e(y, A)) < r(z —y) < ||z —yl|. Furthermore, if A is commu-
tative, then the exponential spectrum function is uniformly continuous
on A.
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Theorem 6.2. Let A be a Banach algebra. The exponential spectrum
function © — e(x, A) is upper semi-continuous on A, i.e., for every
open set U containing e(x, A) there is a § > 0 such that ||z —y|| < ¢
implies e(y, A) C U.

Theorem 6.3. Let A be a Banach algebra and x € A. Suppose
U and V are two disjoint open sets such that e(z,A) C UUYV and
e(x, A)NU # @. Then there exists r > 0 such that ||z —y|| < r implies
e(y, A)NU # 2.
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