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INEQUALITIES FOR SOLUTIONS OF
MULTIPOINT BOUNDARY VALUE PROBLEMS

PAUL W. ELOE AND JOHNNY HENDERSON

ABSTRACT. The concept of concavity is generalized to
functions, y, satisfying nth order differential inequalities,
y(™ (t) > 0,0 <t <1, and homogeneous multipoint bound-
ary conditions, y()(a;) = 0, j = 0,...,n4, i = 1,...,k,
where 0 = a3 < a2 < --- < a = 1 and Zleni = n.
A piecewise polynomial, which bounds the function, y, be-
low, is constructed and then is employed to obtain that if
(30@ + a¢+1)/4 <t < (ai + 3ai+1)/4, then (—1)aiy(t) >
lyll(a/4)™,i=1,... ,k — 1, where a = min;(aij+1 — ai), || - ||
denotes the supremum norm, m = max{n — ni,n — ng}, and
a; = Z:=i+1 nj, i =1,...,k — 1. An analogous inequality
for a related Green’s function is also obtained. These inequal-
ities are useful in applications of certain cone theoretic fixed
point theorems.

In recent applications of cone theoretic fixed point theorems to bound-
ary value problems (BVPs), inequalities that provide lower bounds for
positive functions as a function of the supremum norm have been ap-
plied. This type of inequality has been useful in applications to both
regular two-point BVPs [8, 5] on annular like regions, and singular
two-point BVPs [9, 4]. This type of inequality is also useful to obtain
nonexistence results [3]. The particular inequality to which we refer is
as follows: if y”’(¢) < 0,0 <t <1andy(t) >0,0 <t <1, then for
1/4 <t < 3/4,

y(t) = llyll/4,
where |ly|] = supy<;<; [y(t)|. An analogous inequality for a Green’s
function has been employed for regular two-point BVPs [8]. Recently,

Eloe and Henderson [6] showed that if » > 2 is an integer, k €
{1,...,n—1}, and if

(-1 Fym >0, 0<t<1,
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W y9D0)=0, j=0,... k-1,
yD1)y=0, j=0,...,n—k—1,

then, for 1/4 <t < 3/4,

(2) y(t) = [lyll/4™,

where m = max{k,n — k}. We shall refer to the boundary conditions
(1) as two-point conjugate boundary conditions [2]. The purpose of
this paper is to obtain the analogue of (2) for solutions of differential
inequalities satisfying multipoint conjugate type boundary conditions.

In particular, we shall study the following problem. Let n > 2 be
an integer, and let k € {2,...,n}. Let 0 = a; < as < -+- < ap =1
be k points, and let n; € {1,... ,n — 1}, i = 1,... ,k, be such that
Zle n; = n. We shall obtain an analogue of the inequality (2) for
solutions, y, for the multipoint conjugate [2] boundary value problem
(BVP) for the differential inequality

(3) y™M(t) >0, 0<t<l,

(4) y9D(a;) =0, j=0,...,m;—1,i=1,...,k

Inequality (2) can be obtained as follows. Assume for simplicity that
(D" kM) >0, 0<t<1,

and let |ly|| = y(t1) for some ¢; € (0,1). Define the piecewise
polynomial, p, by

Mﬂ_{UWWUﬁﬁ 0<t<ts,

(lyllt = 1)"=*)/(tr = )*F & <t < 1.

It is then shown [6] that y(¢) > p(¢), 0 < ¢t < 1. the righthand side
of (2) is obtained by evaluating min{p(1/4),p(3/4)}. The argument
to obtain the analogue of (2) for solutions of the BVP (3), (4) will be
completely analogous.
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For notational purposes, set o; = Z?:H—l nj,t=1,...,k—1. It is
well-known [2] that

(—1)*G(t,s) >0, (t,s) € (a;,a;11) x (0,1),
(5) i=1,... k-1,
(=1)%i(9m/0t")G(as,8) >0, 0<s <1,
i=1,...,k, where we mean aj = 0, and G(t, s) denotes the Green’s
function of the BVP, y(™(t) = 0, 0 < t < 1, satisfying (4).

In this paper we shall obtain the following analogue of (2). We
shall show that if y satisfies (3), (4), then for (3a; + ai+1)/4 < t <
(a; + 3ait1)/4,

(6) (=1)™y(t) = llyll(a/4)™

i=1,...,k—1, where a = min;(a;41—a;) and m = max{n—ny,n—ny}.

Assume that y satisfies the differential inequality,
(7) y ™M) >0, 0<t<l,

and the boundary conditions (4). Since y(t) = fol G(t,s)y™ (s)ds, it
follows that

(8) (_l)aiy(t) >0, te (aivai+1)7 i=1,..., k-1,
(9) (=)%Y (a;) >0, i=1,...,k
Let || - || denote the supremum norm with respect to continuous

functions on [0, 1]. Let y satisfy the BVP, (7), (4). Let ¢1 € (ar,a141)
for some [ € {1,...,k — 1} be such that ||y|| = (—1)*y(¢1). Define
polynomials p;, i = 1,2, as follows:

l l
(10) pa(t) = (0l TT = ) / TL 0 = ap)™,
j=1 j=1
k

k
1) pa(t) = (-1)ly] H (t—a,)" / 1L ey
Jr
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Finally, define the piecewise polynomial, p, by

. pl(t) 0<t<t1,
(12) p(t) = {pQ(t) tho<t<l.

Theorem 1. Let y satisfy the BVP, (7), (4). Let t; € (a;,ai41)
for some | € {1,... ,k — 1} be such that ||y|| = (—1)*y(t1). Define
polynomials p;, i = 1,2, by (10) and (11), respectively. Then

(13) (-1D)%(y —p)(t) >0, a;i<t<aj1,i=1,...,k—1,

where p is defined by (12).

Proof. There are two cases to consider. These are ¢ = 1 or oy = n—1
and o) € {2,...,n — 2}. We first consider the easier case, a; = 1 or
a; = n — 1. We shall address the case a; = 1 as the case ¢y = n —1
is addressed analogously. We point out that the proof in the case
a; = n —1 when k = 3 appears in [7]. Note that t; € (ar_1,ax).
On [0,t], set h = y — p. Then A(™(t) > 0, 0 < t < t;, and that
t1 € (agp—1,ax). On [0,t1], set h =y — p. Then h(™(t) > 0,0 < t < t;,
and R (a;) =0, =0,...,m; —1,i=1,... ,k — 1, h(t;) = 0. Then
h satisfies (8) on [0, ¢1] where a = ¢;. In particular, y — p satisfies (8)
on [0,t;] where a; = t;. To analyze h = y — p on [t1, 1], apply Rolle’s
theorem to y. Since y satisfies (7), y”" does not vanish on [t1, 1]. Since
a; = 1, y'(t1) > 0 and so y” is positive on (¢1,1). Thus, h satisfies
R'(t) > 0,t <t <1, h(t;) =h(l) =0and so h(t) <0, t; <t <1
The proof that y — p satisfies (13) is complete in the case oy = 1 or
ap=n—1.

Now assume that k& € {2,...,n — 2}. We shall show the details
that y — p satisfies (13) for ¢ € (¢1,a;41) U U,?::_lil(ai,a/i+1) and then
briefly outline the similar details for ¢ € U\Z1(a;, ai11) U (ar, ;). Apply
Rolle’s theorem repeatedly to y(¢). Note that, under condition (7), if
t € (0,1) is a root of y9), j < n, and y\9)(t) is not specified in the
boundary conditions, (4), then ¢ is a simple root of y/). In particular,
yU) changes sign at ¢.

We shall now label specific consecutive roots of y) and determine
the sign of y) interior to these consecutive roots. Let t20 and
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t2,1 denote roots of y” satisfying to9 < t1 < to1 and y” does not
vanish on (t2,0,%2,1). Inductively, let ¢;110 and ¢;11,1 denote roots of
yUtY) satisfying ;410 < tj1 < tj41,1 and yUTY does not vanish on
(tj+170,t]'+1,1), ] == 1, .-, 0.

We shall now determine the sign of y\¥)(t) for t;o < t < tj1, j =
2,...,qq. Since (—1)*y(t;) > 0 is an extreme point, and ¢; is a simple
root of ¢, then (—1)*y"(¢1) < 0. In particular, (—1)*y"(¢) < 0,
t2,0 < t < tg;1. t2; denotes a simple root of y”; in particular, y” is
increasing at t2; and so, (—1)*y"’(t2,1) > 0. Thus, (—1)™y"'(t) > 0,
t30 <t < ts1. It now follows readily by induction that

(14) (—1)al+jy(j)(t) < 0, tj,() <t< tj,l <J=2,...,0q.

We must also count the number of roots of y() to the right of
tj1, J = 2,...,. Note that, due to (7) and due to the boundary
conditions, (4), y has precisely o, roots, counting multiplicities in (¢1, 1].
By Rolle’s theorem, 3’ has at least oy — 1 roots, counting multiplicities
in (¢2,1,1]. Again, by (7), y' has precisely a; — 1 roots, counting
multiplicities in (¢21,1]. Inductively, it follows that y) has precisely

a; — j roots, counting multiplicities in (¢;411,1], 7 = 1,...,04. In
particular,
(15) YO (t) #£0, to1<t<1

We now label the smallest root, r;, of pgj), 7 =0,...,00 — 1, and

determine the sign of pgj) to the left of r;. Since pg)”) is a positive

constant, it follows that

Q1 =T =" =Tpy ;-1 < Trige < < Tyy—-1 < 1,
and each root ry, ... ,7q—1 is simple. (—1)%p(t) > 0, t < ro.
As aj41 is a root of order myyi, it follows that (—1)°‘l+jpg])(t) > 0,
t<rj,j=0,...,m41 —1, and (—1)al+"l+1pém+1)(alH)) > 0. Thus,

(—l)”‘lﬂpéj)(t) > 0,t < rj, j =mng1. Since 1y, is a simple root
of p{™*%) it follows that (—1)@+m+1p{m*1) ig decreasing at Ty, and

(—1)“l+"l+1+1pgnl“+1)(Tnl+1) > 0. In particular, (—1)al+jpgj)(t) > 0,
t <rj, j =mni+1 + 1. It again follows readily by induction that

(16) (1) HpD () >0, t<rj, j=2,...,0 — L
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Set h(t) =y — p2(t), t1 <t < 1. Because of the boundary conditions
(4) and the construction of ps, h has at least a; + 1 roots in [t1,1]. We
first argue that h has precisely o; + 1 roots in [t1,1]. Assume, for the
sake of contradiction, that h has at least a; +2 roots in [t1,1]. Then A’
has at least oy + 1 roots in (t1, 1]. Note that if h(9) has a root, then y(7)
and p ) have the same sign. 1’ has at least o roots in (t1,1]. By (14)
and (16) it follows that A" has at least o roots in [t2 1, 1]. Inductively,
apply Rolle’s theorem, (14) and (16), and obtain that h(Y) has at least
a;+ 2 — jroots in [t;1,1], 7 = 2,... ,. In particular, yla) = pla)
vanishes in (¢4, 1,1]. This contradicts (15). Thus we have shown that
h has precisely oy + 1 roots in [t1, 1].

To argue that y satisfies (13) when ¢ > ¢, note that
(1) () = ()™ py(t]) > 0

by (16). In particular, h(¢t1) = 0 and (—1)*h/(t1) > 0 and so,
(=1)*h(t) > 0, t1 < t < oyq1. h has precisely a; + 1 roots in
[t1,1] and so h has a root of order n;y; at a;y1. Since oy + ny1; and
aj+1 = o — ni41 have the same parity, (—1)*+1h(t) > 0, aj41 <t <
aj+2. Since we know precisely the order of each root of h at each a;,
i=1 + l, e ,k‘ — ]., (13) follows on (tl,al_H) U Uf:_lh_l(ai,ai+1).

To obtain (13) on U2} (a;,ai1) U (as,t1), apply a similar argument
toh =y—py on (0,¢;). We omit the details and the proof of Theorem 1
is complete.

Corollary 2. Assume that y satisfies the BVP, (3), (4). Then y
satisfies (6).

Proof. First assume that y satisfies the BVP, (7), (4), and employ
Theorem 1. Assume |ly|| = (=1)*y(t1) for t1 € (ai,a;+1) for some
le{l,...  k—1}

Note that p; has precisely one critical point in each subinterval
(ai,ait1), ¢ = 1,...,0 — 1. Thus, for ¢ = 1,...,0 =1, if t €
Uﬁ;ﬂ(Bai + ai+1)/4, (ai + 3ai+1)/4], then

(D)% y(t) 1(4)

> (~1)%p
> min{(—1)*p1(3a; + ai+1)/4, (=1)*p1(a; + 3ai+1)/4}.
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Thus,
(=1)%y(t) = llyll(a/4)"* = [lyll(a/4)™ "
Similarly, for i = 1+ 1,... .k — 1, if t € UFY [(3a; + aip1)/4, (ai +
3ai+1)/4], then
(=1)*y(t) = |lyll(a/4)" ™.

Now assume that ¢ € (aj,a;1+1). There are three cases to consider.
t1 < (Bay + ai+1)/4, Bar + aj41)/4 < t1 < (a1 + 3a;41)/4, and
(ai + 3a;41)/4 < t;. We consider the case (3a; + a;+1)/4 < t; <
(a1 + 3ai4+1)/4 in detail; the details for the remaining two cases are
similar. Suppose (3a; + a;+1)/4 <t <t;. Then

(=D)*y(t) = (=1)"p1Ba + ar41)/4 = [lyll(a/4)" ™.

If t; <t < (a; +3a;4+1)/4, then
(—D)*y(@) = (D) p2(ar + 3ai+1)/4 > |lyll(a/4)" .

The proof that if y satisfies the BVP, (7), (4), then y satisfies (6) is
complete.

Suppose that y satisfies the BVP, (3), (4). For € > 0, define
k
y(e,t) = y(t) +e [T (t = ay)m.
j=1

For each ¢ > 0, y(e, t) satisfies (7), (4) and hence (6). By continuity in
g, (6) holds for € = 0; in particular, y satisfies (6) and Corollary 2 is
proved.

For our final result, we shall obtain the analogue of (6) for the Green’s
function, G(t, s), of the BVP, y(™(t) = 0, 0 < t < 1, satisfying (4). We
shall refer to this result as a corollary since, if we employ standard
properties of G(t,s) in place of (7), the argument proceeds precisely
as in the proof of Theorem 1 and as in the proof of Corollary 2 which
relates to y satisfying (7).

The purpose of (7) is so that we can count precisely the number of
roots of y¥) and, hence, determine the simplicity of appropriate roots.
Recall [2] that G(t,s) is C"~2 on [0,1] x [0,1],and for each s € (0, 1),
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G satisfies (4) as a function of ¢. Moreover, for 0 < s < t, G(t,s)
is C"~! as a function of ¢ and is, in fact, an n — 1 order polynomial
in t. Similarly, for 0 < ¢t < s, G(t,s) is C"~! as a function of ¢ and
is an n — 1 order polynomial in ¢. Let s € (0,1) be fixed. By (4)
and by Rolle’s theorem, (9"72/0t"~2)G(t,s) has at least two roots
in (0,1). It is the case that (0" 2/0t" 2?)G(t,s) has precisely two
roots tn_2.0,tn—21 in (0,1) and t,—29 < § < tp_2,1. Suppose, for the
sake of contradiction, that (0" 2/9t" 2)G(t, s) has at least two roots
in (0,s). Then (0"~!/0t"~1)G(t,s) vanishes in (0,s). In particular,
(07 /0t7)G(t, s) vanishes in (0,s), 5 =0,... ,n—1. As G isan n—1 order
polynomial in ¢, G is identically zero on (0,s). This contradicts (5)
and so (0" 2/0t"?)G(t, s) has precisely one root in (0,s). Similarly,
(0™~2/0t"2)G(t, s) has precisely one root in (s, 1).

This argument that G does not vanish identically on triangles, t < s
or s < t, also implies that if ¢ is a root of (87 /0t7)G(t, s) which is not
specified in the boundary conditions (4), then the root is simple.

Now the arguments in the case, oy € {2,... ,n — 2} apply to G(¢, s)
and we obtain the following result.

Corollary 3. For each s € (0,1), let ||G(-,s)|| = supy<;<1 |G(t, 5)|.
Then, for (3a; + ait1)/4 <t < (ai + 3aiy1)/4,

(=D)*G(ts) 2 IG(8)[[(a/4)™, 0<s <1,

To obtain Corollary 3 in the case o = 1, define the piecewise
polynomial, p, in the obvious way. As before, on (t1,1), G — p is
concave up and vanishes at ¢; and at 1. On (0,%y), G =G —pis the
Green’s function of a BVP, y(™)(t) = 0, 0 < t < t,, satisfying (4) with
ar = t1. Thus, G satisfies (5) with ar = 1. Details of this argument
are provided in [6].
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