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CONFORMAL IMAGES OF TANGENTIAL
AND NONTANGENTIAL ARCS

JOHN AKEROYD

If f is bounded and analyticin D := {z : |z| < 1} and lim,_,;~ f(re®’)
exists for some 6, then, by a normal families argument, f(z) approaches
that radial limit as z in D approaches €’ along any nontangential
path; see [1, Theorem 1.3, p. 6]. In this note we give an analogous
result for functions that are analytic and univalent in D; with no
loss of generality, we let e’ = 1 throughout. We first observe that,
for any function f that is both analytic and univalent in D, f([0,1))
is rectifiable if and only if f(~\{1}) is rectifiable for each rectifiable
Jordan arc v contained in D U {1} that has a nontangential approach
in D to 1 and that satisfies a certain restriction on its “oscillations”
near 1 (Theorem 1). We also show that if v has a tangential approach
in D to 1, then there is a Jordan region 2 and a conformal mapping ¢
from D to © such that ¢([0,1]) = [0,1] and yet ¢() is not rectifiable
(Theorem 2); for a related result, see [5].

To establish the terms of our discussion, let v be a Jordan arc from
[0, 1] to the complex plane C such that ¥([0, 1)) is contained in D and
~(1) = 1. If the limit as ¢ approaches 1 of (1 —|v(¢)])/(|]1 —v(t)]) exists
and is zero, then we say that v has a tangential approach in D to 1.
And, if there exists € > 0 such that e < (1—|v(¢)])/(]1—~(t)|) whenever
0 <t < 1, then we say that v has a nontangential approach in D to
1. Throughout this paper we let v denote both the Jordan arc and its
trace v([0, 1]). Let T'(2) = (1—2)/(1+2) be the M6bius transformation
that maps {z : Re(z) > 0} onto D, 0 to 1 and 1 to 0. For each
nonnegative integer n, let a,, = T(27™) (= (2" — 1)/(2™ + 1)); notice
that p(an, ant1) = (1/3) for all n, where p(z,w) := |(z — w)/(1 — @z)]
is the pseudohyperbolic distance between the points z and w in D. If
is a rectifiable Jordan arc in DU {1}, then, for n = 0,1,2,..., let v, =
{z € v:a, <|z| < ap+1} and (with the reference to « understood),
let M, = length (y,)/(an+1 — an); length (v,) := Aq(yn)—the one-
dimensional Hausdorff measure of 7,. For 0 < ¢ < 1 and any
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positive integer m, let @, .(z) = [log(log(- - - (log(1/z))---))] %; here,
the branch of the logarithm (given by —m < arg(z) < m) is composed
with itself m-times. Notice that for sufficiently small r > 0, ¢, . is a
conformal mapping from {z : |z| < r and Re(z) > 0} onto a bounded
subregion of {¢ : Re (£) > 0} that is symmetric with respect to R and,
for such z,

#m.<(2) = (- iog(1/2) og(ioa(1/2)) - Tlogoa(- - (oa(1/2)) ~))TF)"

For sufficiently large n, let am.(n) = (1/(en?)) - ¢}, .(1/n). Later in
this paper we shall concern ourselves with the series Y > \ @, o(n); a
study of this series is made in [4, Sections 14 and 37-41].

Theorem 1. Let y be a rectifiable Jordan arc in D U {1} that has a
nontangential approach in D to {1}.

(i) If the sequence {M,}32, is bounded, then, for any conformal
mapping ¢ defined on D, o(v\{1}) is rectifiable if and only if ©([0,1))
is rectifiable.

(ii) If the sequence { M, }2° , is not bounded and there exist m,e and
a subsequence {My, } of {M,} such that {(ng+1 —ng)} is bounded and,
for sufficiently large ng,

M, > 5/< i am,e(n)>a

n=ng

then there is a conformal mapping ¢ on D such that ¢([0,1)) is
rectifiable and yet o(v\{1}) is not rectifiable.

Remark. The condition in Theorem 1(i), that {M,,}22, is bounded,
is almost certainly not “sharp.” However, the slowness of the growth
that is permitted of {M,, } in (ii) indicates that the condition in (i)
is nearly sharp in certain settings. The guiding principle is that a
given rate of growth of {(ngy+1; — nk)} requires a commensurate rate
of growth of {M,, } in order to insure the result of Theorem 1(ii). A
precise understanding of this interplay between the rates of growth of
{(ng4+1—ng)} and {M,,, } seems inaccessible since it requires a thorough
understanding of what |g0’|‘[071) can look like, where ¢ is a conformal

mapping on D such that ([0, 1)) is rectifiable.
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Proof (of Theorem 1). (i) In this setting M := sup, M,, < co. By
our choice of {a,}2° ; and the assumption that 4 has a nontangential
approach in D to 1, we can apply [3, Theorem 4, p. 52] along with the
chain rule (or we can apply [6, Lemma 2.2, p. 130]) and find a positive
constant C, independent of ¢ and n, such that |¢'(z)| < C-min{|¢’(t)] :
an <t < apt1} whenever z € v,. Therefore,

length (p(v\{1})) = D _ length (¢(vn))

(oo}

Y| ¥ ()]

n=0"Tn

<CM -Zmin{|g0'(t)| tan <t <apy1} (Ant1—an)

n=0

<CM - Zlength (p([an, ant1]))

n=0

= CM - length (¢([0,1))).

So, if ¢([0,1)) is rectifiable, then so is ¢(v\{1}). The converse holds
similarly.

(i) By our hypothesis, there exist m and ¢ such that, for sufficiently

large ng,
M, > s/( Z am,a(n)>.

n=ng

For w in D, let T(w) = (1 —w)/(1+w) (=T71), let I' = T(y) and,
forn=0,1,2,...,let I';, = T(,) and let M} = 2(n+1) . Jength (Th).
By a routine conformal mapping argument, we need only produce a
conformal mapping ¢ on {z : |z| < r and Re(z) > 0}, for some r > 0,
such that ¢((0,r)) is rectifiable and yet p({z € I' : 0 < |z| < r}) is not.
Now since |T”(w)| is near 1/2 when w is near 1, we can make a smaller
choice of € > 0 if necessary and get (from our hypothesis) that

My, > 6/(72; am,g(n)>,

if ny, is sufficiently large. For fixed r > 0 sufficiently small, consider the
conformal mapping ¢m1, defined on {z : |z| < r and Re (z) > 0}. By
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[3, Theorem 4, p. 52] along with the chain rule, or by [6, Lemma 2.2, p.
130], there are positive constants C; and C3 and, by the boundedness

of {(nk4+1 — nk)}, there is a positive constant C such that, for any kg
sufficiently large,

Z length (‘Pm«kl,s (Fnk ))

k=kgo
=S / s ()] 2]
k=ko Y I'ni
> 3 Cy-max{|g), ()] 270D < <oy My 27 ()
k=ko
> (0 3 2 ) /(3 et
k=ko N=ngq
> Cy - < Z am,a("k))/( Z am,s("))
k=ko n=ngq,
> (Cs.

S0, Ymt1e({z € T' : 0 < |z| < r}) is not rectifiable, though
Pm+1,:((0,7)) is. O

Theorem 2. Let vy be a Jordan arc in D U {1} that has a tangential
approach in D to 1. Then there is a Jordan region ) and a conformal

mapping ¢ from D onto Q such that ¢([0,1]) = [0,1] and yet p(y) is
not rectifiable.

Proof. Let {a,}5 5 be a decreasing sequence of positive real numbers
such that a, < (1/n?). For n =2,3,4,..., let

1 1 1
An:{z:——3§|zl|§—}\{z:x+iy:0<m<l
n o n n

and —a, <y <ap}
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FIGURE 1.

Claim. For an appropriate choice of {a,}5%,, the Jordan region

0= D\<§2An>,

(see Figure 1) satisfies Theorem 2.

Since €2 is symmetric with respect to the real line and is a Jordan
region, there is a conformal mapping ¢ from D onto €2, that extends
to a homeomorphism between D and € such that ¢([0,1]) = [0, 1].

If 0 < s < 1, then ([0, s]) is a compact subset of D and so we can
apply Harnack’s Inequality and find a constant ¢ > 1 such that

1
- w(,D,2) <w(,D,0)<c-w(-D,2)
¢

whenever z € ([0, s]); if E is a bounded Dirichlet region and zg € E,
then w(-, E, zp) denotes harmonic measure on OF evaluated z;. By
elementary methods involving the Maximum Principle or by standard
estimates derived from the theory of extremal length, see [2, Proposi-
tion 7.2, p. 102], we have that, for € > 0,

w{w:|w] =1 and Re (w) <0},9,() <e
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whenever ¢ € Q and | — 1| < 1/2, provided as is sufficiently small.
However, since G := D\{z : |z — 1] < 1/2} is contained in Q
independent of as, the Maximum Principle tells us that

w({w : jw| =1 and Re (w) < 0},9,0)
> w({w: |w| =1 and Re (w) < 0},G,0) >

0
independent of az. Since w(-,Q,¢) = w(¢p~1(+),D,$71(¢)), and ¢(0) =
0, we can now conclude that |1 — ¢(z)] > 1/2 for all z in ~([0, s]),
provided as is sufficiently small.

For z in D, let p(z) = inf{p(z,r) : 0 < r < 1}—the pseudohyperbolic
distance from z to [0,1)—and let ¢,(w) = (w — 2)/(1 — Zw). Since v
has a tangential approach in D to 1, p(z) approaches 1 as z in y\{1}
approaches 1. Let Ko = {2z : |z — 1| = 17/48 and |arg(1l — z)| < w/4},
and let 7o = ¢~ 1(17/48). Notice that K» C Q and dist (K3, 0Q) = 1/48

independent of a,, n = 2,3,4,.... So, by Harnack’s Inequality, there
is a constant d > 1 independent of a,,, n = 2, 3,4, ..., such that

1

d w(+9Q,0) <w(,Q, C/) <d-w( Q)

for any ¢ and ¢’ in K,. So there exists R, 0 < R < 1, such
that (¢r, 0 ¢ 1)(K2) C {w : |w| < R} independent of a,, n =

2,3,4,.... Consequently, p(z) < R for all z in ¢—*(K,) independent
of ap, n = 2,3,4,.... So there exists s, 0 < s < 1, such that
¢~1(K2) N~y([s,1]) = @ independent of a,,, n = 2,3,4,.... Moreover,

by our earlier work, Ko N ¢(7([0,s])) = @ provided as is sufficiently
small. Consequently, Ky N ¢(7([0,1])) = &, provided as is sufficiently
small. In the same way we can choose a,,, forn = 3,4,5, ..., sufficiently
small so that K, N #(vy([0,1])) = @, where K,, = {z : |z = 1| =
((1/n)+(1/(n+1))—(1/n3))/2 and | arg(1—z)| < w/4}, and our choice
of a,, is not affected by our choice of aj for k > n. Since a,, < 1/n?,
this forces the length of ¢(7) to be infinite. O
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