CONFORMAL IMAGES OF TANGENTIAL AND NONTANGENTIAL ARCS

JOHN AKEROYD

If f is bounded and analytic in $\mathbf{D} := \{z : |z| < 1\}$ and $\lim_{r \to 1^-} f(re^{i\theta})$ exists for some θ , then, by a normal families argument, f(z) approaches that radial limit as z in \mathbf{D} approaches $e^{i\theta}$ along any nontangential path; see [1, Theorem 1.3, p. 6]. In this note we give an analogous result for functions that are analytic and univalent in \mathbf{D} ; with no loss of generality, we let $e^{i\theta} = 1$ throughout. We first observe that, for any function f that is both analytic and univalent in \mathbf{D} , f([0,1)) is rectifiable if and only if $f(\gamma \setminus \{1\})$ is rectifiable for each rectifiable Jordan arc γ contained in $\mathbf{D} \cup \{1\}$ that has a nontangential approach in \mathbf{D} to 1 and that satisfies a certain restriction on its "oscillations" near 1 (Theorem 1). We also show that if γ has a tangential approach in \mathbf{D} to 1, then there is a Jordan region Ω and a conformal mapping φ from \mathbf{D} to Ω such that $\varphi([0,1]) = [0,1]$ and yet $\varphi(\gamma)$ is not rectifiable (Theorem 2); for a related result, see [5].

To establish the terms of our discussion, let γ be a Jordan arc from [0,1] to the complex plane C such that $\gamma([0,1))$ is contained in D and $\gamma(1) = 1$. If the limit as t approaches 1 of $(1 - |\gamma(t)|)/(|1 - \gamma(t)|)$ exists and is zero, then we say that γ has a tangential approach in **D** to 1. And, if there exists $\varepsilon > 0$ such that $\varepsilon \leq (1 - |\gamma(t)|)/(|1 - \gamma(t)|)$ whenever $0 \le t < 1$, then we say that γ has a nontangential approach in **D** to 1. Throughout this paper we let γ denote both the Jordan arc and its trace $\gamma([0,1])$. Let T(z)=(1-z)/(1+z) be the Möbius transformation that maps $\{z : \operatorname{Re}(z) > 0\}$ onto **D**, 0 to 1 and 1 to 0. For each nonnegative integer n, let $a_n = T(2^{-n})$ (= $(2^n - 1)/(2^n + 1)$); notice that $\rho(a_n, a_{n+1}) = (1/3)$ for all n, where $\rho(z, w) := |(z - w)/(1 - \bar{w}z)|$ is the pseudohyperbolic distance between the points z and w in **D**. If γ is a rectifiable Jordan arc in $\mathbf{D} \cup \{1\}$, then, for $n = 0, 1, 2, \ldots$, let $\gamma_n =$ $\{z \in \gamma : a_n \leq |z| < a_{n+1}\}$ and (with the reference to γ understood), let $M_n = \operatorname{length}(\gamma_n)/(a_{n+1} - a_n)$; length $(\gamma_n) := \Lambda_1(\gamma_n)$ —the onedimensional Hausdorff measure of γ_n . For $0 < \varepsilon < 1$ and any

Received by the editors on April 25, 1997, and in revised form on July 31, 1997.

positive integer m, let $\varphi_{m,\varepsilon}(z) = [\log(\log(\cdots(\log(1/z))\cdots))]^{-\varepsilon}$; here, the branch of the logarithm (given by $-\pi < \arg(z) < \pi$) is composed with itself m-times. Notice that for sufficiently small r > 0, $\varphi_{m,\varepsilon}$ is a conformal mapping from $\{z : |z| < r \text{ and } \operatorname{Re}(z) > 0\}$ onto a bounded subregion of $\{\xi : \operatorname{Re}(\xi) > 0\}$ that is symmetric with respect to \mathbf{R} and, for such z,

$$\varphi'_{m,\varepsilon}(z) = \frac{\varepsilon}{(z \log(1/z) \log(\log(1/z)) \cdots [\log(\log(\cdots (\log(1/z)) \cdots))]^{1+\varepsilon})}.$$

For sufficiently large n, let $\alpha_{m,\varepsilon}(n)=(1/(\varepsilon n^2))\cdot \varphi'_{m,\varepsilon}(1/n)$. Later in this paper we shall concern ourselves with the series $\sum_{n=N}^{\infty}\alpha_{m,\varepsilon}(n)$; a study of this series is made in [4, Sections 14 and 37–41].

Theorem 1. Let γ be a rectifiable Jordan arc in $\mathbf{D} \cup \{1\}$ that has a nontangential approach in \mathbf{D} to $\{1\}$.

- (i) If the sequence $\{M_n\}_{n=0}^{\infty}$ is bounded, then, for any conformal mapping φ defined on \mathbf{D} , $\varphi(\gamma\setminus\{1\})$ is rectifiable if and only if $\varphi([0,1))$ is rectifiable.
- (ii) If the sequence $\{M_n\}_{n=0}^{\infty}$ is not bounded and there exist m, ε and a subsequence $\{M_{n_k}\}$ of $\{M_n\}$ such that $\{(n_{k+1}-n_k)\}$ is bounded and, for sufficiently large n_k ,

$$M_{n_k} \ge \varepsilon / \bigg(\sum_{n=n_k}^{\infty} \alpha_{m,\varepsilon}(n) \bigg),$$

then there is a conformal mapping φ on \mathbf{D} such that $\varphi([0,1))$ is rectifiable and yet $\varphi(\gamma \setminus \{1\})$ is not rectifiable.

Remark. The condition in Theorem 1(i), that $\{M_n\}_{n=0}^{\infty}$ is bounded, is almost certainly not "sharp." However, the slowness of the growth that is permitted of $\{M_{n_k}\}$ in (ii) indicates that the condition in (i) is nearly sharp in certain settings. The guiding principle is that a given rate of growth of $\{(n_{k+1} - n_k)\}$ requires a commensurate rate of growth of $\{M_{n_k}\}$ in order to insure the result of Theorem 1(ii). A precise understanding of this interplay between the rates of growth of $\{(n_{k+1} - n_k)\}$ and $\{M_{n_k}\}$ seems inaccessible since it requires a thorough understanding of what $|\varphi'||_{[0,1)}$ can look like, where φ is a conformal mapping on \mathbf{D} such that $\varphi([0,1))$ is rectifiable.

Proof (of Theorem 1). (i) In this setting $M:=\sup_n M_n<\infty$. By our choice of $\{a_n\}_{n=0}^\infty$ and the assumption that γ has a nontangential approach in $\mathbf D$ to 1, we can apply [3, Theorem 4, p. 52] along with the chain rule (or we can apply [6, Lemma 2.2, p. 130]) and find a positive constant C, independent of φ and n, such that $|\varphi'(z)| \leq C \cdot \min\{|\varphi'(t)| : a_n \leq t \leq a_{n+1}\}$ whenever $z \in \gamma_n$. Therefore,

$$\begin{aligned} \operatorname{length}\left(\varphi(\gamma\backslash\{1\})\right) &= \sum_{n=0}^{\infty} \operatorname{length}\left(\varphi(\gamma_n)\right) \\ &= \sum_{n=0}^{\infty} \int_{\gamma_n} |\varphi'(z)| \, |dz| \\ &\leq CM \cdot \sum_{n=0}^{\infty} \min\{|\varphi'(t)| : a_n \leq t \leq a_{n+1}\} \cdot (a_{n+1} - a_n) \\ &\leq CM \cdot \sum_{n=0}^{\infty} \operatorname{length}\left(\varphi([a_n, a_{n+1}])\right) \\ &= CM \cdot \operatorname{length}\left(\varphi([0, 1))\right). \end{aligned}$$

So, if $\varphi([0,1))$ is rectifiable, then so is $\varphi(\gamma \setminus \{1\})$. The converse holds similarly.

(ii) By our hypothesis, there exist m and ε such that, for sufficiently large n_k ,

$$M_{n_k} \ge \varepsilon \bigg/ \bigg(\sum_{n=n_k}^{\infty} \alpha_{m,\varepsilon}(n) \bigg).$$

For w in \mathbf{D} , let T(w)=(1-w)/(1+w) $(=T^{-1})$, let $\Gamma=T(\gamma)$ and, for $n=0,1,2,\ldots$, let $\Gamma_n=T(\gamma_n)$ and let $M_n^*=2^{(n+1)}\cdot \operatorname{length}(\Gamma_n)$. By a routine conformal mapping argument, we need only produce a conformal mapping φ on $\{z:|z|< r \text{ and } \operatorname{Re}(z)>0\}$, for some r>0, such that $\varphi((0,r))$ is rectifiable and yet $\varphi(\{z\in\Gamma:0<|z|< r\})$ is not. Now since |T'(w)| is near 1/2 when w is near 1, we can make a smaller choice of $\varepsilon>0$ if necessary and get (from our hypothesis) that

$$M_{n_k}^* \ge \varepsilon \bigg/ \bigg(\sum_{n=n_k}^{\infty} \alpha_{m,\varepsilon}(n) \bigg),$$

if n_k is sufficiently large. For fixed r > 0 sufficiently small, consider the conformal mapping $\varphi_{m+1,\varepsilon}$ defined on $\{z : |z| < r \text{ and } \operatorname{Re}(z) > 0\}$. By

[3, Theorem 4, p. 52] along with the chain rule, or by [6, Lemma 2.2, p. 130], there are positive constants C_1 and C_2 and, by the boundedness of $\{(n_{k+1} - n_k)\}$, there is a positive constant C_3 such that, for any k_0 sufficiently large,

$$\begin{split} &\sum_{k=k_0}^{\infty} \operatorname{length}\left(\varphi_{m+1,\varepsilon}(\Gamma_{n_k})\right) \\ &= \sum_{k=k_0}^{\infty} \int_{\Gamma_{n_k}} |\varphi'_{m+1,\varepsilon}(z)| \, |dz| \\ &\geq \sum_{k=k_0}^{\infty} C_1 \cdot \max\{|\varphi'_{m+1,\varepsilon}(t)| : 2^{-(n_k+1)} \leq t \leq 2^{-n_k}\} \cdot M_{n_k}^* \cdot 2^{-(n_k+1)} \\ &\geq \left(\varepsilon C_1 \cdot \sum_{k=k_0}^{\infty} |\varphi'_{m+1,\varepsilon}(2^{-n_k})| 2^{-(n_k+1)}\right) \bigg/ \left(\sum_{n=n_{k_0}}^{\infty} \alpha_{m,\varepsilon}(n)\right) \\ &\geq C_2 \cdot \left(\sum_{k=k_0}^{\infty} \alpha_{m,\varepsilon}(n_k)\right) \bigg/ \left(\sum_{n=n_{k_0}}^{\infty} \alpha_{m,\varepsilon}(n)\right) \\ &\geq C_3. \end{split}$$

So, $\varphi_{m+1,\varepsilon}(\{z\in\Gamma:0<|z|< r\})$ is not rectifiable, though $\varphi_{m+1,\varepsilon}((0,r))$ is. \Box

Theorem 2. Let γ be a Jordan arc in $\mathbf{D} \cup \{1\}$ that has a tangential approach in \mathbf{D} to 1. Then there is a Jordan region Ω and a conformal mapping φ from \mathbf{D} onto Ω such that $\varphi([0,1]) = [0,1]$ and yet $\varphi(\gamma)$ is not rectifiable.

Proof. Let $\{a_n\}_{n=2}^{\infty}$ be a decreasing sequence of positive real numbers such that $a_n < (1/n^2)$. For $n = 2, 3, 4, \ldots$, let

$$A_n = \left\{ z : \frac{1}{n} - \frac{1}{n^3} \le |z - 1| \le \frac{1}{n} \right\} \setminus \{ z = x + iy : 0 < x < 1$$
 and $-a_n < y < a_n \}.$

FIGURE 1.

Claim. For an appropriate choice of $\{a_n\}_{n=2}^{\infty}$, the Jordan region

$$\Omega := \mathbf{D} \backslash \bigg(\bigcup_{n=2}^{\infty} A_n\bigg),$$

(see Figure 1) satisfies Theorem 2.

Since Ω is symmetric with respect to the real line and is a Jordan region, there is a conformal mapping ϕ from \mathbf{D} onto Ω , that extends to a homeomorphism between $\overline{\mathbf{D}}$ and $\overline{\Omega}$ such that $\phi([0,1]) = [0,1]$.

If 0 < s < 1, then $\gamma([0, s])$ is a compact subset of **D** and so we can apply Harnack's Inequality and find a constant c > 1 such that

$$\frac{1}{c} \cdot \omega(\cdot, \mathbf{D}, z) \le \omega(\cdot, \mathbf{D}, 0) \le c \cdot \omega(\cdot, \mathbf{D}, z)$$

whenever $z \in \gamma([0, s])$; if E is a bounded Dirichlet region and $z_0 \in E$, then $\omega(\cdot, E, z_0)$ denotes harmonic measure on ∂E evaluated z_0 . By elementary methods involving the Maximum Principle or by standard estimates derived from the theory of extremal length, see [2, Proposition 7.2, p. 102], we have that, for $\varepsilon > 0$,

$$\omega\left(\{w:|w|=1\text{ and }\operatorname{Re}\left(w\right)\leq0\},\Omega,\zeta\right)<\varepsilon$$

whenever $\zeta \in \Omega$ and $|\zeta - 1| \le 1/2$, provided a_2 is sufficiently small. However, since $G := \mathbf{D} \setminus \{z : |z - 1| \le 1/2\}$ is contained in Ω independent of a_2 , the Maximum Principle tells us that

$$\omega(\{w : |w| = 1 \text{ and } \operatorname{Re}(w) \le 0\}, \Omega, 0)$$

 $\ge \omega(\{w : |w| = 1 \text{ and } \operatorname{Re}(w) \le 0\}, G, 0) > 0$

independent of a_2 . Since $\omega(\cdot, \Omega, \zeta) = \omega(\phi^{-1}(\cdot), \mathbf{D}, \phi^{-1}(\zeta))$, and $\phi(0) = 0$, we can now conclude that $|1 - \phi(z)| > 1/2$ for all z in $\gamma([0, s])$, provided a_2 is sufficiently small.

For z in \mathbf{D} , let $\rho(z) = \inf \{ \rho(z,r) : 0 \le r < 1 \}$ —the pseudohyperbolic distance from z to [0,1)—and let $\varphi_z(w) = (w-z)/(1-\bar{z}w)$. Since γ has a tangential approach in \mathbf{D} to 1, $\rho(z)$ approaches 1 as z in $\gamma \setminus \{1\}$ approaches 1. Let $K_2 = \{z : |z-1| = 17/48 \text{ and } |\arg(1-z)| \le \pi/4\}$, and let $r_2 = \phi^{-1}(17/48)$. Notice that $K_2 \subseteq \Omega$ and dist $(K_2, \partial\Omega) = 1/48$ independent of a_n , $n = 2, 3, 4, \ldots$ So, by Harnack's Inequality, there is a constant d > 1 independent of a_n , $n = 2, 3, 4, \ldots$, such that

$$\frac{1}{d} \cdot \omega(\cdot, \Omega, \zeta) \leq \omega(\cdot, \Omega, \zeta') \leq d \cdot \omega(\cdot, \Omega, \zeta)$$

for any ζ and ζ' in K_2 . So there exists R, 0 < R < 1, such that $(\phi_{r_2} \circ \phi^{-1})(K_2) \subseteq \{w : |w| \leq R\}$ independent of a_n , $n = 2, 3, 4, \ldots$. Consequently, $\rho(z) \leq R$ for all z in $\phi^{-1}(K_2)$ independent of a_n , $n = 2, 3, 4, \ldots$. So there exists s, 0 < s < 1, such that $\phi^{-1}(K_2) \cap \gamma([s, 1]) = \emptyset$ independent of a_n , $n = 2, 3, 4, \ldots$. Moreover, by our earlier work, $K_2 \cap \phi(\gamma([0, s])) = \emptyset$ provided a_2 is sufficiently small. Consequently, $K_2 \cap \phi(\gamma([0, 1])) = \emptyset$, provided a_2 is sufficiently small. In the same way we can choose a_n , for $n = 3, 4, 5, \ldots$, sufficiently small so that $K_n \cap \phi(\gamma([0, 1])) = \emptyset$, where $K_n = \{z : |z - 1| = ((1/n) + (1/(n+1)) - (1/n^3))/2$ and $|\arg(1-z)| \leq \pi/4\}$, and our choice of a_n is not affected by our choice of a_k for k > n. Since $a_n < 1/n^2$, this forces the length of $\phi(\gamma)$ to be infinite. \square

Acknowledgment. The author is grateful to the referee for helpful suggestions.

REFERENCES

1. P.L. Duren, Theory of H^p spaces, Academic Press, New York, 1970.

- 2. W.H.J. Fuchs, Topics in the theory of functions of one complex variable, D. Van Nostrand Company, Princeton, New Jersey, 1967.
- **3.** G.M. Goluzin, Geometric theory of functions of a complex variable, American Mathematical Society, New York, 1969.
- 4. K. Knopp, Theory and application of infinite series, Dover Publications, New York, 1990.
- 5. A.J. Lohwater, G. Piranian and W. Rudin, The derivative of a Schlicht function, Math. Scand. 3 (1955), 103–106.
- ${\bf 6.}$ C. Pommerenke, Linear-invariante Familien analytischer Funktionen I, Math. Ann. ${\bf 155}~(1964),~108–154.$

Department of Mathematics, University of Arkansas, 301 Science-Engineering Building, Fayetteville, AR 72701 $E\text{-}mail\ address:}$ akeroyd@comp.uark.edu