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DUAL KRULL DIMENSION AND DUALITY

TOMA ALBU AND PATRICK F. SMITH

Let R be a ring with Krull dimension. Then R has dual Krull
dimension. Is there a relationship between the Krull dimension and the
dual Krull dimension of R? We shall show that in certain situations
the dual Krull dimension is bounded above by the Krull dimension.

All rings are associative with nonzero identity and all modules are
unital right modules. The Hopkins-Levitzki theorem asserts that every
right Artinian ring is right Noetherian. In other words, every ring with
Krull dimension 0 has dual Krull dimension 0. More generally, if R is a
right Artinian ring and M an R-module with Krull dimension, then M
is Noetherian, i.e., if R has Krull dimension 0. Then any non-zero R-
module with Krull dimension has dual Krull dimension 0. It is natural
to wonder if this situation is typical, and we are led to ask the following
questions.

Question 1. If R is a ring with Krull dimension, is the dual Krull
dimension of R bounded above by the Krull dimension?

Question 2. If R is a ring with Krull dimension and M is an
R-module with Krull dimension, is the dual Krull dimension of M
bounded above by the Krull dimension of R?

As we shall see, these questions are equivalent, i.e., the dual Krull
dimension is bounded above by the Krull dimension for any ring with
Krull dimension if and only if the dual Krull dimension of M is bounded
above by the Krull dimension of R for any ring R with Krull dimension
and any R-module M with Krull dimension.

Although Questions 1 and 2 are left unanswered in this paper, we do
have some information. If R is one of the following types of rings:
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(i) a commutative Noetherian ring, or

(ii) a commutative ring with Krull dimension 1, or
(iii) a maximal valuation domain with Krull dimension, or
(iv) a right Noetherian right V-ring,

and if M is an R-module with Krull dimension, then the dual Krull
dimension of M is less than or equal to the Krull dimension of R. In
particular, the dual Krull dimension of R is less than or equal to the
Krull dimension of R. This latter fact is also true for rings R of the
following types:

(v) a commutative domain with Krull dimension 2, or

(vi) a valuation domain.

1. Krull dimension and dual Krull dimension. Let R be a ring,
and let M be a (right) R-module. Suppose that M has Krull dimension
(for the definition of (Gabriel-Rentschler) Krull dimension see, for
example, [2] or [8] or [11]). Lemonnier [9, Corollaire 6] showed that in
this case M has dual Krull dimension (for the definition, see [9] or [2]).
We shall denote the Krull dimension and the dual Krull dimension of M
by kr(M) and k% (M), respectively. In case M = Rg, we write kg(R)
and k%(R) for the Krull dimension and the dual Krull dimension of
the right R-module R, if they exist. If there is no ambiguity, we write
k(M) for kr(M), etc.

As we have already remarked, the Hopkins-Levitzki theorem can be
restated thus: if R is a ring with k(R) = 0, i.e., R is right Artinian,
then k°(R) = 0, i.e., R is right Noetherian, and, more generally,
kK°(M) < 0 for every R-module M with Krull dimension. For an
account of the Hopkins-Levitzki theorem and various generalizations of
it, see [1] and [2]. Gordon and Robson [8, Theorem 9.8] prove that there
exist commutative Noetherian domains of arbitrary Krull dimension.
In other words, for any ordinal o > 0, there exists a commutative
domain R such that k(R) = o and k°(R) = 0. In all these cases,
k°(R) < k(R). Is this always true? We suspect not, but so little is
known at the present time we are really only guessing.

If R is a ring with k(R) = 0, then k°(M) < 0 for any R-module
with Krull dimension. Also, for any prime p in Z, the ring of rational
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integers, the Priifer p-group A satisfies
E(A)=0 and k°(A)=1=k(Z).

More generally, Lemonnier [10, Corollaire 4.5], see also [6, Proposition
13], proved that if R is a commutative Noetherian ring and M an R-
module with Krull dimension, then k°(M) < k(R). Thus we ask if
it is always the case that k°(M) < k(R) for a module M with Krull
dimension over a ring R with Krull dimension?

Let R be a ring. A nonzero R-module N is called critical if N has
Krull dimension and k(N/L) < k(N) for every nonzero submodule L
of N. Dually, N is called dual critical if N has Krull dimension and
k°(L) < k°(N) for any proper submodule L of N. It is well known
that any nonzero submodule, respectively nonzero factor module, of a
critical, respectively dual critical, module C is again critical, respec-
tively dual critical, with the same Krull dimension, respectively dual
Krull dimension, as C' (see, for example, [8, Proposition 2.3] and [6,
Proposition 3]).

The first result can be found in [2, Corollary 3.14] (or see [10,
Proposition 4.1] or [6, Proposition 10]).

Lemma 1.1. Let R be any ring, and let M be an R-module with
Krull dimension. Then
(i) k(M) = sup{k(N/L) : L C N are submodules of M and N/L is
critical}, and
(ii) k°(M) = sup{k°(N/L) : L C N are submodules of M and N/L
is dual critical}.

The next lemma is surely well known, but we do not have a reference
for it. The proof is an easy exercise using [8, Lemma 1.1] and is left to
the reader.

Lemma 1.2. Let a ring R be the direct product R' x R" of rings
R',R", and let M be an R-module. Then the R-module M has (dual)
Krull dimension if and only if the R’ -module MR’ and the R"-module
MR" have (dual) Krull dimension, and in this case

kr(M) = sup{kr (MR'), kg (MR")}
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and

ki (M) = sup{ky, (MR'), kjpn (MR")}.

In particular, k(R) = sup{k(R'),k(R")} and k°(R) = sup{k’(R'),
K°(R")}, if either side exists in each case.

A nonzero module M is called subdirectly irreducible or cocyclic (see
[14]), if the intersection of all nonzero submodules of M is nonzero, in
other words M contains an essential simple submodule. It is well known
that every nonzero module IV is isomorphic to a subdirect product of
its subdirectly irreducible factor modules and, in particular, NV has a
subdirectly irreducible factor module (see, for example, [4, Exercise
6.20] or [14]).

Theorem 1.3. The following statements are equivalent for a ring R
with Krull dimension > 1.

(i) kK9(M) < k(R) for every R-module with Krull dimension.

(i) k°(H) < k(R) for every subdirectly irreducible dual critical R-
module H such that HP = 0 for some prime ideal P of R and H = HI
for every ideal I properly containing P.

(iii) k°(S) < k(S) for every ring S with Krull dimension such that
S/I = R x Z for some nilpotent ideal I of R.

Proof. (i) = (ii). Clear.

(ii) = (i). By Lemma 1.1 it is sufficient to prove that k°(N) < k(R)
for any dual critical R-module N. Since R has Krull dimension, there
exist a positive integer n and prime ideals P;, 1 < ¢ < n, such that
Py---P, =0 [8, Theorem 7.4]. If N = NP; for all 1 < i < n, then
N=NP,=NP,_1P,=---=NP;---P, =0, a contradiction. Thus,
N # NP;j for some 1 < j < n. By [8, Theorem 7.1], R satisfies the
ascending chain condition on prime ideals. Let P be a prime ideal of
R maximal with respect to the property N # NP.

Let I be any ideal properly containing P. There exist a positive
integer k and prime ideals @;, 1 < ¢ < k, such that Q,---Qr C I C
Q1N --NQx, again by [8, Theorem 7.4]. By the choice of P, N = NQ);,
1 < i <k, and hence N = NI. There exists a proper submodule
L of N such that NP C L and N/L is subdirectly irreducible. Let
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H = N/L. Then H is subdirectly irreducible and dual critical, HP =0
and H = HI for every ideal I properly containing P. Moreover,
k°(N) = k°(H) < k(R), by (ii). This proves (i).

(i) = (iii). Let S be a ring with Krull dimension such that there
exists an isomorphism ¢ : R x Z — S/I, for some nilpotent ideal
I of S. Then k(S) = k(S/I) = k(R x Z) = k(R) by Lemma 1.2.
There exists a positive integer ¢ such that I* = 0. Consider the chain
S=I°2IDI?D---D2I"'=0. Foreach 1 < j <t let A; =171/,
note that A;7 = 0 and hence, by (i), Lemma 1.2 and [10, Corollaire
4.5], that

KO(A;) = (K)1(A;) = sup{k(Aju(R)), k(A;0(Z))}
< sup{k(R), 1} = k(R) = k(S).

Thus k°(S) < k(S) by [6, Proposition 5.

(iii) = (i). Let M be any R-module with Krull dimension. Consider
the ring S of “matrices” of the form

(6 %)

where a € Z, m € M, r € R, and addition and multiplication are
as usual for matrices. Let I denote the set of matrices of the above
type with @ = 0, » = 0. Then I is an ideal of S, I? = 0 and
S/I =2 R x Z. Tt is clear that the ring S has Krull dimension and
k(S) = k(R) [8, Lemma 1.1]. By hypothesis, k°(S) < k(S). Now
k% (M) = k2(I) < k°(S) < k(S) = k(R), as required.

The next result is [3, Corollary 4.2], but the proof we now give is
more straightforward.

Corollary 1.4. Let R be a commutative ring with Krull dimension 1.
Then k°(M) < 1 for every R-module M with Krull dimension.

Proof. By the theorem it is sufficient to consider an R-module M
such that M P = 0 for some prime ideal P of R. In this case, R/P is
a domain with k(R/P) < 1, so that R/P is Noetherian. For, if T is
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any ideal of R which properly contains P,then k(R/I) < k(R/P) by [8,
Proposition 6.1], so that R/I is Artinian and hence Noetherian. Now
[10, Corollaire 4.5] gives: k°(M) < k(R/P) < k(R) = 1.

Corollary 1.5. Let R be a commutative domain with Krull dimen-
sion 2. Then k°(R) < 2.

Proof. For any nonzero ideal I of R, k(R/I) < 1, by [8, Proposition
6.1], and hence k°(R/I) < 1 by Corollary 1.4. Thus, k°(R) < 2.

Corollary 1.6. The following statements are equivalent for an
ordinal o > 0.

(i) k°(M) < « for all (prime) rings R with Krull dimension o and
all R-modules M with Krull dimension.

(ii) k°(S) < « for any ring S with Krull dimension «.

Proof. (i) = (ii). Clear.
(ii) = (i). By the proof of (iii) = (i) in Theorem 1.3.

Note that, in particular, Corollary 1.6 shows that Questions 1 and 2
in the foreword are equivalent.

We now define two ordinals associated with any ring R. Choose
representatives Uy, A € A, from each of the isomorphism classes of
simple R-modules. For each A in A, let E) denote the injective hull of
U,. Consider the collection of submodules with Krull dimension of the
E\’s. Since this collection is a set, the following supremum exists:

6°(R) = sup{k%(N) : N is a submodule with Krull dimension
of E) for some A € A}.

Proposition 1.7. For any ring R,

6°(R) = sup{k%(M) : M is an R-module with Krull dimension}.
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Proof. Let M be an R-module with Krull dimension. Let L C N
be submodules of M such that N/L is dual critical. There exists a
proper submodule K of N containing L such that N/K is subdirectly
irreducible. There exists A in A such that N/K is isomorphic to a
submodule of E. Then k°(N/L) = k°(N/K) < §°(R). By Lemma 1.1,
k°(M) < §°(R). The result follows.

For any ring R we can define a dual to d°(R), namely, §(R) =
sup{kr(M) : M is a cyclic R-module with Krull dimension}. Using
Lemma 1.1 and [8, Corollary 4.4], one deduces at once the following
result.

Proposition 1.8. Let R be any ring. Then
d(R) = sup{kr(M) : M is an R-module with Krull dimension}.

In particular, 6(R) = k(R) in case R is a ring with Krull dimension.

It is natural to ask if the ordinals §(R), §°(R) are accessible, i.e.,
do there exist R-modules X and Y such that 6°(R) = k%(X) and
d(R) = kr(Y)?

In view of Proposition 1.7, Question 2 in the foreword can be restated
thus:

Is 6°(R) < k(R) for any ring R with Krull dimension?

More generally, we can formulate the following problem. For a given
ring R, is there a relationship between the ordinals §(R) and §°(R)?
Note that if R has Krull dimension, then §(R) = k(R), so that
Question 2 raises a more general question, namely,

Question 3. For which rings R is §°(R) < §(R)?

Recall that a ring R is a right V-ring if every simple right R-module
is injective. Let R be a right V-ring. Then 6°(R) = 0 by definition,
and hence 6°(R) < §(R).

2. Duality. Let R be any ring. Let M be an R-module with Krull
dimension. Suppose that there exists an R-module M? such that the



1160 T. ALBU AND P.F. SMITH

lattice Lat (M) of submodules of M is anti-isomorphic to the lattice
Lat (M?) of submodules of M°. Then M° has Krull dimension by [9,
Corollaire 6] and

k% (M) = kr(M°) and kgr(M) = k%(M°).

If such a lattice anti-isomorphism exists for the module M then, because
submodule lattices are upper continuous, the lattice Lat (M) would
need to be lower continuous, i.e., M would have to satisfy:

N + (ﬁAL,\) = ﬁA(N + L)\),

for any submodule N and chain of submodules Ly, A € A. Such a
module M is said to satisfy the property AB5*. Of course, most
modules M do not have this property, although linearly compact
modules do, see, for example, [13, p. 116] or [14]. Artinian modules
are linearly compact. In view of this fact, it seems sensible to ask:

Question 2*. Let R be any ring. Is k°(M) < §(R) for every Artinian
R-module M?

Suppose that R is a ring such that for every R-module M with
Krull dimension there exists an R-module M° such that the lattice
of submodules of M is anti-isomorphic to the lattice of submodules
of M°. Then §(R) = ¢°(R). This is the motivation for the following
discussion.

Throughout the remainder of the paper all rings are commutative.
What follows now is based on [12, Section 5.4]. Let R be a commutative
ring, and let E be an injective cogenerator for the category Mod — R
of all unital R-modules. For any R-module M, let M* denote the dual
of M relative to E, or the E-dual of M, namely M* = Hom r(M, E).
Then M* is an R-module in the usual way, i.e., (ra)(m) = ra(m) for
allr € R, «a € M*, m € M. For any submodule N of M and any
submodule H of M*, we define

Nt ={a € M*:a(n) =0 for all n € N},
H ={meM:am)=0foral acH}

Clearly, Nt is a submodule of M* and H~ is a submodule of M.
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For each R-module M, denote M** = (M*)* and define epy : M —
M** by

em(m)(a) =a(m), meM,ac M*.

Then £); is an R-homomorphism, called the evaluation map. The
module M is said to be E-reflexive in case €, is an isomorphims and
is said to be E-torsionless in case €y is a monomorphism.

The next lemma collects some known facts, see, for example, [4].

Lemma 2.1. The following statements hold for an R-module M.
(i) (N1 + N2)* = N;" N N for any submodules Ny and Ny of M.

(ii) If L C N are submodules of M, then N* C Lt and L™ = N7 if
and only if L = N.

(i) N = Nt~ for any submodule N of M.

(iv) M is E-torsionless.

Lemma 2.2. Let M be an E-reflexive module. With the above
notation, one has:

(i) em(H) ={a € M** : a(H) = 0} for any submodule H of M*.

(ii) The mapping N — N7 is an anti-isomorphism from Lat (M) to
Lat (M™).

Proof. (i) is easy and is left to the reader.

(ii) Let H C K be distinct submodules of M*. By Lemma 2.1, K* C
H* are distinct submodules, where H* = {a € M** : a(H) = 0}. By
(i), ea(H™) = H* D K* = ep(K7), so that H- DO K~ are distinct.
If now H and K are arbitrary submodules of M* such that H— = K,
then (H+K)"=H NK =H =K ,andso H+ K =H =K.
Thus the mapping H — H~ from Lat (M*) to Lat (M) is injective,
and, by Lemma 2.1 (iii), it is also onto. It follows that H — H~
is a lattice anti-isomorphism from Lat (M*) to Lat (M) with inverse
N+ N7 from Lat (M) to Lat (M*).

Combining Lemma 2.2 (ii) with the remarks at the beginning of this
section, we have at once:



1162 T. ALBU AND P.F. SMITH

Proposition 2.3. Let R be a commutative ring, and let E be an
injective cogenerator for Mod — R. Then k°(M) < 6(R) for any E-
reflexive R-module M with Krull dimension.

Next we show that if eg : E — E** is an isomorphism then so too is
epr for any module M with Krull dimension.

Theorem 2.4. Let R be a commutative ring such that there exists
an njective cogenerator E for Mod — R which is E-reflezive. Then

8°(R) < §(R).

Proof. Let M be any subdirectly irreducible R-module with Krull
dimension, and let U denote the essential simple socle of M. Clearly
U, and hence M, embeds in E. There exists an exact sequence
0—-M —FE— X — 0, for a suitable module X, and we can form the
commutative diagram:

0 M E X 0
EMJ EEJ &xJ
0 M** E** X** O

By Lemma 2.1 (iv), the mappings ;s and €x are monomorphisms and,
by hypothesis, eg is an isomorphism. By [4, Lemma 3.14], s is an
isomorphism. By Proposition 2.3, k°(M) < §(R). Hence §°(R) < §(R).
O

The next result is surely known but we include a proof for complete-
ness.

Proposition 2.5. Let R be a commutative ring, and let E be an
injective cogenerator for Mod — R such that every endomorphism of E
is given by multiplication by an element of R. Then E is E-reflexive.
Moreover, the converse holds if R embeds in E.

Proof. Suppose that every endomorphism of E is given by multipli-
cation by an element of R. Let o € E**. Let + : E — E be the identity
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mapping, and let e = a(1) € E. We claim that o = eg(e). Let 8 € E*.
Then there exists » € R such that B(x) = rx for all  in E. Thus,
B8 =rt. Now

er(e)(B) = PB(e) =re =ra(t) = a(re) = a(B).

It follows that oo = eg(e). Hence eg is onto and, by Lemma 2.1 (iv),
€g is an isomorphism.

Now suppose that R embeds in F and that g is an isomorphism.
By the proof of Theorem 2.4, ¢g : R — R** is an isomorphism. Let
6 be any endomorphism of E. Note that R* = Homg(R,E) & E,
and we let n : R* — FE denote the canonical isomorphism. Then
6n € R** = er(R). There exists a € R such that n = eg(a). For
any e € E, 6(e) = 0n(vy), where v € R* satisfies v(1) = e, so that
0(e) = On(vy) = er(a)(y) = v(a) = ay(1) = ae. Thus, 6(e) = ae for all
ein FE.

In [13] Vamos defines a commutative ring R to be classical if the
injective hull of every simple R-module is linearly compact. He proves
that if R is a complete local, not necessarily Noetherian, ring with
E the injective hull of the unique simple R-module and R is classical,
then every endomorphism of E consists of multiplication by an element
of R [13, Theorem 3.1]. Combining this fact with Theorem 2.4 and
Proposition 2.5 we have at once:

Theorem 2.6. Let R be a complete local classical ring. Then

3°(R) < §(R).

Vamos [13, Corollary 4.2 and Proposition 4.3] points out that Noethe-
rian rings are classical and maximal valuation rings are complete local
and classical. Recall that R is called a valuation ring if, for all a,b in
R, either Ra C Rb or Rb C Ra. A valuation ring R is called mazimal
provided the R-module R is linearly compact. Thus §°(R) < §(R) for
every complete local Noetherian ring R and every maximal valuation
ring R, by Theorem 2.6.

Corollary 2.7. Let R be a valuation domain with Krull dimension.
Then k°(R) < k(R).
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Proof. By [7, Theorems 1.1.11 and 1.5.10] there exist a maximal
valuation domain S and a monomorphism ¢ : R — S such that the
mapping I — ¢(I)S from Lat (Rg) to Lat (Ss) is an isomorphism with
inverse J — ¢~ 1(JNp(R)). By Theorem 2.6, k°(R) = k°(S) < k(S) =
k(R), as required.

In [5], a Baer duality is defined to be a triple (R,gUs,S) con-
sisting of rings R,S and a bimodule rUg, faithful on both sides,
such that Lat (rR) and Lat (Usg) are anti-isomorphic, as are Lat (gU)
and Lat (Ss). In this case, if S has Krull dimension, then k°(S) =
k(rU) < 8(rR) and k(S) = k°(rU) < 6°(gR). If R and S are iso-
morphic rings, then R is said to be Baer selfdual and, in case R has
Krull dimension, k°(R) < §(grR) and k(R) < 6°(gR). In particular,
any commutative Baer selfdual ring R with Krull dimension satisfies
k°(R) < §(R) = k(R) < §°(R). Every valuation domain is Baer selfd-
ual with respect to K/R, where K is the field of fractions of R [5, p.
7]. This gives another proof of Corollary 2.7. In [5] Anh and Menini
conjecture that every valuation ring is Baer selfdual.
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