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ON THE SECOND HILBERT 2-CLASS FIELD
OF REAL QUADRATIC NUMBER FIELDS

WITH 2-CLASS GROUP ISOMORPHIC
TO (2, 2n), n ≥ 2

ELLIOT BENJAMIN

ABSTRACT. Let k be a real quadratic number field with
Ck,2, the 2-Sylow subgroup of its ideal class group, isomor-
phic to Z/2Z × Z/2nZ, n ≥ 2, such that Gal (k2/k), the
galois group over k of the second Hilbert 2-class field of k, is
nonabelian. We describe conditions for which we can further
refine Gal (k2/k) in terms of its group structure being modu-
lar, metacyclic-nonmodular, or nonmetacyclic, when a prime
congruent to 3 mod 4 does not divide the discriminant of k.

1. Preliminaries. Let k be a real quadratic number field with
Ck,2, the 2-Sylow subgroup of its ideal class group, isomorphic to
Z/2Z×Z/2nZ, n ≥ 2, which we will denote by (2, 2n). We let k1 denote
the Hilbert 2-class field of k, i.e., the maximal unramified (including
the infinite primes) abelian field extension of k which has degree a
power of 2. Then Ck,2

∼= Gal (k1/k), the galois group of k1 over k, and
we let k2 = (k1)1. In our earlier work we have completely determined
when Gal (k2/k) is abelian, [1, 2]. In certain cases, particularly when a
prime congruent to 3 mod 4 divides dk, the discriminant of k, we have
utilized information about the capitulation of ideal classes in unramified
quadratic extensions of k in order to further classify Gal (k2/k in
terms of its group structure being modular, metacyclic-nonmodular,
or nonmetacyclic [1, 2]. In the present paper we extend the above
classification for nonabelian Gal (k2/k) to the remaining cases, i.e.,
when a prime congruent to 3 mod 4 does not divide the discriminant
of k.

Recall that a group G is metacyclic if there exists a normal cyclic
subgroup, N , of G such that G/N is also cyclic. Finite metacyclic 2-
groups, G, for which G/G′ ∼= (2, 2n), n ≥ 2, can be divided into two
isomorphism types: the modular groups, Mn+2(2), and those which
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are not modular. Recall that Mn(2), n > 3 is the group, G, of order
2n such that G/G′ ∼= (2, 2n−2) and there exists a cyclic subgroup of
index 2 in G, cf. [12]. We denote (p1/p2)4 to be the biquadratic residue
symbol of p1 over p2.

We begin with the following lemma, cf. [2].

Lemma 1. Let k = Q(
√

p1p2p3) be a real quadratic number field,
p1 ≡ p2 ≡ 1 mod 4, p3 ≡ 1 mod 4 or p3 = 2, with Ck,2

∼= (2, 2n), n ≥ 2,
(pi/pj) = (pj/pk) = 1, (pk/pi) = −1, for {i, j, k} = {1, 2, 3}. Then
Gal (k2/k) is abelian if and only if Nε0 = −1 and (pi/pj)4(pj/pi)4 =
(pj/pk)4(pk/pj)4 = −1.

We now proceed to obtain an equivalent classification of k for
Gal (k2/k) abelian and k as in the conditions of Lemma 1, along with
a further refinement of nonabelian Gal (k2/k) in terms of modular,
metacyclic-nonmodular, and nonmetacyclic group structure.

We let G = Gal (k2/k); then G′ = Gal (k2/k1) and G/G′ ∼=
Gal (k1/k) ∼= Ck,2

∼= (2, 2n), n ≥ 2, where G′ denotes the commutator
subgroup, (G, G), of G. We let K be an unramified quadratic exten-
sion of k, where k is a real quadratic number field with Ck,2

∼= (2, 2n),
n ≥ 2, dk not divisible by a prime congruent to 3 mod 4, and Nε0 = 1.
We let j be the homomorphism from Ck → CK where, if A denotes
the ideal class containing A, then j(A) = AOK where OK is the ring
of algebraic integers in K. Thus j is the extension of ideal classes of
k in K, and we want to determine the capitulation kernel, ker j, of all
possible fields k with k as above.

We collect some known facts concerning ker j. Recall that if T is a
cyclic unramified extension of prime degree p over a number field k, then
Hilbert’s Satz 94 [13] guarantees the existence of an ideal class of order
p in the ideal class group, Ck, which becomes principal (capitulates)
when extended to T . We know that the order of any ideal class in ker j
divides [K : k] = 2, see, e.g., [11], and ker j is therefore contained in
Ck,2. We further know that | ker j| = [K : k][Ek : NK/k(EK)] = 2[Ek :
NK/k(EK)] where Ek and EK denote the group of units in k and K,
respectively, see, e.g., [22].

Since kerj ⊆ Ck,2
∼= (2, 2n) we know that | ker j| = 2 or | ker j| =

4. Also, following Taussky [23], we say the extension K/k satisfies
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Condition A, respectively, Condition B, provided | ker j∩NK/k(CK)| >
1, respectively, = 1. We shall proceed to determine both | ker j| and
whether or not K/k satisfies Condition A in terms of the arithmetic of
k.

Let G = 〈a, b〉 where ā2 = b̄2n

= Ī, x̄ = xG′ for any x ∈ G
and I is the identity. Since G/G′ ∼= (2, 2n) we note that G contains
three subgroups H1, H2, H3 of index 2: H1 = 〈b, G′〉, H2 = 〈ab, G′〉,
and H3 = 〈a, b2, G′〉 with a2 ∈ G′ and b2n ∈ G′; it follows that
H1 and H2 are cyclic whereas H3 is not (Hi = Hi/G′, i = 1, 2, 3).
Let Ki be the subfield of k2 fixed by Hi. Then k ⊆ Ki ⊆ k1 and
K1, K2, K3 are all of the unramified quadratic extensions of k. Let
ji : Ck → CKi

be the canonical homomorphism described earlier.
Since ker ji is elementary and [Ck,2 : NKi/k(CKi

)] = 2, if Ki/k satisfies
Condition B, then | ker ji| = 2. Thus, if | ker ji| = 4, we know that
Ki/k satisfies Condition A.

Denoting by C∗
k the narrow class group of k and by N(ε0) = Nε0 =

Nk/Q(ε0) the norm of the fundamental unit ε0 of k, we refer to the
following criteria by Kaplan [15] to determine if the 4-rank of Ck equals
the 4-rank of C∗

k : when N(ε0) = 1, the 4-rank of Ck equals the 4-rank
of C∗

k if and only if there exists a prime p congruent to 3 mod 4 dividing
d or there exist positive integers a, b with the integer a odd such that
d = a2 + b2, and (a/p) = 1 for every odd prime p dividing d. Here d is
the square-free kernel of the discriminant of k.

We denote by dk the discriminant of k and define a dk-splitting of
the second kind to be a factorization of dk = 1 · dk or dk = d1 · d2,
|d1| ≤ |d2|, into the product of two fundamental discriminants for which
the Kronecker symbols (d1/p) = 1 for all primes p|d2 and (d2/p) = 1
for all primes p|d1. By Redéi and Reichardt [19, 21] we know that
the number of dk-splittings of the second kind is 2e2 where e2 is the
4-rank of C∗

k . It is well-known by a theorem of Gauss that the number
of generators of C∗

k is t − 1 where t is the number of distinct prime
factors of dk. It is also well-known that the 2-rank of the narrow class
group equals the 2-rank of the wider class group if and only if there
does not exists a prime congruent to 3 mod 4 dividing dk, and that the
narrow class group is equal to the wider class group if and only if the
norm of the fundamental unit of k is −1 [14].

We shall use the following notational conventions: pi, p will denote
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primes ≡ 1 mod 4; qi, q will denote primes ≡ 3 mod 4; r, ri will denote
any primes; and r∗ will denote a fundamental discriminant divisible
only by the prime r, i.e., r∗ = (−1)(r−1)/2(r) if r is odd and 2∗ ∈
{8,−8,−4}.

Given an unramified quadratic extension K of a real quadratic num-
ber field k with discriminant dk, we know that K = Q(

√
d1,

√
d2) where

dk = d1 · d2, di > 1 for i = 1, 2, where d1 and d2 are fundamental dis-
criminants. Consequently, K contains three real quadratic subfields:
k0 = k = Q(

√
dk), F1 = Q(

√
d1) and F2 = Q(

√
d2). We denote by

ε0 = ε, ε1 and ε2 the fundamental units (> 1) of k0 = k, F1 and F2,
respectively.

Through utilization of the aforementioned 4-rank criteria of Kaplan
[15] and the Redéi and Reichardt and Gauss formulas [21] we obtain
the following lemma.

Lemma 2. All real quadratic number fields k with Ck,2
∼= (2, 2n),

n ≥ 2, such that dk is not divisible by a prime congruent to 3 mod 4,
are described as follows.

Case 1. k = Q(
√

p1p2p3), p1 ≡ p2 ≡ p3 ≡ 1 mod 4, dk = p1p2p3.

A) (p1/p3) = (p2/p3) = 1, (p1/p2) = −1. N(ε0) = −1 or [N(ε0) = 1
and 4-rank of Ck =4-rank of C∗

k ] (notice that C∗
k,2

∼= (2, 2n), n ≥ 2).

B) (p1/p3) = (p1/p2) = (p2/p3) = 1, N(ε0) = 1, 4-rank of Ck �=
4-rank of C∗

k (notice that C∗
k,2 ≡ (4, 2n), n ≥ 2).

Case 2. k = Q(
√

2p1p2), p1 ≡ p2 ≡ 1 mod 4, dk = 8p1p2.

A) (p1/p2) = −1, p1 ≡ p2 ≡ 1 mod 8, N(ε0) = −1 or [N(ε0) = 1 and
4-rank of Ck =4-rank of C∗

k ] (notice that C∗
k,2

∼= (2, 2n), n ≥ 2).

B) (p1/p2) = 1, p1 = 5 mod 8, p2 ≡ 1 mod 8, N(ε0) = −1 or
[N(ε0) = 1 and 4-rank of Ck = 4-rank of C∗

k ] (notice that C∗
k,2

∼= (2, 2n),
n ≥ 2).

C) ((p1/p2) = 1, p1 ≡ p2 ≡ 1 mod 8, N(ε0) = 1, 4-rank of Ck �=
4-rank of C∗

k (notice that C∗
k,2

∼= (4, 2n), n ≥ 2).

We state the following result from our earlier paper [3].
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Lemma 3. Let K be an unramified quadratic extension of a real
quadratic number field, k. Then | ker j| = 2 if and only if

a) N(εi) = −1 for i = 0, 1, 2 and
√

ε0ε1ε2 ∈ K

or

b) N(ε0) = 1 and (i) N(ε1) = −1 and (
√

ε0 or
√

ε0ε2 ∈ K) or
(ii) N(ε2) = −1 and (

√
ε0 or

√
ε0ε1 ∈ K).

Remark. We note that if
√

ε0εi ∈ K, then N(εi) = 1 for i = 1 or 2,
see [3, p. 386].

We introduce some additional notation. Let η be a unit of k. If
N(η) = 1, then denote by δη the square-free kernel (Sfk) of N(1 + ε).
If N(η) = −1, then δη is not defined.

In the context of the notation above Lemma 3, we let δ, δ1, δ2 denote
δe0 , δe1 , δe2 , respectively, when they are defined. From Lemma 3 and
properties of δ, [4, 18], we are able to state the following lemma:

Lemma 4. Let K be an unramified quadratic extension of a real
quadratic number field. Assume N(ε0) = 1. Then | ker j| = 2 if and
only if

(i) N(ε1) = −1 and (δ ∈ K2 or δδ2 ∈ K2)

or

(ii) N(ε2) = −1 and (δ ∈ K2 or δδ1 ∈ K2).

Note. By the comments above this lemma, if δi is not defined for
i = 1 or 2, then “or δδi ∈ K2” is omitted in the lemma. We assume
that δ2 is divisible by two distinct primes.

We denote by (e, D)/p the Hilbert symbol with respect to p, where
e = SfkN(1 + η) for η �= 1 a unit of norm 1 in a real quadratic field
F = Q(

√
D). From [4] we can state:

Lemma 5. For F and (e, D)/p as above, then (e, D)/p = 1 for all
p|D (see Borevich and Shafarevich [6] for definition and properties of
(e, D)/p.)



768 E. BENJAMIN

Through Proposition 4 of Benjamin and Snyder [4] we make use
of criteria for (δi, D)/p = 1, i = 0, 1, 2, in terms of graph theory as
described in the following way, see [4].

Let D be a fundamental discriminant, not necessarily positive, of a
quadratic field. Let V (D), the set of vertices of D, be the set of primes,
r, dividing D. Let R be the subset of V (D) × V (D) given by

R =
{

(r1, r2) |
(

r2

r1

)
= −1 or

[(
r1

r2

)
= −1, if r1 = 2 and r2 = 3 mod 4

]}
.

Then R determines the edges of a graph with vertices V (D). If (r1, r2)
and (r2, r1) are in R, then we say the edge runs both ways between r1

and r2 and represent this by r1 r2. If, however, (r1, r2) ∈ R but
r2, r1) /∈ R, then we say the edge runs from r1 to r2 and denote it by
r1 −→ r2.

If the fundamental unit of a particular quadratic number field needs
to be identified, we use subscripts in the following way: εpipj

is the
fundamental unit of Q(√pipj); εK3,i

is the fundamental unit of F1,
where F1 is described above Lemma 2, for the unramified quadratic
extension K3 that corresponds to the maximal subgroup of G whose
factor group is noncyclic, etc.

We utilize the symbol (X1, X2, X3) where Xi ∈ {4, 2, 2A, 2B} for
i = 1, 2, 3 and Xi = | ker ji| with A or B referring to the particular
unramified quadratic extension Ki satisfying Taussky’s Condition A or
B. We note that X3 always refers to the capitulation in K3, the unram-
ified quadratic extension of k that corresponds to the noncyclic factor
group of the maximal subgroup of Gal (k2/k). From our earlier work
[5] we are able to form the following capitulation table to determine
the structure of G = Gal (k2/k). We utilize the following abbrevia-
tions: A is abelian, M is modular, MC is metacyclic-nonmodular, NM
is nonmetacyclic.

We note that if the capitulation is (2B,2B,2A) then G may be either
modular or nonmetacyclic, and if the capitulation is (2A,2A,2A), then
G may be either metacyclic-nonmodular or nonmetacyclic. We also not
that it is immaterial as to which subgroup we denote as H1 and H2 for
the two maximal subgroups whose factor groups are cyclic.
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TABLE 1. Capitulation and structure of G.

ker j1 ker j2 ker j3 G = Gal (k2/k)
4 4 4 A

2A 2A 4 MC
2B 2B 2A M or NM
2A 2A 2A MC or NM
4 4 2A NM

2A or 2B 4 2A NM
4 2A or 2B 2A NM

2A 2B 2A NM
2B 2A 2A NM

In order to determine whether Taussky’s Condition A or B is satisfied,
we make use of the following lemma, which follows directly from
Kisilevsky [17].

Lemma 6. Let k = Q(
√

p1p2p3) where p1 ≡ p2 ≡ 1 mod 4,
p3 ≡ 1 mod 4 or p3 = 2. Let K = k(

√
pi), i = 1, 2 or 3. Then

K/k satisfies Condition A if and only if (pjpk/pi) = 1.

2. Determination of Gal (k2/k) when Nε0 = 1. By the use
of Table 1, Lemma 3 and Lemma 4, we are able to determine when
G = Gal (k2/k) is A, M , MC or NM for all capitulation cases
except the case where two ideal classes capitulate in each of the three
unramified quadratic extensions of k. In this case, G may be M , MC
or NM . In order to narrow these possibilities, we utilize Lemma 6
together with the following lemma to determine the Taussky Condition
A or B for the case (2,2,2) (k is always a real quadratic number field
with Ck,2

∼= (2, 2n), n ≥ 2, and Sfk denotes the square-free kernel).

Lemma 7. Suppose dk = d1d2 is a factorization of dk into relatively
prime fundamental discriminants d1 and d2 where d1 > 0 and d2 > 0.
Let L = k(

√
d2) and suppose A = P1 · · ·Ps is a nontrivial ideal of

k, which is a product of distinct prime ideals Pi such that the rational
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prime pi contained in Pi divides d2. Assuming both δ and δ2 are defined,
i.e., N(ε0) = 1 and N(ε2) = 1,

(i) If p1 · · · p2 �= δ or Sfk(dk) or Sfk(dk/δ), then A is nonprincipal
in k. (If δ is not defined and p1 · · · ps �= Sfk(dk), then A is nonprincipal
in k.)

(ii) An ideal B ⊆ Q(
√

d2), such that NQ(
√

d2)/Q(B) divides d2 and
Sfk(NQ(

√
d2)/Q(B)) = δ2, is a principal ideal in L.

Proof. By Cohn [8] the only principal ambiguous ideals (we identify
ambiguous ideals as either the unit ideal or those ideals whose prime
factors divide the discriminant) in k are the ideals whose norms from
k to Q are 1, dk, δ or Sfk(dk/δ); this proves (i). To prove (ii), notice
that B = A2(ε2 + 1) where N(A) divides d2. Then δ2 = SfkN(ε2 + 1)
and B is a principal ideal in Q(

√
d2) since A2 is principal, and therefore

B is a principal ideal in L.

Note. We have now narrowed the ambiguous case (2, 2, 2) to the two
remaining ambiguous cases (2B,2B,2A) for which G may be M or NM ,
and (2A,2A,2A) for which G may be MC or NM .

We distinguish between the capitulations (4,2A,2A) (nonmetacyclic)
and (2A,2A,4) (metacyclic-nonmodular) by determining which unram-
ified quadratic extension corresponds to the noncyclic factor group of
the maximal subgroup. The following lemma enables us to do this.

We recall the Kaplan criteria for the 4-rank of Ck not being equal to
the 4-rank of C∗

k , where d is the square-free kernel of the discriminant
of k and d is not divisible by a prime congruent to 3 mod 4. The criteria
is d = a2 + b2 with 0 < a, a odd, and (a/pi) = −1 for some odd prime
dividing d.

Lemma 8. Let k = Q(
√

d) with d = p1p2p3 where p1 ≡ p2 ≡ 1 mod 4
and p3 ≡ 1 mod 4 or p3 = 2, such that (pi/pj) = 1 for all i �= j,
i, j ∈ {1, 2, 3}. Let d = a2 + b2 where a is an odd positive integer.
Suppose (a/pi) = −1 for some odd prime pi dividing d. Then there
exists a unique j ∈ {1, 2, 3} such that (pj/a) = 1. Moreover, for
this j, Hpj

is noncyclic, where Hpj
is the class group corresponding

to Gal (k1/Kpj
) via the Artin map and Kpj

= k(√pj).
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Remark 1. By Kaplan [16, p. 323] if p3 ≡ 1 mod 4, then (pj/a) =
(pipl/pj)4(pj/pipl)4 where {i, l} = {1, 2, 3} − {j} and (x/y)4 repre-
sents the biquadratic residue symbol; whereas, if p3 = 2, (2/a) =∏2

i=1(2pi/pj)4(pj/2pi)4 with j ∈ {1, 2} − {i} (note by the hypothe-
sis of Lemma 8 that (pj/2pi)4 is always defined).

Remark 2. Notice that the hypotheses of the lemma insure by
Lemma 2 that Nε0 = 1 and that the 4-rank of C∗

k = 2 whereas the
4-rank of Ck = 1.

Proof of Lemma. The existence of a unique j ∈ {1, 2, 3} such that
(pj/a) = 1 follows immediately from Kaplan [16, Theorem 1] (the law
of biquadratic reciprocity).

Let Pl be the prime ideal of k containing pl, l ∈ {1, 2, 3}. We claim
that exactly one of Pl is principal. This follows immediately from Cohn
[8], see proof of Lemma 7 above, since δ = pi or δ = pjpk for particular
values {i, j, k} = {1, 2, 3}.

Let Pi be one of the nonprincipal ideals. Next we claim that if
M = (a, b +

√
d), then the ideal class M �= P i, M �= I and M

2
= I;

by Cohn, Nk/Q(M) = a and M2 = (b +
√

d). This follows immediately
because M and P i must generate all ambiguous ideal classes, since
by Cohn the only ambiguous ideal classes are those containing only
ramified primes and M , and the 2-rank of Ck equals 2. By class
field theory, we know that the ideal class P i ∈ Hpj

if and only if the
Artin symbol (Pi, Kpj

/k) = I where Kpj
= k(√pj). We consider the

following diagram:

k(
√

pj) = Kpj�
�
�
�

�
�

�
�

Q(
√

pj) k

Q

��
��

��
�

�
�
�
�
�
��

By Lang [19], resQ(
√

pj)(Pi, Kpj
/k) = (pi, Q(√pj)/Q)f(Pi/pi) =

(pi, Q(√pj)/Q). But (pi, Q(√pj)/Q) = (pj/pi) = 1 and resQ(
√

pj)
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(Pi, Kpj
/k) = I if and only if (Pi, Kpj

/k) = I. Similarly, (M, Kpj
/k) =

(pj/a) = 1. We therefore conclude that P i ∈ Hpj
and M ∈ Hpj

,
P i �= M , and thus Hpj

is not cyclic.

In Table 2 we list the fields in cases 1 and 2 for which N(ε0) = 1;
δ, δ1 and δ2 are defined as in the paragraph above Lemma 4. The
table has six columns. The first column gives the number and letter
(with lower case index) of the case and subcase, respectively. The
second column is divided into two parts: the top part gives the graph
associated with the subcase; the plus and minus signs refer to the norms
of the fundamental units (+1 or −1) of the real quadratic number field
whose discriminant is determined by the product of the two vertices
of the graph on either side of the respective plus or minus sign. The
bottom part gives the possible values of δ, listed in column format. The
third, fourth and fifth columns refer to the three unramified quadratic
extensions of k. These three columns are each divided into three parts.
The top part determines Ki, i = A, B or C, in the form k(

√
mi) for

some integer mi. The middle part gives the possible values of δ2 for
Ki; a line signifies that δ2 does not exist. The bottom part lists the
capitulation determined by δ (of the second column) and the δ2’s (of
the third to fifth columns). We note that since the capitulation is
the same for all values of δ2, it is only listed once, for example, “2A”
signifies that all values of δ2 are 2A. The sixth column lists the possible
structures of Gal (k2/k) for each subcase and value of δ and δ2’s. In a
number of subcases we make use of the biquadratic residue symbol, see
Remark 1 after Lemma 10, to determine the possible group structures
of Gal (k2/k); the relevant biquadratic residue symbols are also listed
in column 6.

Remark. We note that Buell [7, p. 167] incorrectly states that for
p1 ≡ p2 ≡ p3 ≡ 1 mod 4, the negative Pell equation is solvable for
k=Q(

√
p1p2p3), implying Nε0 =−1, when exactly one of the Kronecker

symbols (pi/pj) = −1, omitting the requirement that (pipj/pk)4 =
(pk/pipj)4 = −1, {i, j, k} = {1, 2, 3}. For more errors in Buell, see
[1].

Through an observation of the referee, we make use of the following
lemma to eliminate certain values of δ and δ2 from occurring, see
Kubota [18], Hiffssatz [9].
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Lemma 9. Let k = Q(
√

m), m square-free, m > 0, Nε0 = 1. Then
δ �= m.

By way of illustration, we demonstrate how we obtain the data in
Table 2 for cases 2B1 and 2C4; the remaining cases are obtained in a
similar manner.

Case 2B1. k = Q(
√

2p1p2), p1 ≡ 5 mod 8, p2 ≡ 1 mod 8, (p1/p2) = 1,
Nε0 = 1, Nεp1p2

= 1, Nε2p2
= 1, Nε2p1

= −1, by Buell [7].

Graph:

– +

+

2

p1 p2

Since dk = 8p1p2 and δ|dk, δ �= 1, δ �= dk, see Kubota [17], and
δ �= 2p1p2, cf. Lemma 9, we find that our initial possible values for δ
are p1, p2, 2, 2p1, 2p2.

By Lemma 5 we know that (δ, dk)/r = 1 for all primes r|dk.

We make use of the following graph theory techniques from Benjamin
and Snyder [4] to narrow our possible values of δ that satisfy Lemma 5.

The particular criteria we are using in this case is the following:
(δ, dk)/r = 1 if and only if

(i) the number of edges from r into V (δ) is even if r does not divide
δ,

(ii) the number of edges from r into V (Sfk(dk/δ)) is{
even if r | δ and (r ≡ 1 mod 4 or r = 2)
odd if r | δ and r ≡ 3 mod 4.

By the above criteria, we find that there are two possible values of δ:
p2 or 2p1, as listed in Table 2.

In a similar manner, we make use of the above graph theory criteria
and Lemma 9 to determine the possible values of δ2 for the unramified
quadratic extensions Q(

√
2,
√

p1p2) where d2 = p1p2 and Q(
√

p1,
√

2p2)
where d2 = 8p2 (we note that δ2 is not defined for Q(

√
p2,

√
2p1), where

d2 = 8p1, since Nε2p1
= −1).
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We find that, for Q(
√

2,
√

p1p2), δ2 = p1 or p2, and for Q(
√

p1,
√

2p2),
δ2 = p2 or 2. We now apply Lemma 4 to obtain the capitulation (2,2,2)
for the three unramified quadratic extensions of k. In order to distin-
guish between Taussky’s Conditions A or B, we apply Lemmas 6 and
7. We find that Q(

√
2,
√

p1p2) and Q(
√

p1,
√

2p2) satisfy Condition B
and Q(

√
p2,

√
2p1) satisfies Condition A.

From Table 1 we are able to conclude that the capitulation is
(2B,2B,2A) and Gal (k2/k) may be either modular or nonmetacyclic.

Case 2C4. k = Q(
√

2p1p2), p1 ≡ p2 ≡ 1 mod 8, (p1/p2) = 1,

Nε0 = 1, Nεp1p2
= −1, Nε2p1

= Nε2p2
= 1.

Graph:
p1 − p2

• •
+ +

•
2

In a similar manner to that of our example worked out for case 2B1,
we find that there are six possible values of δ: 2, p1p2, p1, 2p2, p2, 2p1;
for Q(

√
p1,

√
2p2), δ2 = 2 or p2, and for Q(

√
p2,

√
2p1), δ2 = 2 or p1

(we note that δ2 is not defined for Q(
√

2,
√

p1p2) since Nεp1p2
= −1).

The δ values 2 and p1p2 have the same possible capitulations, as do
the δ values p1 and 2p2, and p2 and 2p1, all of which are listed in
Table 2. Applying Lemma 4 and Lemma 6, we find that for all val-
ues of δ and δ2, either 4 ideal classes capitulate, or 2 ideal classes
capitulate satisfying Taussky’s Condition A, as described in Table 2.
However, unlike our previous example for case 2B1, Table 1 does not
suffice to always determine Gal (k2/k) based upon these capitulations.
We need to make use of the biquadratic residue symbol, see Remark 1
after Lemma 8, to determine which unramified quadratic extension
corresponds to the noncyclic factor group of the maximal subgroup of
Gal (k2/k). For instance, when δ takes on the values p1, 2p2, p2 or 2p1,
4 ideal classes capitulate in Q(

√
2,
√

p1p2). If
∏

(2pi/pj)4(pj/2pi)4 = 1
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(we let
∏

=
∏2

i=1, j ∈ {1, 2} − {i}) then we are able to specify our
capitulation as (2A,2A,4) (denoting ker j1, ker j2, ker j3, respectively)
by making use of Table 1 to obtain that Gal (k2/k) is metacyclic-
nonmodular. On the other hand, if

∏
(2pi/pj)4(pj/2pi)4 = −1, then

our capitulation is either (2A,4,2A) or (4,2A,2A), and from Table 1
we obtain that Gal (k2/k) is nonmetacyclic. These biquadratic residue
symbols, with all possible corresponding group structures for Gal (k2/k)
are listed in the last column of Table 2.

TABLE 2.

CASE

p1 p2

p3
 

KA

δ2   

KB

δ2   

KC

δ2

Gal k k2( )

  δ C A P I T U L A  T I O N

1 1A
–

+ +
k p

p p

1

2 3

( )
( , )

k p

p p

2

1 3

( )
( , )

k p3( )
_____

p
p p

3
1 2

⎤
⎦⎥ 2B 2B 2A M  or N M

1 2A
–

– +
k p

p p

1

2 3

( )
( , )

k p2( )
_____

k p3( )
_____

p
p p

3
1 2

⎤
⎦⎥ 2B 4 2A N M

1 3A
–

– –
k p1( )
_____

k p2( )
_____

k p3( )
_____

p
p p

3
1 2

⎤
⎦⎥ 4 4 2A N M

1 1B
+ +

+
k p

p p

1

2 3

( )
( , )

k p

p p

2

1 3

( )
( , )

k p3( )
( , )p p1 2

p
p p

3
1 2

⎤
⎦⎥ 2A 2A 2A MC  or NM

p
p p

1
2 3

⎤
⎦⎥ 2A 2A 2A MC  or NM

p
p p

2
1 3

⎤
⎦⎥ 2A 2A 2A MC  or NM
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TABLE 2. Continued.

CASE

p1 p2

p3
  

KA

δ2   

KB

δ2   

KC

δ2

Gal k k2( )

  δ C A P I T U L A  T I O N

1 2B
–

– –

k p1( )
_____

k p2( )
_____

k p3( )
_____

p
p p

3
1 2

⎤
⎦⎥ 4 4 2A N M

p
p p

1
2 3

⎤
⎦⎥ 2A 4 4 N M

p
p p

2
1 3

⎤
⎦⎥ 4 2A 4 N M

1 3B
+ +

–
k p

p p

1

2 3

( )
( , )

k p

p p

2

1 3

( )
( , )

k p3( )
_____

p
p p

3
1 2

⎤
⎦⎥ 2A 2A 2A MC  or NM

p
p p

1
2 3

⎤
⎦⎥ 2A 2A 4 p p

p

p

p p
MC
NM

1 2

3 4

3

1 2 4

1
1

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎛
⎝⎜

⎞
⎠⎟
= −
⎧
⎨
⎩

⎤

⎦
⎥

:
:p

p p
2
1 3

⎤
⎦⎥ 2A 2A 4

1 4B
–

+ –

k p1( )
_____

k p

p p

2

1 3

( )
( , )

k p3( )
_____

p
p p

3
1 2

⎤
⎦⎥ 4 2A 2A p p

p

p

p p
MC
NM

2 3

1 4

1

2 3 4

1
1

⎛
⎝⎜

⎞
⎠⎟
⎛
⎝⎜

⎞
⎠⎟
=

⎡

⎣
⎢
⎢ −

⎧
⎨
⎩

⎤

⎦
⎥

:
:

p
p p

1
2 3

⎤
⎦⎥ 2A 2A 4

p p

p

p

p p
MC
NM

1 2

3 4

3

1 2 4

1
1

⎛
⎝⎜

⎞
⎠⎟
⎛
⎝⎜

⎞
⎠⎟
=

⎡

⎣
⎢
⎢ −

⎧
⎨
⎩

⎤

⎦
⎥

:
:

p
p p

2
1 3

⎤
⎦⎥ 4 2A 4 N M
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TABLE 2. Continued.

�

CASE 2

p1 p2

  

KA

δ2   

KB

δ2   

KC

δ2

Gal k k2( )

  δ C A P I T U L A  T I O N

2 1A
–

+ +
k p1( )
( , )p2 2

k p2( )
( , )p1 2

k 2( )
_____

2
1 2p p ] 2B 2B 2A M  or N M

2 2A
–

+ –
k p1( )
_____

k p2( )
( , )p1 2

k 2( )
_____

2
1 2p p ] 4 2B 2A N M

2 3A
–

– –
k p1( )
_____

k p2( )
_____

k 2( )
_____

2
1 2p p ] 4 4 2A N M

2 1B
– +

+
k p1( )
( , )p2 2

k p2( )
_____

k 2( )
( , )p p1 2

p
p
2

12
⎤
⎦⎥ 2B 2A 2B M  or N M

2 2B
– –

+
k p1( )
_____

k p2( )
_____

k 2( )
( , )p p1 2

p
p
2

12
⎤
⎦⎥ 4 2A 2B N M
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TABLE 2. Continued.

�

CASE 2

p1 p2

  

KA

δ2   

KB

δ2   

KC

δ2

Gal k k2( )

  δ C A P I T U L A  T I O N

2 3B
– +

–
k p1( )
( , )p2 2

k p2( )
_____

k 2( )
_____

2
2 1p

⎤
⎦⎥ 2B 2A 4 N M

2 4B
– –

–
k p1( )
_____

k p2( )
_____

k 2( )
_____

p
p
2

12
⎤
⎦⎥ 4 2A 4 N M

2 1C
+ +

+
k p1( )
( , )p2 2

k p2( )
( , )p1 2

k 2( )
( , )p p1 2

2
1 2p p ] 2A 2A 2A MC  or NM

p
p
1

22
⎤
⎦⎥ 2A 2A 2A MC  or NM

p
p
2

12
⎤
⎦⎥ 2A 2A 2A MC  or NM



SECOND HILBERT 2-CLASS FIELD 779

TABLE 2. Continued.

�

CASE 2

p1 p2

  

KA

δ2   

KB

δ2   

KC

δ2

Gal k k2( )

  δ C A P I T U L A  T I O N

2 2C
–

+ –

k p1( )
_____

k p2( )
( , )p1 2

k 2( )
_____

2
1 2p p ] 4 2A 2A

2

2
1
1

2

1 4

1

2 4

p

p

p

p
MC
NM

⎛
⎝⎜

⎞
⎠⎟
⎛
⎝⎜

⎞
⎠⎟

= −{ :
:

p
p
1

22
⎤
⎦⎥ 2A 2A 4

2

2
1
1

4 4

p

p

p

p
MC
NM

i

j

j

i

⎛

⎝
⎜

⎞

⎠
⎟
⎛
⎝⎜

⎞
⎠⎟
= −{∏ :

:

p
p
2

12
⎤
⎦⎥ 4 2A 4 N M

2 3C
– –

+
k p1( )
_____

k p2( )
_____

k 2( )
( , )p p1 2

2
1 2p p ] 4 4 2A N M

p
p
1

22
⎤
⎦⎥ 2A 4 2A

2

2
1
1

1

2 4

2

1 4

p

p

p

p
MC
NM

⎛
⎝⎜

⎞
⎠⎟
⎛
⎝⎜

⎞
⎠⎟

= −{ :
:

p
p
2

12
⎤
⎦⎥ 4 2A 2A

2

2
1
1

2

1 4

1

2 4

p

p

p

p
MC
NM

⎛
⎝⎜

⎞
⎠⎟
⎛
⎝⎜

⎞
⎠⎟

= −{ :
:
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TABLE 2. Continued.

�

CASE 2

p1 p2

  

KA

δ2   

KB

δ2   

KC

δ2

Gal k k2( )

  δ C A P I T U L A  T I O N

2 4C
+ +

–
k p1( )
( , )2 2p

k p2( )
( , )p1 2

k 2( )
_____

2
1 2p p ] 2A 2A 2A MC  or NM

p
p
1

22
⎤
⎦⎥ 2A 2A 4 2

2
1
1

4 4

p

p

p

p
MC
NM

i

j

j

i

⎛

⎝
⎜

⎞

⎠
⎟
⎛
⎝⎜

⎞
⎠⎟
= −{⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥∏ :

:p
p
2

12
⎤
⎦⎥ 2A 2A 4

2 5C
– +

+
k p1( )
( , )2 2p

k p2( )
_____

k 2( )
( , )p p1 2

2
1 2p p ] 2A 4 2A

2

2
1
1

1

2 4

2

1 4

p

p

p

p
MC
NM

⎛
⎝⎜

⎞
⎠⎟
⎛
⎝⎜

⎞
⎠⎟

= −{ :
:

p
p
1

22
⎤
⎦⎥ 2A 4 2A

2

2
1
1

2

1 4

1

2 4

p

p

p

p
MC
NM

⎛
⎝⎜

⎞
⎠⎟
⎛
⎝⎜

⎞
⎠⎟

= −{ :
:

p
p
2

12
⎤
⎦⎥ 2A 2A 2A MC  or NM
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TABLE 2. Continued.

�

CASE 2

p1 p2

  

KA

δ2   

KB

δ2   

KC

δ2

Gal k k2( )

  δ C A P I T U L A  T I O N

2 6C
–

– –

k p1( )
_____

k p2( )
_____

k 2( )
_____

2
1 2p p ] 4 4 2A N M

p
p
1

22
⎤
⎦⎥ 2A 4 4 N M

p
p
2

12
⎤
⎦⎥ 4 2A 4 N M

From Table 2 and our previous lemmas, we can now state the
following theorem.

Theorem 1. Let k = Q(
√

p1p2p3) be a real quadratic number field,
p1 ≡ p2 ≡ 1 mod 4, p3 ≡ 1 mod 4 or p3 = 2, with Ck,2

∼= (2, 2n),
n ≥ 2, Nε0 = 1. If the 4-rank of Ck is equal to the 4-rank of C∗

k , then
Gal (k2/k) is either modular or nonmetacyclic. If the 4-rank of Ck is
not equal to the 4-rank of C∗

k , then G is either metacylic-nonmodular
or nonmetacyclic.

3. Determination of Gal (k2/k) when Nε0 = −1. We now assume
k is a real quadratic number field with Ck,2

∼= (2, 2n), n ≥ 2, δk not
divisible by a prime congruent to 3 mod 4, and Nε0 = −1. Since δ is
not defined in this case, we must rely on Lemma 3 directly to determine
the order of the capitulation kernel.

In Table 3, we list the fields in cases 1 and 2 for which N(ε0) = −1;
therefore, δ is not defined for the fields in this table. This table has
eight columns. We let subscripts added to the general cases 1A, 2A and
2B represent all possibilities for the norms of the fundamental units of
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the respective real quadratic number fields; these are listed in column 1.
In column 2 we list the norm of the fundamental unit of the base field,
Nε0 . In columns 3, 4 and 5 we list the norms of the fundamental
units of the three real quadratic subfields. In column 6 we list the
relevant fundamental unit criteria to determine the capitulation, as
described in Lemma 3. In column 7 we list the capitulation determined
by the fundamental unit criteria in column 6. In column 8 we list the
possible group structures for each subcase, related to the fundamental
unit criteria in column 6. We illustrate the technique by showing how
we obtain the data in Table 3 for case 1A2.

Case 1A2. k = Q(
√

p1p2p3), p1 ≡ p2 ≡ p3 ≡ 1 mod 4,

(
p1

p3

)
=

(
p2

p3

)
= 1,

(
p1

p2

)
= −1

Nε0 = Nεp1p2
= −1 (by Buell [7])

Nεp1p3
= 1, Nεp2p3

= −1 (without loss of generality).

Graph:
–

–

p1 p2

+

p3

By Lemma 3, we see that for Q(
√

p2,
√

p1p3), four ideal classes
capitulate.

In order to determine how many ideal classes capitulate for Q(
√

p3,√
p1p2) and Q(

√
p1,

√
p2p3) we must make use of the condition

√
ε0ε1ε2 ∈

K as stated in Lemma 3. The three possibilities for
√

ε0ε1ε2 ∈ K
or

√
ε0ε1ε2 /∈ K, where K = Q(

√
p1,

√
p2p3) or Q(

√
p3,

√
p1p2), are

listed in Table 3. In the case where
√

ε0ε1ε2 ∈ K, we must make
use of Lemma 8 to determine if K satisfies the Taussky Condition A
or B. From Table 1 we are able to conclude that the three possible
capitulations are (2B,4,2A), (4,4,2A), (4,4,4), and the possibilities for
Gal (k2/k) are respectively nonmetacyclic, nonmetacyclic and abelian.



SECOND HILBERT 2-CLASS FIELD 783

Note. In Table 3 we notice that, for p1 ≡ p2 ≡ p3 ≡ 1 mod 4, the
case Nεp1p3 = −1, Nεp2p3 = 1 is symmetrical to the case Nεp1p3 = 1,
Nεp2p3 = −1, and the case Nε2p1 = −1, Nε2p2 = 1 is symmetrical to
the case Nε2p1 = 1, Nε2p2 = −1; therefore, these cases are not included
as separate cases. Similarly the capitulation (2B,4,2A) is symmetrical
to the capitulation (4,2B,2A) and is therefore not included as a separate
capitulation.

To simplify our categories we now define k = Q(
√

p1p2p3) with
p1, p2, p3 ≡ 1 or 2 (mod 4).

From Table 3 and our previous lemmas we are able to state the
following theorem.

Theorem 2. Let k be a real quadratic number field, p1 ≡ p2 ≡
1 mod 4, p3 ≡ 1 mod 4 or p3 = 2, with Ck,2

∼= (2, 2n), n ≥ 2,
Nε0 = −1. Then Gal (k2/k) is nonabelian if and only if there exists
an unramified quadratic extension K of k for which Nε2 = −1 and√

ε0ε1ε2 ∈ K. If Gal (k2/k) is nonabelian, then Gal (k2/k) must be
either modular or nonmetacyclic.

By combining Lemma 1 and Theorem 2 we are able to state the
following corollary which relates our unit roots, see Cohn [9], to
biquadratic residue symbols.

Corollary 1. Let k be a real quadratic number field, p1 ≡ p2 ≡
1 mod 4, p3 ≡ 1 mod 4 or p3 = 2, with Ck,2

∼= (2, 2n), n ≥ 2,
Nε0 = −1, (pi/pj) = (pj/pk) = 1, (pk/pi) = −1 for {i, j, k} = {1, 2, 3}.
Then there exists an unramified quadratic extension K of k for which
Nε2 = −1 and

√
ε0ε1ε2 ∈ K, if and only if either (pi/pj)4(pj/pi)4 = 1

or (pj/pk)4(pk/pj)4 = 1.

We conclude with a numerical example that illustrates how Table 3
can be used to determine Gal (k2/k) for a particular field.

Let k = Q(
√

2 · 13 · 17 = Q(
√

442); (17/13) = 1, 13 ≡ 5 mod 8,
17 ≡ 1 mod 8, N(ε0) = −1, N(ε13·17) = 1, N(ε2·13) = −1, N(ε2·17) =
1. From Table 3, case 2B2, we see that G is either abelian or
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nonmetacyclic. We check further to see if
√

ε0ε1ε2 ∈ Q(
√

17,
√

2 · 13)

ε0 = 21 +
√

442

ε1 = 4 +
√

17

ε2 = 5 +
√

26

ε0ε1ε2 = 862 + 209
√

17 + 169
√

26 + 41
√

442.

Let K = Q(
√

17,
√

2 · 13). Set

C0 = TrK/Q(ε0ε1ε2 + ε0 + ε1 − ε2) = 3528
C1 = TrK/Q(ε0ε1ε2 + ε0 − ε1 + ε2) = 3536
C2 = TrK/Q(ε0ε1ε2 − ε0 + ε1 + ε2) = 3400
C3 = TrK/Q(ε0ε2ε2 − ε0 − ε1 − ε2) = 3328

√
C0 = 42

√
2√

C1 = 4
√

13 · 17√
C2 = 10

√
2 · 17√

C3 = 16
√

13.

Since
√

Cj /∈ K for j = 0, 1, 2, 3, we have
√

ε0ε1ε2 /∈ K by Kubota
[18].

Therefore, by Table 3, G is abelian.

We note that our earlier work, as stated in Lemma 1, also demon-
strates that Gal (k2/k) is abelian for k = Q(

√
2 · 13 · 17), since

(17/13)4 = (2/17)4 = −1 and (13/17)4 = (17/2)4 = 1.

Acknowledgment. The author would like to thank the referee for
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21. L. Redéi and H. Reichardt, Die Anzahl der Durch 4 Teilbaren Invarienten
der Klassengruppe ernes Beliebigen Quadratischen Zahlkörpers, J. Reine Angew.
Math. 170 (1966), 69 74.

22. M. Rosen, Two theorems on Galois cohomology, Proc. Amer. Math. Soc. 17
(1966), 1183 1185.



788 E. BENJAMIN

23. O. Taussky, A remark concerning Hilbert’s theorem 94, J. Reine Angew.
Math. 239/240 (1970), 435 438.

Mathematics Department, University of Maine, Orono, ME 04469-5709
E-mail address: benjamin@mint.net


