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INVERSE MAP CHARACTERIZATION
OF ASYMPTOTIC STABILITY ON THE LINE

HASSAN SEDAGHAT

ABSTRACT. By comparing a continuous function f with
its inverse £ ! in a neighborhood of an isolated fixed point z, a
necessary and sufficient condition for the asymptotic stability
of Z is obtained.

1. Introduction. The notion of asymptotic stability of a fixed
point Z of a continuous mapping of the real line is indeed very familiar.
However, until recently, conditions that are both necessary and suffi-
cient for the asymptotic stability of Z were not known; such conditions
make it possible to resolve issues about dynamic systems on the line
that cannot be settled using less complete characterizations, see, e.g.,
[3] and Section 3 below.

In this paper we prove a necessary and sufficient condition for asymp-
totic stability in which a continuous mapping f is compared to its in-
verse f~! in a cut-and-paste sort of way. More specifically, we prove
in Theorem 1 below that Z is asymptotically stable if and only if the
inverse image of the part of f to the right of Z lies in the region of
the plane that is above both the identity line and the part of f to the
left of Z. The resulting geometric picture that emerges is appealing
both for its generality and its simplicity. Also, if the aforementioned
relationship between f and its inverse holds globally, then our stability
results will also be global; see Example 1 below. In Theorem 2 several
conditions, including the recent characterization in [4] based on f?, are
shown to be equivalent to that in Theorem 1. In the last section of
the paper, we apply these characterization theorems to some specific
mappings that defy analysis by the more familiar means.

2. Characterization theorems.
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General definitions and hypotheses. In this paper I denotes a
nontrivial interval of real numbers, i.e., containing more than one point
though not necessarily bounded or closed, and f : I — I is a continuous
mapping of I. The mapping f defines a dynamical system on I in the
sense that the successive iterates f2 = fo f, f3 = f o f?, and so on,
are all defined on I and when applied to a point =y € I, they generate
the orbit {f™(xo)} which represents the (discrete) time evolution of the
trajectory of x( as if it were moving in I. For each positive integer p,
a solution Z of the equation fP(z) = z is a period-p point of f and the
finite orbit {z, f(Z),..., fP~1(z)} is called a p-cycle. If p = 1, then Z
is a fixed point of f; such a point is said to be asymptotically stable
if there is some neighborhood J of Z in I such that fJ C J and the
decreasing sequence of sets

JDfIDfID---

has limit NS, f*J = {Z} (here J may be assumed to be a compact
interval).

It is clear from the preceding definitions that an asymptotically stable
fixed point Z is not a cluster point of a sequence of periodic points; in
particular, T is isolated, i.e., it is not a cluster point of a sequence
of other fixed points. Before stating the main stability theorem, we
present a few preliminary results, beginning with the following useful
fact quoted from [4, p. 48].

Lemma 1. If K is a nontrivial compact interval such that fK = K,
then K contains either at least two fized points or a fized point and a
period-2 point.

Definitions 1. (1) Let Z be a fixed point of f and, for each subset
A C I, define the right and left parts of A as

A, = AN[ZE,0), A =AN(-00,7].

(2) We denote by f, and f; the restrictions of f to I, and Ij,
respectively. Since f.I, C I, the inverse map f, ! may be generally
defined on I if we allow the empty set as a possible value of f,"!. With
this convention, we conclude that f'(z) C I. for all z € I, with a
similar conclusion holding for f; and its inverse.
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Lemma 2. Leta; € I}, b; € f, 1 (a;), i = 1,2. If f(ay) > by and
f(az) < by, then there is a c between by and by such that f%(c) = c,
i.e., the graphs of f; and f! intersect at ¢ and {c, f.(c)} is a 2-cycle.

Proof. Note that f;o f.(b1) = fi(a1) > by while fjo f,.(b2) = fi(az) <
ba. Since f; o f,. is continuous, there is a ¢ between b; and b2 such that
f?(c) = fio fr(c) = c. Note further that by, bs,c € I,., while f,.(c) € I,.
So (fr(c),c) € f7EN fi. o

Definition 2. If Z is an isolated fixed point, then a bounded interval
U C I is a proper I-neighborhood of z if

(i) U is open in I and contains &;
(ii) z is the only fixed point of f that is contained in the closure U;
(iii) If @ is an endpoint of I, then a € U if and only if a = Z.

Note in particular that both U, and U; contain Z and are nonempty;
also, every interval neighborhood of Z contains a proper I-neighborhood.

Definition 3. Let  be an isolated fixed point of f, and let U be a
proper I-neighborhood of Z.

1) For each z € U define the lower envelope function of f;~! on U as

#(z) = inf f ' (z) = inf{u € U, : f,(uv) = z}.
Note that ¢(z) > z = inf U, for all z € U with equality holding if and
only if x = Z. By usual convention, ¢(z) = oo if £ !(z) is empty.

2) For each z € U define the upper envelope function of f; as

p(x) = sup fi(u).

c<u<ZT

Note that p is bounded on U; (because U is proper) and p(z) > f(Z) =
Z for all z € U;.

Lemma 3. Let U be a proper I-neighborhood of an isolated fized
point T of f.

(a) p is a continuous and nonincreasing function on U; with u(x) >
f(z) for all z € U;.
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(b) If ¢ is real valued on U, then ¢ is a decreasing function on Uj
and an increasing function on U,..

(c) ¢(x) > f(z) for all x € Uy, x # Z, if and only if p(x) > p(x) for
dlzelU, z#z.

Proof. (a) Assume, for nontriviality, that U, contains points other
than Z. It is clear from the definition that g is nonincreasing and
dominates f on U;. To prove p is continuous, let a € U;, a # T and
consider two cases.

Case 1. p(a) > f(a), so there is a least b € (a,Z] such that
p(a) = f(b). Choose § > 0such thata+d <b, V=(a—6,a+0)CU
and f(z) < p(a) for all x € V. Now let € V and note that if z > a
then

while if z < a then

pu(x) = sup f(u) = p(a).

Therefore, p is constant, hence continuous, on V.

Case 2. p(a) = f(a). If p is not continuous at a, let =, — a as
n — oo and first assume, by taking a subsequence if necessary, that
there is an € > 0 such that u(z,) — p(a) < —e for all n; but then

f(zn) = f(a) < plzn) — pla) < —€

for every n, contradicting the continuity of f. So assume, by taking
a subsequence if necessary, that p(z,) > u(a) + € for all n. Since u
is nonincreasing, it follows that z,, < a for all n. For each n define
Yn € [Zn,Z] by the equality f(y,) = p(z,), and note that

f(yn) > pla) > f(z)

for ¢ € [a,z] and all n. Therefore, z, < y, < a for all n, implying
that ¥, — a as n — oo; however, by the definition of y,, f(y,) is not
converging to p(a) = f(a) which once again contradicts the continuity
of f. This completes the proof of assertion (a).
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To prove (b), note that since the sets f, () are closed, ¢(z) € f, 1(z)
for all z € U. Therefore, for each = € U, ¢(z) is the smallest number
in I,. with the property that f,.(¢(x)) = z. Since f, is continuous and
f-(Z) = z, the minimality of ¢(z) implies that, for z € Uy,

(1) frly) 2z for y € [z, 4(x)]

with the inequality reversed for z € U,.. Now, if (b) is false and there
are u,v € U, u < v, such that ¢(u) < ¢(v), then ¢(u) € [Z, #(v)] with
fr(¢(w)) = u < v which contradicts (1). The argument for u,v € U, is
similar.

With regard to (c), necessity being clear from the definition of pu,
we proceed to prove the sufficiency; i.e., if there is u € U; such that
é(u) < p(u), then for some v € Uy, ¢(v) < f(v). Choose v € [u,Z] so
that p(u) = f(v). Then by Part (b) and our assumption on u,

$(v) < ¢(u) < p(u) = f(v)

which is the desired inequality for v. O

Theorem 1. A fixed point T of f is asymptotically stable if and only
if there is a proper I-neighborhood U of T such that

{¢(m)>f(w)>w frel,z#z

@ f(z) <z if xeU,, z+#Z.

Proof. Sufficiency. For convenience, we denote U; — {Z} by U, and
similarly for U,.. First assume that f!(z) is empty for all z € U?, or
that U is empty, so f,.(z) > z for all z € U,.. Now if zy € U? then, by
(2), z < fr(zo) < xo so we conclude by induction that f™(zq) = f(xo)
decreases to Z from the right. If zy € U then either *(zo) > 7 for
some k > 1 or f™(z9) < Z for all n > 1. In the former case, assuming
without loss of generality that f*(zo) € U?, the sequence {f*T"(zo)}
decreases as before to Z. In the second case, condition (2) shows that

zo < [ Nwo) < fM(xo) <

for all n so that the terms f”(z) increase to Z from the left.
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Next assume that f,!(u) is nonempty for some u € U, in which
case f, !(z) is nonempty for all € [u, Z] by Lemma 3(b). So we may
choose a € Ul0 sufficiently close to Z such that f!(a) is nonempty,
p(a) € U, and thus J = [a, p(a)] C U. We now show that fJ C J. If
z € [a, Z], then by (2)

a<z < f(z) < p() < pa)

so that
(3) fla,z] C (a, p(a)] C J.

Next suppose that « € [z, u(a)]. If f(z) > Z, then by (2) f(z) €
[.’fl, z) C [Z,u(a)], while if f(z) < Z, then (2) and Lemma 3 (c) imply
that

p(f(2)) < ¢(f(z)) = inf f;(f,(2)) < z < p(a)

which because of the nonincreasing nature of y implies that f(z) > a.
Thus

(4) flz,1(a)] C (a, pu(a)] C J.

Inequalities (3) and (4) imply that fJ C J. Now successive applications
of f to J yield a decreasing sequence J O fJ O f2J O ... whose
limit K = N22,f"J contains Z and is thus nonempty. Since f"J is a
compact interval for every n, it follows that K is a compact interval
and fK = K. Given that Z is the only fixed point of fin K C J C U,
Lemma 1 implies that K = {Z}. Hence, Z is asymptotically stable.

Necessity. Suppose that every proper I-neighborhood U of Z contains
a point zy such that (2) fails at zy;. Thus either (i) zy € U? and
fr(zy) > 2y or (ii) zy € UP and ¢(zy) < fi(zv) or fi(zy) < zy (here
¢ defined with respect to some U works for all smaller neighborhoods
contained in U). In case (i), the uniqueness of Z in U implies that
fr(z) > @ for all x € (F,zy). But then for every zy € (Z,zy), no
matter how close to Z, the increasing sequence

Ty < f(Io) <-e < f"“(:vo), if fk(Io) <zy forl1<k<n

eventually exceeds zy; it follows that Z is not stable. In case (ii) the
inequality f;(zy) < zy implies that Z is not asymptotically stable in a
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manner similar to that just described for (i). It remains to show that the
other inequality in (ii) also implies a lack of asymptotic stability. The
first inequality in (ii) applied over a sequence {U,} of neighborhoods
of T whose diameters approach zero, implies that there is a sequence
u, — T from the left such that ¢(u,) < fi(u,). Since, for each n,
¢(un) > T and also fi(un) — T as n — oo, we conclude that ¢(u,) — Z.

Since, for each z € I, f, (z)NI} is not empty, two possible cases arise.

Case 1. There is a § > 0 sufficiently small that sup[f,~!(z) N (Z,Z +
8)] < fi(z) for all x € (z — 6,Z); i.e., the graph of f! near and to the
left of Z lies below the graph of f;. Let z9 € (Z,Z + 0) and note that
fr(zo) < . If fr(z0) > T — &, then, since zo € f, *(f-(z0)), we see
that f2(zo) = fi(fr-(z0)) > zo. If f%(z0) < Z + J, then the preceding
argument may be repeated; inductively, the sequence

zo < f*(zo) < f*(wo) < -

is obtained which moves away from Z until it exceeds T + §, no matter
how close zg is to Z. Therefore, Z is not stable. Now let zg € (Z — 6, Z)
and note that f;(zo) > Z. Repeating the above argument, the sequence
{f***1(z0)} is seen to increase away from Z, and once again Z cannot
be asymptotically stable.

Case 2. There is a sequence v,, — T, v, < T, such that
sup[f (vp) N[z, 2+ 1/(n+1)]] > fi(vn), n=1,2,3,...,

i.e., for each n, there is w, € f'(v,) N [z,Z + 1/(n + 1)] such that
wy, > fi(v,) and w, — T as n — oo. The conditions of Lemma 2 are
met with a; = v, b1 = wy, a2 = u, and by = @(uy,). It follows that
there is a ¢, between w, and ¢(u,) such that f2(c,) = cp; i.e., there
is a sequence of period-2 points ¢, — T as n — oo and, therefore, T is
again not asymptotically stable. This concludes the proof. ]

Theorem 2. Let T be a fixed point of f. The following statements
are equivalent.

(a) T is asymptotically stable;
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(b) there is a proper I-neighborhood U of T on which the following
inequality holds:

(5) [f2(z) —z](zx—2) <0, z#z =xzeUCI

(c) there is a proper I-neighborhood U of T on which (2) holds;
(d) there is a proper I-neighborhood U of T such that

(6) [f(z)—zl(x—Z) <0, x#Z zecUCI

and over U; — {z}, the graph of f; ' lies above the graph of u;

(e) inequality (6) holds on U, and if (z;(¢t),wi(t)) and (y-(s),z.(s))
are parametrizations of f; and f71, respectively, then

z(t) = yr(s) = z-(s5) > wi(t).
(f) There is a proper I-neighborhood U of T such that

(1) (o(x) — f(2)(¢(z) — 2)(f(2) —z)(x —7) <0, zeU-{z}

Proof. We show that (a) = (b) = (c) = (a) and (c) = (d) = (e)
= (f) = (c). First, if (a) is true, then there is a sufficiently small
I-neighborhood U of # on which the equality f2(x) = z holds only
at T and every point in U is attracted to Z. Hence, the continuous
function f2(z) — z either does not change its sign over U or, if it
does, then the sign change can occur only at z. If f%(z) > =z for
all z € U? and zg € U?, then f%(zg) > xo; if f%(zo) € U, also, then
another application of f? leads further away from z and the process
continues until the trajectory {f2"(zo)} exits U,, no matter how close
xo is to Z. Thus Z cannot be stable, contradicting (a). Similarly, (a)
is contradicted if f?(z) < z for all z € U?. Now (5) follows and (b)
is established. Next, suppose that (b) is true. Then (6) must hold,
since otherwise there is either a fixed point other than z in U at which
(b) would be false or else f(z) < =, respectively, f(z) > =z, for all
x < T, respectively, x > Z, in U, in which case choosing z sufficiently
close to Z so that f(zo) € U implies that f2(zg) < zg, respectively,
f?(xo) > o, also, again contradicting (b). To establish (c), it remains
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to show that ¢(x) > fi(x) for € U;. This is clear if ¢(z) > a > 0
for all z € Ul0 ; otherwise, arguing as in the last two cases in the proof
of Theorem 1, we conclude that there is either a sequence of period-2
points converging to Z from the left or else there is 2’ € U close to Z
such that zo = f(2') € U, and f?(z¢) € U, with f?(z¢) > zo. Since in
either case (b) is contradicted, we must assume that (c) holds. Finally,
in Theorem 1 it was established that (c) implies (a).

Next, note that (d) follows easily from (c) because conditions (2)
imply (6) and, by Lemma 3 (c), ¢, hence also the graph of f !,
dominates f on U if and only if ¢ dominates p. In light of Lemma 3
(c), (e) is just a rephrasing of (d), hence equivalent to it. Statement (f)
is an immediate consequence of (e), or equivalently (d), which implies
that ¢(z) > f(z) for all z € U — {z} (for = > Z, the graph of f! lies
above the identity line if and only if f, lies below that line). Finally,
assume (f) holds. For x < &, ¢(z) > T > x so if ¢(u) < f(u) for some
u < T, then f(u) > Z > u and (7) fails. Hence, ¢(z) > f(z) for all z,
and so by (7) f(z) > . For « > Z, the product (¢(z) — f(z))(¢(z) — )
is always positive, since both f and the identity line always lie on the
same side of f!. Therefore, by (7), f(z) — z < 0 and condition (2) is
established. o

Remarks. (1) A general sufficient condition for Z to be asymptotically
stable is that

(8) lf(x) -z <|z—Z, z#T xzeUCI

which generalizes the well-known linearization condition |f'(Z)| <
1. From Theorem 2 (d) we see explicitly how to extend (8) to
obtain a necessary and sufficient condition for asymptotic stability.
Geometrically, condition (8) requires that the graph of f be bounded
by the lines y = « and y = 2z — x; therefore, for z < z, the graph
of £ lies above the graph of the line y = 2% — = while the graph of
f1 lies below the same line. Certainly, this implies statement (d) in
Theorem 2, in which the continuous nonincreasing function p replaces
theray y =2z —z, ¢z < .

(2) A different proof of the equivalence of (a) and (b) in Theorem 2 is
given in [4, p. 47], which this author discovered after already proving
Theorem 1. Not every condition in Theorem 2 is applicable with equal
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ease to a given problem; for instance, in Example 3 below, Theorem 1
itself, as stated, is most easily applicable. Also, if we think of condition
(2) as a “right” condition because of f1, then there is also a “left”
analog of (2) which compares ffl with f. and can be useful when the
left part f; is simpler than the right part f,. for the purpose of inversion.
These left versions are obtained from the right versions here by making
a few minor modifications and will not be discussed here.

3. Further results and examples.

Definition 4. Let Z be an isolated fixed point of f. If the left limit
lim, ,z- ¢(z) > T, then f is ¢-trivial at Z. Here oo is a permissible
value for ¢.

Note that f is ¢-trivial if and only if f(x) > Z for all x near and
to the right of Z, and so f is not ¢-trivial if f(z) < Z for all = near
and to the right of Z. Thus, for a differentiable map f, the condition
f(Z) > 0implies that f is ¢-trivial while f'(Z) < 0 implies that f is not
¢-trivial. If f/(Z) = 0, then f is ¢-trivial if Z is a local minimum and
f is not ¢-trivial if Z is a local maximum. This line of reasoning gives
obvious sufficient conditions for ¢-triviality or nontriviality in terms of
the higher derivatives, if the latter are defined at . The next result
gives a complete description of trajectory behavior near a fixed point
at which f is ¢-trivial.

Corollary 1. Let f be ¢-trivial at an isolated fixed point T. Then
T 1is asymptotically stable if and only if (6) holds in some proper I-
neighborhood of Z. If (6) does not hold near T, then T is either strongly
unstable or semi-stable (attracting from one side, repelling from the
other). Also, every trajectory converges to T or diverges from it, as the
case may be, monotonically after possibly a finite number of terms.

Proof. Since f is ¢-trivial, we may assume without loss of generality
that f,.(xz) > Z for all z in some sufficiently small interval to the right
of Z. So if (6) holds, then the trajectories of all points near and to the
right of Z decrease to . For points to the left of Z, either fi(z) < Z in
which case trajectories near and to the left increase to Z, or else there
is a least k such that f¥(zp) > Z for some xy < Z. In the latter case,
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f™(zo) decreases to & for n > k. The proof of the rest of the corollary
is routine. ]

Corollary 2. Assume that f is not ¢-trivial at an isolated fixed point
Z. Then precisely one of the following is true.

(i) Z is asymptotically stable;
(i) Z s unstable;

(iii) there is a sequence of period-2 points converging to T.

Proof. If the graph of f! is not entirely above or entirely below the
graph of f; near and to the left of Z, then f~! must intersect f; in every
neighborhood of z. o

The next result was proved in [3] using (5), a proof of which was
already in print [4]; we now give a proof based on the results of this
paper. The result is false for continuous mappings of the Euclidean
plane, see [3]. A fixed point Z is defined to be globally attracting,
relative to I, if f™(z¢) — T as n — oo for all zp € I.

Corollary 3. If T is globally attracting, then T is stable.

Proof. Since T is globally attracting, (6) holds on I. If Z is
also unstable, then f is not ¢-trivial and conditions (i) and (iii) in
Corollary 2 cannot be satisfied. Indeed, f, ' N f; = {Z} on I due to
global attractivity, so the strong instability requirement in Corollary 2
forces the graph of f~! to stay below that of f; on I, which is not
possible. u]

In conclusion, we discuss fixed point stability for some specific func-
tions in order to illustrate the applicability and the computational fea-
sibility of the results of the previous section.

Example 1. In applied models, linearization is the tool often used
in establishing the (local) asymptotic stability of a fixed point. Yet,
in many applications, one encounters parameter ranges that include
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the possibility f/(Z) = 1 or even that f'(Z) does not exist. Further,
even when linearization is applicable, it may be insufficient because it
is often desirable to obtain information on the extent of attractivity
of the fixed point, namely, the size of the “basin of attraction,” about
which no information is supplied by linearization. The results of this
paper can be fruitfully applied in such cases to analyze the problem at
hand. As an example of such a problem, consider the function

(9) fz) = zet=0/0x0) g >0,

which comes from the analysis of a genotype selection model proposed
by Robert May, see [1, p. 81]. Let us show, using the theorems of
the preceding section, that the unique positive fixed point £ = 1 is
asymptotically stable globally with respect to the domain [0, o), i.e.,
every point of [0,00) is attracted to 1, even though f/'(1) = —1.

To see this, we reparametrize f by setting t = —(1 — z)/(1 + z) so
that in (9) ¢ = 0 gives & = 1, while ¢ € [—1,0) corresponds to z € [0,1)
and t € (0,1) corresponds to z € (0,00). The following representations
are obtained:

1+t L+t
fl xl() 1_ta yl() l—te ) <t<O0
and
1 1
() = e ()= 1, 0<s<L

Direct calculation now shows that condition (e) of Theorem 2 is satisfied
for all t € [-1,0), s € (0,1). Therefore, z = 1 is asymptotically stable,
globally with respect to the domain [0,00). We note that Theorem 2
(b) is applicable in this example with a comparable amount of effort.

Remark. When only local stability is of concern, because f is
sufficiently smooth in Example 1, the specialized derivative condition
involving (f2)" in [2] may alternately be applied. According to this
condition, if

(10) (f)" (@) = —2f"(z) = 3[f" (@) <0,
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then T is locally asymptotically stable, while the reverse inequality
implies instability. For Example 1, direct calculation shows that
(f3)"(1) = —2. If, however, (f?)”(z) = 0 then condition (10) is
inconclusive with regard to stability or instability. This can happen for
relatively commonplace functions, as seen in Example 2 below. It may
be noted in passing that (f2)"(z) = 25 f(Z) whenever f'(Z) = —1, soin
this case the negativity of the particular value Sf(Z) of the Schwarzian
is equivalent to (f2)"”(Z) < 0. For a discussion of the Schwarzian
derivative Sf and its role in stability theory, see the original paper [5]
or standard texts on dynamical systems.

Example 2. Functions of the type

(11) f(z) = az™® — 2, m a fixed positive integer,
a€(—o00,0), a#0

have a fixed point at the origin where derivatives of order 1 or higher
may fail to exist. The only values of m at which condition (10) applies
are m = 6,9, since for all other values of m, (f2)"(0) is either zero or
undefined, e.g., for m = 12, we obtain quartic polynomials in (11) for
which (f2)"(0) = 0. However, it is not difficult to show using Theorem
2 (b) or 2 (e) that the origin is asymptotically stable for all m > 4 and
a > 0; for a < 0, the origin is asymptotically stable for all even m > 4
and it is unstable for odd m. The natural parametrizations

(s) =as™ — s3
fr s> 0,
z.(s) = 83,
and some straightforward calculations show that, for s,¢ satisfying
t3 = as™ — s® (such pairs exist for all a if m > 4), we obtain

x.(s) > ;(t) or the reverse of this inequality depending on the above
mentioned values of a and m.

Example 3. The purpose of this example (and the next) is to
illustrate the applicability of our results to certain functions that are
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rather ill-behaved at the fixed point. Consider the function

—z[l + asin(m/z)] z <0,

1 2
(1—a)(z®+z) z >0, <a<v2

) e -{

which is continuous everywhere and has a unique fixed point at the
origin, although f is not differentiable at the origin. To determine the
stability character of the origin as a ranges over the values listed in
(12), note that

Since, for < 0, we have —z[1 4 asin(r/z)] < —z(1 + a), Theorem 1
implies that, for all a satisfying the inequality

11 iz
13 —o 4oy /1 -

o > —z(l+a),

the origin is asymptotically stable. Clearly, if the derivative of f, ! = ¢
is greater in magnitude than —(1 + a), then (13) holds for all z < 0
of small enough magnitude. Since ¢'(0) = —1/(a — 1), we require
—1/(a = 1) > —(1 + a) for the asymptotic stability of 0. Solving the
last inequality gives 1 < a < v/2.

Example 4. In this final example, given constants ¢ > 0 and b > 1,
a continuous piecewise linear mapping f is defined as follows.

fi consists of line segments joining the point P; to Q1 to Ps to @3,
etc., where

—a ab —a
Py 1 = 1= =——=,0).
2k 1 <(4b2)k1’(4b2)k1>’ Q2k-1 <2(4b2)k1’ >
Note that, for each k, Pyt_1 lies on the line y = —bz. Next, f !

consists of the line segments connecting the points P, to Q2 to P, to
Q4, etc., where

—a a ab
For = <2<4b2>k1’ 2b<4b2>k1>’ Qok = (“’ <4b2>k>‘
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Note that Py is on the line y = —z/b and f, can be easily obtained
from f! so as to build f. Also, both ¢ and u are easy to construct in
this example.

By its construction, f has a unique fixed point at the origin and the
graph of f, ! lies above the graph of f; so the origin is asymptotically
stable by Theorem 2 (d). This is true no matter how large the value of
b is and illustrates the point made in Remark (1) following Theorem 2.
It seems difficult to prove the stability in this case using any other
method.

Acknowledgment. The author thanks the anonymous referee for
suggesting Example 4.
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