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A CHARACTERIZATION OF FGC RINGS

GEORGE IVANOV AND PETER VÁMOS

ABSTRACT. In this note we give a new characterization of
commutative rings for which every finitely generated module
is a direct sum of cyclics (FGC rings) using only the structure
of the injective envelopes of simple modules. Some Baer-
Kaplansky categories for FGC rings are studied.

1. Introduction. The structure of commutative rings for which
every finitely generated module is a direct sum of cyclics was deter-
mined more than twenty-five years ago as the culmination of the work
of a number of mathematicians over many years. A self contained ex-
position of the proof is given in [14]. The characterization is internal
but it relies on the structure of almost maximal valuation rings for
which Gill ([3]) obtained a characterization in terms of their indecom-
posable injectives. An analogous characterization of noncommutative
serial rings whose finitely generated modules are direct sums of uniseri-
als (the noncommutative analogue of almost maximal valuation rings)
was obtained in [4]. It may therefore be useful for the study of non-
commutative analogues of FGC rings to have a characterization of FGC
rings in terms of their injectives. This note does that. The proof is ob-
tained by reducing to the structure theorem obtained in [14]. It would
therefore be valuable to have a direct proof that the rings satisfying
the characterization are FGC rings.

There has been considerable interest in categories of modules which
are determined by their endomorphism rings since the pioneering work
of Baer [1] and Kaplansky [6]. (We refer the reader to [8] for a survey
of this and related areas and an extensive bibliography of nearly 300
items.) However, it was only recently that Baer-Kaplansky categories
for virtually arbitrary rings were shown to exist [5]. We obtain some
Baer-Kaplansky categories of modules for arbitrary FGC rings and thus
show that in this sense, also, FGC rings are generalizations of the ring
of integers Z.
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2. Main results. Throughout this note all rings are commutative
with identity elements and all modules are unital. Every category of
modules is assumed to be full.

Definitions. A ring R is arithmetical if its lattice of ideals is
distributive. This is equivalent to every quotient ring of R having a
heterogeneous socle ([11]) or to RM being a valuation ring for every
maximal ideal M . A module is Bezout if all its finitely generated
submodules are cyclic. A module has finite (Goldie) dimension if it
contains no infinite direct sum of submodules. A submodule W is a
waist if every other submodule either contains W or is contained in W .
A ring R is a torch ring if it has a unique minimal prime ideal P which
is uniserial and nonzero; if R/P is an h-local Bezout domain; and if
RM is an almost maximal valuation ring, for every maximal ideal M .

Lemma 1. A finite dimensional, commutative and indecomposable
arithmetical ring R has a unique minimal prime ideal which is a waist
in R.

Proof. Let N be the nilradical of R, and let R = R/N . Since
idempotents lift modulo a nil ideal, R is still an indecomposable
arithmetical ring. Then by Lemma 7 of [12], R is a uniform ring with
no nilpotent elements. But such a ring is a domain: for if 0 �= a ∈ R
and Ann a �= 0, then 0 �= Ra ∩ Ann a would be a nonzero nil ideal.
Hence N is the unique minimal prime ideal of R. It is contained in
every maximal ideal and thus in the Jacobson radical of R. Hence it is
a waist in R by [11, Proposition 2.1] or [10, Lemma 3.1].

Lemma 2. Let R be a commutative arithmetical ring whose Jacobson
radical contains a prime ideal P . If S is a simple subfactor of P and
M is a maximal ideal of R, then Hom(E(S), E(R/M)) �= 0.

Proof. Let S be a simple subfactor of P . Then S = Ra/Na for some
a ∈ P and maximal ideal N . Let L be a complement of Na in P . Since
P is a waist [11, Proposition 2.1], R/(L+Na) is an essential extension
of S and it contains a subfactor isomorphic to R/M , for any maximal
ideal M . Hence there is a nonzero homomorphism from a submodule
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of R/(L + Na) to R/M which can be extended to a homomorphism
E(S)→ E(R/M).

The set of maximal ideals of a ring R will be denoted by M(R). We
will write homomorphisms on the right of their arguments.

Theorem 3. An indecomposable commutative ring R is an FGC
ring if and only if all of the following conditions hold.

(a) Every indecomposable injective R-module is Bezout.

(b) If M, N ∈ M(R), M �= N , then HomR(E(R/M), E(R/N)) = 0
except for at most one such M , in which case HomR(E(R/M), E(R/N))
�= 0 for all N ∈ M(R).

(c)
⊕

M∈M(R) E(R/M) is injective.

Proof. Let R be an indecomposable commutative FGC ring. Then
R is one of the following three types of rings: (i) an almost maximal
valuation ring; (ii) an h-local Bezout domain which is locally almost
maximal; or (iii) a torch ring ([14], [12]).

(i) In this case there is only one maximal ideal and the result follows
from Gill’s characterization of these rings ([3]).

(ii) An indecomposable injective module E is uniform so any one of
its finitely generated submodules must be cyclic. (Note that if R is
local, then E must be uniserial.) Therefore (a) holds.

If M is a maximal ideal of R then ER(R/M) is a torsion module and
by Theorem 22 of [7] it is isomorphic to ERM

(R/M)M . By Gill’s theo-
rem this module is uniserial. Therefore, HomR(E(R/M), E(R/N)) �= 0
if and only if M = N . Therefore (b) holds.

Let E =
⊕

M E(R/M) and let φ : L → E be a homomorphism
from an ideal L of R. By [12] and [2] every factor ring of R has
finite dimension so if K = kerφ then L/K has finite socle. Therefore
Soc (L/K)φ is contained in a finite subsum

⊕n
i=1 E(R/Mi) which is

injective since each summand is injective. It follows that φ can be
extended to a homomorphism Φ : R → E which means that E is
injective and so (c) holds.

(iii) Both (a) and (c) are proved as for (ii).
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If R is a torch ring, then it has a unique minimal nonzero prime ideal
P , which is uniserial and all of its simple subfactors are isomorphic
to R/M for a maximal ideal M . Moreover P is a waist [12], R/P
is a h-local Bezout domain which is locally almost maximal and R
has at least two maximal ideals M and N , say. Since R/M and
R/N are not isomorphic, PL = 0 for any submodule L of E(R/N)
and so E(R/N) is an R/P module. It follows from (ii)(b) above that
HomR(E(R/N ′), E(R/N)) = 0 when both N, N ′ �= M . If 0 �= a ∈ P ,
then Ra/Ma ∼= R/M and so R/Ma ⊆ E(R/M). But Ma ⊆ N so
there is a projection R/Ma → R/N and it lifts to a nonzero map
E(R/M) → E(R/N). Therefore HomR(E(R/M), E(R/N)) �= 0 and
so (b) holds.

Now consider the converse and let R be a ring satisfying (a) (c). Let
N be a maximal ideal of R. Then it is well known (e.g., [9, Proposition
5.6]) that E(R/N) is in a natural way an injective RN -module with
simple socle. By (a) it is Bezout as an R-module and thus as an RN -
module. Since RN is local, E(R/N) is uniserial as an RN -module. By
[3], RN is an almost maximal valuation ring. Since this is true for all
maximal ideals, it follows ([12]) that R is arithmetical.

As R is arithmetical all its ideals and their quotient modules have
distributive submodule lattices and so their socles, if they exist, are
heterogeneous. From (c) it follows that the socle, if it exists, of every
factor module of every ideal L has a finite number of nonisomorphic
simple modules. Otherwise there would be a homomorphism from
the socle of L to E =

⊕
M∈M(R) E(R/M) whose image is in an

infinite number of the E(R/M)’s, and that is impossible since the
homomorphism extends to R → E and the image of the identity of
R lies in only a finite number of E(R/M)’s. Since the socle has to be
heterogeneous, it must be finite. Hence R has finite dimension and the
same is true for every quotient ring of R. By Lemma 1, R has a unique
minimal prime ideal which we will denote by P . If R has a unique
maximal ideal, then it is an almost maximal valuation ring and thus
an FGC ring.

So we can assume that R has at least two maximal ideals. First
we assume that P = 0, that is to say, R is a domain. Let P1 be
a nonzero prime ideal of R and assume that it is contained in two
maximal ideals M and N . Then localizing at T = R \ (M ∪ N)
produces a ring R′ = T−1R with two maximal ideals M ′ = T−1M and
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N ′ = T−1N and prime ideal P ′ = T−1P1. We may assume that P ′ has
a simple subfactor isomorphic to R′/N ′. Since P ′ is in the Jacobson
radical of T−1R, Lemma 2 shows that HomR′(E(R′/N ′), E(R′/M ′))
�= 0. Proposition 5.6 of [9] and a standard argument now shows that
HomR(E(R/N), E(R/M)) �= 0. But this is impossible since, by the
above argument, E(R/M) and E(R/N) are uniserial RM and RN

modules with no common subfactors. Hence every nonzero prime ideal
of R is contained in only one maximal ideal.

Let I be a nonzero ideal of R which is not prime. Then R/I is
a (finite) direct sum of indecomposable rings Ri each of which has a
unique minimal prime Ni, by the argument above. Each Ni gives rise
to a unique prime in R/I which comes from a prime Pi ⊇ I in R. But
each Pi is contained in only one maximal ideal, so I is contained in only
a finite number of maximal ideals (since there are only a finite number
of Pi’s). Hence R is an h-local Bezout domain.

Now consider the case when P �= 0 and let S = R/M , M ∈ M be a
simple subfactor of P . By Lemma 2, Hom(E(R/M), E(R/N)) �= 0 for
all maximal ideals N and from (b) it follows that M is unique. Since
the submodule lattice of P is distributive, it follows that P is uniserial
whose simple subfactors are all isomorphic to S. Consequently R is a
torch ring and is therefore an FGC ring ([12]).

We now turn to the question of endomorphism rings of modules
over FGC rings. The celebrated Baer-Kaplansky theorem tells us that
abelian torsion groups are determined by their endomorphism rings.
Since FGC rings are generalizations of the ring Z of integers, we are
interested in discovering how much of that theorem can be applied to
modules over such rings.

Definition. A (full) category of R-modules is said to be a Baer-
Kaplansky (or B − K) category or to have the Baer-Kaplansky (or
B − K) property if any two of its modules are isomorphic whenever
their endomorphism rings are isomorphic (as rings).

Theorem 4. Let R be an indecomposable FGC ring and let C be a
category of finitely generated R-modules each of which has a copy of R
as a summand. Then C is a Baer-Kaplansky category.
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Proof. Let M and N be two modules in C and let Φ : End (M) →
End (N) be an isomorphism. Let M = R

⊕
i Mi be a decomposition

into indecomposable cyclic submodules, let G = End (M) and H =
End (N). Let eR, ei ∈ G be the canonic projections onto R and
Mi, respectively, and let NR = N(eRΦ) and Ni = N(eiΦ). Now
End (R) ≈ R so End (NR) ≈ R and thereforeNR is a faithfulR-module.
Since NR is a summand of N it is finitely generated so by Lemma 11
of [12] it has a summand isomorphic to R. But NR is indecomposable
(since eRΦ is a primitive idempotent) so NR

∼= R.

Now G contains a subring End (R) ≈ R and a subgroup Hom(R, Mi)
which is a left R-module and Φ maps these isomorphically onto
End (NR) and Hom (NR, Ni), respectively. Hence Hom(R, Mi) and
Hom (NR, Ni) are isomorphic R-modules. But Hom (NR, Ni) is iso-
morphic to Hom (R, Ni) ∼= Ni and Hom(R, Mi) is isomorphic to Mi so
Mi is isomorphic to Ni. By [5, Proposition 1], M is isomorphic to N
and so C is a B-K category.

Corollary 5. If R is an indecomposable FGC ring, then the category
of finitely generated faithful R-modules is a Baer-Kaplansky category.

Proof. By [12, Lemma 11] every faithful R-module has a summand
isomorphic to R.

Proposition 6. Let R be an almost maximal valuation ring and C a
category of (possibly infinite) direct sums of cyclic R-modules. If each
object in C has a summand isomorphic to R, then C is a B-K category.

Proof. The proof is as for Theorem 4 after observing that an inde-
composable summand of N with local endomorphism ring is isomorphic
to one of its cyclic summands (by Warfield’s result [13]).

For abelian groups, Theorem 4 and Proposition 6 are the well-known
Baer-Kaplansky results. For if A is an abelian group which is torsion,
then it is a direct sum of cyclic primary groups Z/pni

i Z, for primes
pi. The sum of one copy of the primary cyclics of highest exponents
is in fact a ring (under the usual multiplication) and the group A is a
module over this ring. If A is not torsion but is finitely generated, then
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it contains a copy of Z as a summand. In both cases the hypotheses
of Theorem 4 and Proposition 6 are satisfied. Hence in this sense FGC
rings are true generalizations of the ring of integers Z.
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