FOR $b \ge 3$ THERE EXIST INFINITELY MANY BASE b k-SMITH NUMBERS

BRAD WILSON

ABSTRACT. In [5] a Smith number is defined as a composite, the sum of whose digits equals the sum of the digits of the prime factors counted with multiplicity. In [1] it was shown there are infinitely many Smith numbers by giving a constructive algorithm. In [2] this result was extended to Smith numbers in bases $b \geq 8$ and in [3] to b = 2. In this paper we modify the argument in [2] to cover all bases $b \geq 3$.

1. Introduction, notation and definitions. Let $b \geq 3$ be a fixed base. All our references to integers will be to integers base b unless otherwise noted. Let x be a natural number, and let $x = p_1 p_2 \cdots p_r$ be its factorization into not necessarily distinct primes. Let N(x) denote the number of digits of x base b, S(x) the sum of the base b digits of x and $S_p(x)$ the sum of the base b digits of the prime factors of x counted with multiplicity, i.e., $S_p(x) = \sum_{i=1}^r S(p_i)$. Note that

(1)
$$S_p(xy) = S_p(x) + S_p(y).$$

Let k be a natural number.

Definition. A base b k-Smith number is a composite x so that

$$S_p(x) = kS(x).$$

2. Preliminary results. We now cite a number of useful lemmas from [2].

Lemma 1. If m > 1 there exists a t so that $S_p(t) = m$.

In view of (1) this lemma says that, given natural numbers x and y so that $S_p(x) < y - 1$, we can find t so that $S_p(xt) = y$. In particular, we

Copyright ©1999 Rocky Mountain Mathematics Consortium

Received by the editors on February 5, 1997, and in revised form on January 9, 1998.

can take a finite collection of such t so that we can manipulate $S_p(xt)$ to whatever congruence class we wish modulo $S_p(b)$:

Corollary. There exists a finite set T of integers such that $U = \{S_p(t) : t \in T\}$ is $\{2, 3, \ldots, S_p(b) + 1\}$.

The final result we need from [2] is the following lemma:

Lemma 2. If n, t, v are natural numbers so that $t \leq b^n - 1$, then

$$S(t(b^{n}-1)b^{v}) = S(b^{n}-1) = (b-1)n.$$

This says that we can multiply b^n-1 by a variety of numbers without affecting the digital sum. In view of these lemmas, the basic strategy to show the existence of infinitely many base b k-Smith numbers is to start with a number of the form b^n-1 satisfying $S_p(b^n-1) < S(b^n-1)-1$. Lemma 1 and its corollary say, for n large enough so that $b^n-1 \ge t$ for all $t \in T$, we can find a $t \in T$ so that

$$S_p(t(b^n - 1)) \equiv kS(t(b^n - 1)) \pmod{S_p(b)}.$$

This means

$$S_n(t(b^n - 1)) + vS_n(b) = kS(t(b^n - 1))$$

for some nonnegative integer v, and so Lemma 2 and (1) give

$$S_p(t(b^n - 1)b^v) = kS(t(b^n - 1)b^v).$$

Thus, the crux of constructing infinitely many base b k-Smith numbers is showing that there are infinitely many n so that $S_p(b^n-1) < S(b^n-1) - 1$.

3. Main theorem.

Main theorem. There exist infinitely many base b k-Smith numbers.

Proof. By the previous section it suffices to show there are infinitely many n satisfying $S_p(b^n-1) < S(b^n-1) - 1$.

It is easy to show that $f(x) = (b-1)\log_b(x+((b^2-1)/b^2)) - x$ is positive for all $x \in [1, b-2]$. Let ε be the smaller of 1 and the minimum of f(x) on [1, b-2].

For p a prime, $p \nmid b$, let ind (p^m) denote the smallest k so that $p^m | (b^k - 1)$. It is well-known [6] that $p^m | (b^l - 1)$ if and only if ind $(p^m) | l$. Let $v_n(b-1)$ be the largest power of p dividing b-1, and let

$$S = \{ \text{ind}(p) : p < b^2, p \nmid (b-1), p \nmid b \}$$

and

$$T = \{ \operatorname{ind} (p^{v_p(b-1)+1}) : p < b, p | (b-1) \}.$$

Since $S \cup T \subset \mathbf{N}$ is finite and $1 \notin S \cup T$ we know

$$U = \mathbf{N} - \bigcup_{x \in S \cup T} x \mathbf{N}$$

has infinitely many elements. For $u \in U$ we note $p \nmid ((b^u-1)/(b-1))$ for $p < b^2$. Thus if $u \in U - \{1\}$ there is a prime q so that $q \mid ((b^u-1)/(b-1))$, $x \nmid \text{ind } (q)$ and $x \nmid q$ for all $x \in S \cup T$.

For q as in the last paragraph, there is no single or double digit prime divisor of $(b^{\operatorname{ind}(q)q^k} - 1/b - 1)$ for any $k \geq 0$. We now claim that $n = \operatorname{ind}(q)q^k$ works for any $k > (b/\varepsilon)$.

To see this, factor $b^n - 1 = (b-1)p_1p_2\cdots p_r$. Let $\beta_i = N(p_i) - 1$ and $\beta = \sum_{i=1}^r \beta_i$. Then

(2)
$$S_p(b^n - 1) = S_p(b - 1) + \sum_{i=1}^r S(p_i) \le (b - 1) + \sum_{i=1}^r S(p_i).$$

Since $(b-1) \nmid S(p_i)$ we see $S(p_i) \leq (b-1)N(p_i) - 1 = (b-1)\beta_i + (b-2)$. Let

$$A_i = \{p_i : S(p_i) = (b-1)\beta_i + j\}$$

for j = 1, 2, ..., b - 2 and

$$A_0 = \{ p_i : S(p_i) < (b-1)\beta_i \}.$$

Let n_j be the number of elements in A_j for $j=0,1,\ldots,b-2$. Then (2) becomes

(3)
$$S_p(b^n - 1) \le (b - 1) + (b - 1)\beta + \sum_{j=1}^{b-2} jn_j - n_0.$$

By our choice of n all p_i satisfy $p_i > b^2$, i.e., we were careful in choosing n to make sure the ind $(p) \nmid n$ for $p < b^2$, $p \nmid (b-1)$ and ind $(p^{v_p(b-1)+1}) \nmid n$ for p|(b-1)). For $S(p_i) = (b-1)\beta_i + c_i$ we have

$$p_i \ge (c_i + 1)b^{\beta_i} - 1 \ge \left(c_i + \frac{b^2 - 1}{b^2}\right)b^{\beta_i}$$

if $c_i > 0$ and

$$p_i > b^{\beta_i}$$

if $c_i < 0$. Then

(4)
$$b^n - 1 = (b-1)p_1p_2\cdots p_r \ge (b-1)\cdot \prod_{j=1}^{b-2} \left(j + \frac{b^2 - 1}{b^2}\right)^{n_j} b^{\beta}.$$

Writing $b^n - 1$ as ab^{n-1} for $1 \le a < b$ and taking logarithms in (4) gives

(5)
$$\log_b a + N(b^n - 1) - 1 \ge \log_b (b - 1) + \beta + \sum_{j=1}^{b-2} n_j \log_b \left(j + \frac{b^2 - 1}{b^2} \right).$$

Multiplying both sides by b-1 yields

$$(b-1)N(b^{n}-1) \ge (b-1)\log_{b}(b-1) + (b-1)\beta + (b-1)(1-\log_{b}a) + (b-1)\sum_{j=1}^{b-2} n_{j}\log_{b}\left(j + \frac{b^{2}-1}{b^{2}}\right).$$

Since $(b-1)\log_b(j+(b^2-1)/b^2)=f(j)+j\geq j+\varepsilon$ we get

(6)
$$(b-1)N(b^n-1) > (b-1)\log_b(b-1) + (b-1)\beta + \sum_{j=1}^{b-2}((j+\varepsilon)n_j).$$

If S(q) > (b-1)(N(q)-1), then there exists $j \ge 1$ so that $n_j \ge k$. Since $k > b/\varepsilon$ (6) becomes

(7)
$$(b-1)N(b^n-1) > (b-1)\log_b(b-1) + (b-1)\beta + \sum_{j=1}^{b-2} jn_j + b.$$

Taken together, (3) and (7) give

$$(b-1)N(b^n-1)-1>S_p(b^n-1).$$

If S(q) < (b-1)(N(q)-1), then $n_0 \ge k \ge b$ so (3) and (6) again give

$$(b-1)N(b^n-1)-1>S_n(b^n-1)$$

so there exist infinitely many n so that $S(b^n - 1) - 1 > S_p(b^n - 1)$, which was what was to be shown. \square

REFERENCES

- 1. W. McDaniel, The existence of infinitely many k-Smith numbers, Fibonacci Quart. 25 (1987), 76-80.
- 2. ——, Difference of the digital sums of an integer base b and its prime factors, J. Number Theory 31 (1989), 91–98.
- 3. ——, Constancy of the number of 1's in a binary integer under factorization into prime factors, Math. and Comp. Ed. 25 (1991), 285–287.
- 4. S. Oltikar and K. Wayland, Construction of Smith numbers, Math. Mag. 56 (1983), 36-37.
 - 5. A. Wilansky, Smith numbers, Two Year Coll. Math. J. 13 (1982), 21.
 - $\textbf{6.} \hspace{0.1cm} \textbf{S.} \hspace{0.1cm} \textbf{Yates}, \hspace{0.1cm} \textbf{The} \hspace{0.1cm} \textbf{mystique} \hspace{0.1cm} \textbf{of} \hspace{0.1cm} \textbf{repunits}, \hspace{0.1cm} \textbf{Math.} \hspace{0.1cm} \textbf{Mag.} \hspace{0.1cm} \textbf{51} \hspace{0.1cm} (1978), \hspace{0.1cm} 22-28.$

2030 STATE STREET, APT. 19, SANTA BARBARA, CA 93105 $E\text{-}mail\ address:}$ bwilson@warren-selborg.com