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ABSTRACT. We examine when versions of the Krull-
Schmidt property hold for (1) direct sums of ideals of in-
tegral domains, (2) direct sums of indecomposable submod-
ules of finitely generated free modules, and (3) direct sums
of rank one torsion-free modules. Our main results are for-
mulated for modules over h-local integral domains without
recourse to finite generation for the modules. This leads to
some new results for Krull-Schmidt properties of modules over
Noetherian and Prüfer domains.

1. Introduction. Let R be a commutative integral domain and
C a class of R-modules. The Krull-Schmidt property holds for C if,
whenever

G1 ⊕G2 ⊕ · · · ⊕Gn
∼= H1 ⊕H2 ⊕ · · · ⊕Hm

for Gi, Hj ∈ C, then n = m and, after reindexing, Gi
∼= Hi for all

i ≤ n. If, instead of Gi
∼= Hi, we require only that k > 0 exists such

that G(k)
i

∼= H
(k)
i for all i, then we say the weak Krull-Schmidt property

holds for C. (We write G(k) for a direct sum of k copies of a module
G.)

In this article we examine Krull-Schmidt properties for certain classes
of indecomposable torsion-free modules over commutative integral do-
mains. By a torsionless module over a domain R, we mean a submodule
of a finitely generated free R-module. An integral domain R has the
torsion-free Krull-Schmidt property, TFKS, if the class of indecompos-
able torsionless R-modules has the Krull-Schmidt property; R has weak
TFKS if this class has the weak Krull-Schmidt property.
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We also study a weaker Krull-Schmidt property, one that asserts
uniqueness of decomposition only for ideals. We say a domain R has
unique decompositions into ideals, UDI, if the class of ideals of R has
the Krull-Schmidt property. Similarly, R has weak UDI if the class of
ideals of R has the weak Krull-Schmidt property. Thus UDI, TFKS
and their weak forms offer Krull-Schmidt properties for the category of
torsionless modules. Moving outside of this category, we also examine
Krull-Schmidt for rank one modules, those torsion-free modules that
are isomorphic to submodules of the quotient field. Notice that if
X1 ⊕ · · · ⊕ Xn

∼= Y1 ⊕ · · · ⊕ Ym for rank one modules Xi and Yj ,
then it is easy to see n = m. For this reason, we need only consider
the case n = m when treating UDI, weak UDI and Krull-Schmidt for
rank one modules.

Levy and Odenthal have completely described the (not necessarily
commutative) one-dimensional orders over Noetherian domains that
possess TFKS (as well as those for which Krull-Schmidt holds for
finitely generated modules) [8]. In [6], we classified Noetherian domains
with UDI. Where the present study differs from these articles is that we
seek an approach to Krull-Schmidt that proceeds from not-necessarily
Noetherian assumptions. We work over h-local integral domains (de-
fined below). This is somewhat natural in the context of Krull-Schmidt
properties: the weakest Krull-Schmidt property that we study (weak
UDI) implies h-locality for Noetherian domains.

Notation and terminology. If R is an integral domain, we write R
for the integral closure of R in its quotient field, Q. A domain R is
h-local if (i) every nonzero element of R is contained in only finitely
many maximal ideals of R, and (ii) each nonzero prime ideal of R
is contained in a unique maximal ideal of R; equivalently, for each
maximal ideal M of R, R[M ]RM = Q, where R[M ] = ∩{RN | N is a
maximal ideal different from M} [10, Theorem 22]. In particular, if R
is h-local, RNRM = Q for all distinct maximal idealsM and N of R. If
X and Y are R-submodules of Q, then [Y : X] denotes the R-module,
{q ∈ Q : qX ⊆ Y }. We abbreviate [X : X] by E(X); the notation is
motivated by the observation that E(X) ∼= EndR(X) if X �= 0.
Recall that two R-modules G and H are locally isomorphic if GM

∼=
HM for all maximal idealsM of R, and G and H are power isomorphic
if n > 0 exists such that G(n) ∼= H(n). If G is locally isomorphic to H,
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we write G ∼=l H. If G is power isomorphic to H, we write G ∼=℘ H.
The divisible hull of a torsion-free R-module G is QG := Q⊗R G. We
identify G with its image in QG and, if M is a maximal ideal of R,
we view GM as contained in QG. A torsionless module is completely
decomposable if it is isomorphic to a direct sum of ideals.

In the proof of Theorem 3.4 (and only in this proof), we use the
following terminology from the theory of torsion-free abelian groups.
Two rank one modules are quasi-isomorphic if each is isomorphic to a
submodule of the other. A type τ is the quasi-isomorphism class of a
rank one module. The collection of types is partially ordered by the
relation τ1 ≤ τ2 whenever U1 is isomorphic to a submodule of U2 (where
τi is the type of the R-module Ui). If A is a torsion-free module and
a ∈ A, then the type of a is the quasi-isomorphism class of the pure
submodule of A generated by a, i.e., the submodule {b ∈ A : rb = sa for
some r, s ∈ R}. Given a type τ , define A(τ ) = {a ∈ A : type of a ≥ τ}.
Finally, we occasionally use the notion of the kth exterior power ∧kG
of a module G. In particular, if G is a torsion-free R-module and
G = X1 ⊕ X2 ⊕ · · · ⊕ Xn for some rank one submodules Xi of G,
then ∧nG ∼= X1 ⊗R X2 ⊗R · · · ⊗R Xn. This property, as well as more
background on the exterior power construction, can be found in [1,
Chapter II, Sections 3-5].

2. Krull-Schmidt and Pic (R). We use the notion of the Picard
group of an integral domain to distinguish between weak UDI and UDI.
Recall that if R is an integral domain, the Picard group of R is the
abelian group consisting of the invertible fractional ideals of R modulo
the principal fractional ideals of R. In this section we show that the
Picard group of a weak UDI domain R measures how close R is to
having UDI.

For the purpose of proving some technical lemmas in this section, we
introduce the following notion. If R is a domain and S is an overring
of R, that is, a ring S that contains R and is contained in the quotient
field of R, then (R,S) is a weak UDI pair if every overring T of R such
that R ⊆ T ⊆ S has weak UDI. Similarly, (R,S) is a weak TFKS pair
if every overring of R contained in S has weak TFKS. It is easy to see
that if R has weak UDI (weak TFKS) and S is a fractional overring of
R, then (R,S) is a weak UDI pair, respectively, weak TFKS pair. We
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make use of this fact without further comment.

A maximal idealM of an integral domain R is complemented if every
ideal of R not contained in M is invertible. We collect some simple
observations about complemented maximal ideals in the next lemma.

Lemma 2.1. Let R be an h-local domain with complemented maxi-
mal ideal M .

(i) If P and Q are comaximal prime ideals, then P or Q is a maximal

ideal.

(ii) For all maximal ideals N �=M of R, RN is a DVR.

(iii) If S is a fractional overring of R and N �=M is a maximal ideal

of R, then SN is a maximal ideal of S.

(iv) Pic (R) = 0 if and only if every maximal ideal of R distinct from

M is principal.

Proof. For the proof of (i), suppose P and Q are comaximal. Then,
without loss of generality, we may assume P is an invertible prime ideal.
If P is not maximal, then it is contained in an invertible maximal ideal
N of R, which is impossible. Statement (ii) follows from (i) and the
fact that R is h-local. Indeed, if N �=M is a maximal ideal of R, then
since each nonzero prime ideal of R is contained in a unique maximal
ideal of R, (i) implies RN is one-dimensional. By assumption, N is
an invertible ideal of R, so it follows that RN is a DVR. Statement
(iii) is a consequence of (ii). For if N is a maximal ideal of R such
that N �= M , RN is a DVR, so since SN is a fractional overring of
RN , RN = SN . Then SNN = NN and SN/SNN = RN/NN so SNN

is a maximal ideal of SN . Furthermore, local verification shows that
SN = SNN ∩ S so SN is a maximal ideal of S. Finally, to prove (iv),
suppose every maximal ideal of R distinct from M is principal. Let I
be an invertible ideal of R. Then II−1 = R implies that xI �⊆ M for
some 0 �= x ∈ I−1. But xI ∼= I, so we may assume without loss of
generality that I �⊆ M . Since R is h-local, I is contained in at most
finitely many maximal ideals, say N1, . . . , Nk. For each i ≤ k, RNi

is a
DVR, so IRNi

= N
j(i)
i RNi

for some j(i) > 0. Local verification shows
that I = N

j(1)
1 · · ·N j(k)

k , so I is principal. Conversely, if Pic (R) = 0,
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then clearly every maximal ideal of R distinct fromM is principal since
M is complemented.

Lemma 2.2. Let S be an overring of an integral domain R. If
(R,S) is a weak UDI pair and I and J are comaximal ideals of S, then
S = R+ I or S = R+ J .

Proof. If either I = S or J = S, the claim is clear, so suppose
S is not quasilocal and neither I = S nor J = S. Observe that
1 ∈ I + J ⊆ [R + I : S] + [R + J : S]. Thus a ∈ [R + I : S] and
b ∈ [R + J : S] exist such that 1 = a + b. Define a homomorphism
φ : (R + I) ⊕ (R + J) → S by φ(x, y) = x + y for all x ∈ R + I
and y ∈ R + J . Since I + J = S, φ is surjective. Define a
homomorphism γ : S → (R + I) ⊕ (R + J) by γ(s) = (as, bs) for
s ∈ S, and observe that γ is a splitting map for φ since, if s ∈ S, then
φ(γ(s)) = φ(as, bs) = as+ bs = s. Thus S is isomorphic to a summand
of (R+I)⊕(R+J) and, since T := (R+I)∩(R+J) has weak UDI and
S is a fractional ideal of T , S(n) ∼= (R+ I)(n) or S(n) ∼= (R+ J)(n) for
some n > 0. Taking the nth exterior power of each side with respect to
R+I and R+J , respectively, yields S ∼= R+I or S ∼= R+J since R+I
and R+ J are subrings of S. Finally, isomorphism can be replaced by
equality, again since R+ I and R + J are rings.

Lemma 2.3. Let R be an integral domain. If S is an overring of R
such that (R,S) is a weak UDI pair, then S is quasilocal or S = R+N
for some maximal ideal N of S. Furthermore, for each maximal ideal
M of R, there are at most three maximal ideals of S lying over M ,
and if (R,S) is a weak TFKS pair, then there are at most two maximal
ideals of S lying over M .

Proof. If S has at least two distinct maximal ideals N and N ′, then,
by Lemma 2.2, S = R+N or S = R+N ′. Assume that there are four
distinct maximal ideals N1, N2, N3, N4 of S lying over a maximal ideal
M of R. Define I = N1N2 and J = N3N4 and note that I and J are
comaximal ideals of S. Without loss of generality, we may assume by
Lemma 2.2 that S = R + I. Now n ∈ N1 exists such that n /∈ I, yet
n = r + i for some r ∈ R and i ∈ I. Thus n− i ∈ R. Since n− i ∈ N1,
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it must be that n − i ∈ M . Thus n ∈ I + M = I, a contradiction
that implies there cannot be more than three maximal ideals of S lying
over M .

Now suppose (R,S) is a weak TFKS pair and that S has three distinct
maximal ideals, N1, N2 and N3. Define I1 = N2N3, I2 = N1N3 and
I3 = N1N2. Then S = I1+I2+I3 ⊆ [R+I1 : S]+[R+I2 : S]+[R+I3 : S]
so, for each i = 1, 2, 3, ui ∈ [R+Ii : S] exists such that 1 = u1+u2+u3.
The map σ : (R + I1)⊕ (R + I2) ⊕ (R + I3) → S given by σ(a, b, c) =
a+b+c is split by the map δ : S → (R+I1)⊕(R+I2)⊕(R+I3) defined by
δ(s) = (su1, su2, su3) for all s ∈ S. Set T = (R+I1)∩(R+I2)∩(R+I3).
Then, since (R, T ) is a weak TFKS pair, Ker (δ) is a torsionless T -
module, and the R + Ij are fractional ideals of T , it follows that
S ∼=℘ R + Ii for some i = 1, 2, 3. As above, this implies S = R + Ii.
However, by an argument similar to the one above, this leads to a
contradiction that implies S has at most two maximal ideals lying
over M .

Lemma 2.4. If R has weak UDI, then R has a complemented
maximal ideal M and the Picard group of R is torsion. If R has UDI,
then Pic (R) = 0.

Proof. First observe that, if I is an invertible ideal of R, then since I
is a summand of a free R-module and R has weak UDI, I(n) ∼= R(n) for
some n > 0. Thus, taking the nth exterior power of both sides yields
In ∼= R, and it follows that Pic (R) is torsion. If R has UDI, then,
since I is a summand of a free R-module, I is principal. It remains
to show that R has a complemented maximal ideal. If R is Dedekind,
then every maximal ideal of R is complemented, so suppose R is not
Dedekind and assume R is not quasilocal (for otherwise the claim is
clear). If I and J are comaximal ideals of R, then since I + J = R, it
follows that I ⊕ J ∼= R ⊕ (I ∩ J). Hence, there exists n > 0 such that
either I(n) or J (n) is free, so either I or J is projective, i.e. invertible.
Let A be the sum of all noninvertible ideals of R (by assumption there is
at least one noninvertible ideal). If A = R, then it follows that R is the
sum of finitely many noninvertible ideals, the sum of any two of which
is noninvertible. Hence if A = R, R is the sum of two noninvertible
ideals, but, as noted above, this is impossible unless R is a Dedekind
domain. It follows that a maximal ideal M containing A exists. If B
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is an ideal of R not contained in M , then B is not contained in A and
must be invertible, proving that M is complemented.

Lemma 2.5. Let R be an h-local domain with complemented max-
imal ideal M , and suppose S is an overring of R and (RM , SM ) is a
weak UDI pair. If B is an invertible fractional ideal of S, then B = SA
for some invertible fractional ideal A of R.

Proof. We claim first that SM has at most four maximal ideals. If
SM is quasilocal, the claim is clear, so suppose SM has more than one
maximal ideal. If N is a maximal ideal of SM such that SM = RM+N ,
then SM/N ∼= RM/(RM ∩ N) so N lies over the maximal ideal M of
R. By Lemma 2.3, there are at most three maximal ideals of SM lying
over M . If L is a maximal ideal of SM such that SM �= RM + L,
then, by Lemma 2.3, SM = RM +N for every maximal ideal N of SM

distinct from L. Thus, all the maximal ideals of SM except possibly
one contract to maximal ideals of RM . In particular, SM has at most
four maximal ideals. Since B is an invertible fractional ideal of S, it
follows that BSM = SMa for some a ∈ B.

Now let {Mα} denote the set of all maximal ideals of R such that
Mα �=M and SMα

�= Q where Q is the quotient field of R. By Lemma
2.1(ii), RMα

is a DVR, so SMα
= RMα

. Then, for all α, BRMα
=

RMa
aα for some aα ∈ B. Define A = RMa ∩ (∩αRMα

aα) ∩ (∩NRN )
where N ranges over the maximal ideals of R not in {Mα} ∪ {M}.
Then, since R is h-local, if N is a maximal ideal of R distinct from
a particular Mα, RMα

RN = Q [10, Theorem 22]. Also, since R is h-
local, localizations commute with infinite intersections [4, Lemma IV.
3.10], so ARM = RMa, ARMα

= RMα
aα for all α and ARN = RN

for all maximal ideals N of R not in {Mα} ∪ {M}. Furthermore,
SA = B and A is a locally free R-submodule of Q. In fact, since B is a
finitely generated S-submodule of Q and every nonzero element of R is
contained in at most finitely many maximal ideals of R, it follows that
BRMα

= SRMα
= RMα

for all but finitely many α. This implies that
A is a fractional ideal of R. Since R is h-local, A is a finitely generated
fractional ideal [10, Theorem 26]. Hence A is an invertible fractional
ideal of R.
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Lemma 2.6. Let R be an h-local domain, and let X and Y be rank
one R-modules such that (R,E(X)) is a weak UDI pair. Then X ∼=℘ Y
if and only if XA = Y for some invertible fractional ideal A of R.

Proof. Suppose X(n) ∼= Y (n). Then the canonical homomorphism,
X ⊗R HomR(X,Y ) → Y is surjective, and it follows that X[Y :
X] = Y . The existence of a splitting map for the induced surjection
X(n) → Y shows that 1 ∈ [Y : X][X : Y ] ⊆ E(X). In particular,
[Y : X][X : Y ] = E(X), and it follows that [Y : X] is an invertible
fractional ideal of E(X). (Indeed, if q ∈ [X : Y ] ∩ [Y : X], then
q[Y : X] ⊆ E(X) and q[X : Y ] ⊆ E(X).) Set B := [Y : X]
and S := E(X). By Lemma 2.5, a fractional invertible ideal A of
R exists such that SA = B. Thus XA = XSA = XB = Y .
Conversely, suppose XA = Y for some invertible fractional ideal of
R. By Lemma 2.4, Pic (R) is torsion, so An ∼= R for some n > 0.
It follows that A(n) ∼= R(n) (see [7], for example). Since A and R
are flat R-modules, it follows that Y (n) ∼= (XA)(n) ∼= (X ⊗R A)(n) ∼=
X ⊗R A(n) ∼= X ⊗R R(n) ∼= (X ⊗R R)(n) ∼= X(n), and the claim is
proved.

Theorem 2.7. An h-local integral domain R has UDI if and only if
R has weak UDI and Pic (R) = 0.

Proof. Suppose R has weak UDI, Pic (R) = 0 and I1 ⊕ · · · ⊕ In
∼=

J1⊕· · ·⊕Jn for some ideals I1, . . . , In, J1, . . . , Jn of R. After reindexing
we may assume that, for each j ≤ n, Ij

∼=℘ Jj . Since E(Ij) is a
fractional ideal of R for each j ≤ n, it follows that (R,E(Ij)) is a weak
UDI pair. By Lemma 2.6, Ij = AJj for some invertible fractional ideal
A of R. By assumption A is a principal ideal of R, so Ij

∼= Jj . The
converse is clear from Lemma 2.4.

It follows that if R is a domain with only finitely many maximal
ideals, then R has weak UDI if and only if R has UDI.

3. Main reductions. In this section we prove reduction theorems
for our various Krull-Schmidt properties. The first two lemmas, proved
elsewhere, play a role similar to that of the “package deal” theorems of
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Levy and Odenthal [9].

Lemma 3.1 [7, Proposition 2.8, Theorems 2.11 and 2.13]. Let R be
an h-local integral domain and G and H be torsionless R-modules.

(i) If Pic (R) = 0, then G ∼=l H if and only if G⊕R ∼= H ⊕R.

(ii) If Pic (R) = 0, G ∼=l H and G has a summand isomorphic to an
ideal of R, then G ∼= H.

(iii) If Pic (R) is torsion and G ∼=l H, then G ∼=℘ H.

Lemma 3.2. Let R be an h-local domain with complemented max-
imal ideal. If G ∼=l H, then G is indecomposable if and only if H is
indecomposable.

Proof. The lemma is proved in [7, Corollary 3.2] under the more
general hypothesis that R is an h-local domain and RN is a valuation
domain for almost all maximal ideals N of R. That this hypothesis is
indeed more general is a consequence of Lemma 2.1(ii).

Lemma 3.3. Let R be an h-local domain with complemented maxi-
mal ideal M . If G := G1 ⊕· · ·⊕Gn and H := H1 ⊕· · ·⊕Hm are direct
sums of torsionless RM -modules such that G ∼= H, then torsionless R-
modules G′ := G′

1 ⊕ · · · ⊕G′
n and H ′ := H ′

1 ⊕ · · · ⊕H ′
m exist such that

G′ ∼=l H ′ and, for all i ≤ n, j ≤ m, Gi = (G′
i)M and Hj = (H ′

j)M .

Proof. We may assume that, for each i ≤ n and j ≤ m, free R-
modules Ei ⊆ QGi and Fj ⊆ QHj exist such that Gi ⊆ (Ei)M and
Hj ⊆ (Fj)M . For each i ≤ n and j ≤ m, let G′

i and H ′
j be torsionless

R-modules defined by G′
i = Gi ∩ Ei and H ′

j = Hj ∩ Fi. Then, for all
i, j, Gi = (G′

i)M and Hj = (H ′
j)M . By Lemma 2.1(ii), RN is a DVR for

each maximal ideal N �= M . Thus, the torsionless RN -modules (G′)N
and (H ′)N are free of the same rank for all maximal ideals N �=M . It
follows that G′ ∼=l H ′.

Theorem 3.4. Let R be an h-local domain. The following statements
hold for R.
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(i) R has weak UDI if and only if Pic (R) is torsion and R has a
complemented maximal ideal M such that RM has UDI.

(ii) R has UDI if and only if Pic (R) = 0 and R has a complemented
maximal ideal M such that RM has UDI.

(iii) R has weak TFKS if and only if Pic (R) is torsion and R has a
complemented maximal ideal M such that RM has weak TFKS.

(iv) R has TFKS if and only if locally isomorphic torsionless modules
are isomorphic and R has a complemented maximal ideal M such that
RM has TFKS.

(v) R has the Krull-Schmidt property for rank one modules if and
only if Pic (R) = 0 and R has a complemented maximal ideal M such
that RM has the Krull-Schmidt property for rank one modules.

Proof. (i) Suppose first that R has weak UDI. By Lemma 2.4, Pic (R)
is torsion and a complemented maximal idealM exists. If G and H are
completely decomposable torsionless RM -modules such that G ∼= H,
then, by Lemma 3.3, completely decomposable torsionless R-modules
G′ and H ′ exist such that G = G′

M , H = H ′
M and G′ ∼=l H ′. Thus, by

Lemma 3.1, G′ ∼=℘ H ′ and, since R has weak UDI, it follows that RM

has weak UDI. By Theorem 2.7 and the remark that follows it, RM has
UDI.

To prove the converse, assume that M is a complemented maximal
ideal of R, RM has UDI and the Picard group of R is torsion. Suppose
G := I1 ⊕ · · · ⊕ In, H := J1 ⊕ · · · ⊕ Jn are direct sums of ideals of R
such that G ∼= H. Since RM has weak UDI we have, after reindexing,
(Ij)M ∼=℘ (Jj)M for each j. For each maximal ideal N �= M , RN is a
DVR so I

(k)
j

∼=l J
(k)
j for some k > 0. Thus, by Lemma 3.1, Ij

∼=℘ Jj

for all j ≤ n.

(ii) If R has UDI, then R has trivial Picard group and complemented
maximal ideal M (Lemma 2.4) and, by (i), RM has UDI. The converse
follows from (i) and Theorem 2.7.

(iii) Suppose R has complemented maximal ideal M , RM has weak
TFKS and Pic (R) is torsion. By Lemma 3.2, if G is an indecomposable
torsionless R-module, then GM is indecomposable. Let G1, . . . , Gn,
H1, . . . , Hm be indecomposable torsionless R-modules such that G1 ⊕
· · · ⊕ Gn

∼= H1 ⊕ · · · ⊕ Hm. Passing to RM , each (Gi)M and (Hi)M
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remains indecomposable. Thus the assumption that RM has weak
TFKS implies that n = m and, after reindexing, (Gi)M ∼=℘ (Hi)M
for all i ≤ n. Since R is h-local, RN is a DVR for each maximal ideal
N �= M . Thus, for each maximal ideal N �= M , (Gi)N and (Hi)N are
free RN -modules of the same rank. Thus G(k) ∼=l H(k) for some k > 0
and, by Lemma 3.1, Gi

∼=℘ Hi for all i ≤ n.

Now suppose R has weak TFKS. By Lemma 2.4 it suffices to show
that RM has weak TFKS where M is a complemented maximal ideal
of R. Suppose G1 ⊕ · · · ⊕ Gn

∼= H1 ⊕ · · · ⊕ Hm for indecomposable
torsionless RM -modules Gi and Hj . By Lemma 3.3, indecomposable
torsionless R-modules G′

i and H ′
j exist such that Gi = (G′

i)M and
Hj = (H ′

j)M for each i ≤ n and j ≤ m. Moreover, if G′ := G′
1⊕· · ·⊕G′

n

and H ′ := H ′
1 ⊕ · · · ⊕ H ′

m, then G′ ∼=l H ′. Thus, by Lemma 3.1,
G′ ∼=℘ H ′ and, since R has weak TFKS, we have n = m and, after
reindexing, G′

i
∼=℘ H ′

i for all i. Thus Gi
∼=℘ Hi for all i, proving RM

has weak TFKS.

(iv) Suppose R has TFKS and G and H are locally isomorphic
torsionless R-modules. Then Pic (R) = 0 by (ii) and, by Lemma 3.1(i),
G ⊕ R ∼= H ⊕ R. Since R has TFKS, G ∼= H and we conclude that
locally isomorphic torsionless R-modules are isomorphic. By (ii), R
has a complemented maximal ideal M . The proof that RM has TFKS
is similar to the proof that RM has weak TFKS in (iii). Suppose
G1 ⊕ · · · ⊕ Gn

∼= H1 ⊕ · · · ⊕ Hm for indecomposable torsionless RM -
modules Gi and Hj . Let G′, H ′, G′

i and H ′
j be as in Lemma 3.3. Then

G′ ∼=l H ′ so, by Lemma 3.1, G′ ⊕ R ∼= H ′ ⊕ R. Since R has TFKS,
we have n = m and, after reindexing, G′

i
∼= H ′

i for all i ≤ n. Thus,
Gi

∼= Hi for all i and RM has TFKS.

Conversely, note that if locally isomorphic torsionless R-modules are
isomorphic then since every invertible ideal of R is locally isomorphic to
R, we have Pic (R) = 0. Thus, by (iii), R has weak TFKS and it suffices
to check that if G ∼=℘ H for torsionless indecomposable R-modules G
and H, then G ∼= H. By Lemma 3.2, GM and HM are indecomposable
RM -modules. Since RM has TFKS, GM

∼= HM . Moreover, RN is a
DVR for all maximal ideals N �= M of R so G ∼=l H. By assumption,
G ∼= H.

(v) If R has the Krull-Schmidt property for rank one modules, then,
by Lemma 2.4, Pic (R) = 0 and R has a complemented maximal
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ideal M . Since rank one RM -modules are rank one R-modules, RM

has the Krull-Schmidt property for rank one modules. Conversely,
suppose M is a complemented maximal ideal of R, RM has the
Krull-Schmidt property for rank one modules and Pic (R) = 0. As
in [6, Theorem 4.3], our argument is modeled on a classical proof
of a theorem of Baer for abelian groups. Recall the terminology
and notation of quasi-isomorphism and types from the introduction.
Suppose G := X1 ⊕ · · · ⊕ Xn and H := Y1 ⊕ · · · ⊕ Yn are direct sums
of rank one R-modules Xi and Yj such that G ∼= H. Since types are
preserved under isomorphism, G(τ ) ∼= H(τ ) and G/G(τ ) ∼= H/H(τ ) for
all types τ . Select a type τ that is maximal with respect to the types
of the Xi and Yi. Then G(τ ) ∼= H(τ ) and, without loss of generality,
we may assume X1⊕· · ·⊕Xk

∼= Y1⊕· · ·⊕Yk, where k ≤ n and each Xi

and Yi has type τ . After reindexing, we may assume (Xi)M ∼= (Yi)M
for all i ≤ k. Moreover, since the Xi and Yi have the same type and RN

is a DVR for all N �=M , it follows that (Xi)N ∼= (Yi)N for all N �=M .
ThusXi

∼=l Yi for all i ≤ k andXi and Yi are quasi-isomorphic rank one
modules. In particular, [Xi : Yi][Yi : Xi] = E(Yi), since localizations
commute with brackets of quasi-isomorphic rank one modules over h-
local domains [4, Lemma IV.3.10]. Set B = [Xi : Yi] and S = E(Yi).
Then B is an invertible fractional ideal of S, and (RM , SM ) is a weak
UDI pair, so by Lemma 2.5, B = SA for some invertible fractional
ideal A of R. Since Pic (R) = 0, B is a principal fractional ideal of S,
and it follows that Xi

∼= Yi for all i ≤ k. Since G/G(τ ) ∼= H/H(τ ), an
inductive argument completes the proof that R has the Krull-Schmidt
property for rank one modules.

It would be interesting to know whether the requirement in (iv) that
RM has TFKS can be amended to require only that RM has weak
TFKS. (Compare Theorem 2.7.) In the Prüfer and Noetherian cases,
the answer is affirmative.

Corollary 3.5. Let R be a domain that is Noetherian or Prüfer.
Then R has TFKS if and only if R has weak TFKS and locally
isomorphic torsionless modules are isomorphic.

Proof. Apply Lemma 3.1 and Theorem 3.4 and use the fact that
over quasilocal Prüfer or Noetherian domains, power isomorphism
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of torsionless modules implies isomorphism [3, Theorem 2.11] and
[4, Proposition I.10.7 and Theorem XV.7.4].

Theorem 2.7 suggests that the requirement in Corollary 3.5 that
locally isomorphic torsionless modules are isomorphic might be replaced
by the weaker requirement that Pic (R) = 0. We do not know if this is
the case.

4. Noetherian case. The characterization of one-dimensional
Noetherian domains satisfying TFKS is contained in [8]. In this section
we give our own version of Levy and Odenthal’s description of TFKS,
which depends upon the splitting of the singular maximal ideal in the
integral closure of R.

A characterization of Noetherian domains with UDI was given in [6];
however, the one-dimensional version is more easily stated and is all we
require here.

Theorem 4.1 [6, Theorem 3.2]. Let R be a one-dimensional Noethe-
rian domain. Then R has UDI if and only if R has a maximal ideal M
such that every other maximal ideal is principal and, if M splits in R,
then M satisfies one of the following conditions.

(i) MR = P1P
e2
2 such that e2 ≥ 1, R/P1

∼= R/M where P1, P2 are
distinct maximal ideals of R.

(ii) MR = P1P2P3 where P1, P2, P3 are distinct maximal ideals of
R,R/Pj

∼= R/M for all j = 1, 2, 3 and R is finitely generated over R.

Theorem 4.2 (After Levy and Odenthal). Let R be a one-
dimensional Noetherian domain. Then R satisfies TFKS if and only if
locally isomorphic torsionless modules of R are isomorphic and R has
a complemented maximal ideal M such that if M splits in R, then R
is finitely generated over R and has exactly two maximal ideals P1, P2

lying over M , MR = P1P2 and R/P1
∼= R/P2

∼= R/M .

Proof. We first interpret a commutative version of one of the main
theorems of [8], which we designate by (LO): A Noetherian one-
dimensional domain R has TFKS if and only if locally isomorphic
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torsionless modules are isomorphic and R has a complemented maximal
ideal M such that either

(a) RM is local or

(b) R is finitely generated over R and R has exactly two maximal
ideals P1, P2 over M such that, for some ring Ψ, there are ring epi-
morphisms f : R → Ψ and g : R → Ψ such that Ker f = P h

1 and
Ker g = P h

2 for some h ≥ 1 and R = {x ∈ R | f(x) = g(x)}.

Assume that R satisfies TFKS. Then, by Theorem 3.4, locally isomor-
phic torsionless modules of R are isomorphic, R has a complemented
maximal M and RM satisfies TFKS. If R is a PID, there is noth-
ing to show so suppose RM �= RM . By (LO) and Theorem 4.1, it is
enough to consider the case where R is a finitely generated R-module,
MR = P1P

e2
2 for distinct maximal ideals P1, P2 of R and R/P1

∼= R/M .
By (LO), R/P h

1
∼= R/P h

2 as rings for some h ≥ 1. Observe that R/P h
1

has vector space dimension h over R/M , while R/P h
2 has dimension h·d

where d is the dimension of R/P2 over R/M . Therefore, R/P2
∼= R/M

also. Write h = me2 + l with 0 ≤ l < e2. When l = 0, from the
fact that Mm ⊆ P e2m

2 , it follows that f(Mm) must be zero. This im-
plies Mm ⊆ P h

1 . But MRP1 = P1RP1 and so h ≤ m. This can only
happen when e1 = 1, as claimed. Finally, if l > 0, then in this case,
Mm+1 ⊆ P h

2 , implying that Mm+1 ⊆ P h
1 as before. Then m + 1 ≥ h,

implying that m(1− e2) ≥ l − 1. Again we must have e2 = 1.

To establish the converse, note that, by comparing (LO) with The-
orem 4.1, we need only consider the possibility that M splits in R.
For each j = 1, 2, since R/Pj

∼= R/M , R = R + Pj . Moreover,
P k

j /P k+1
j

∼= R/M for all k > 0, so P k
j = Mk + P k+1

j . It follows
that R = R + P k

j for all k > 0. Let h be the smallest positive integer
such thatMhR ⊆ R and define ι : R/Mh → R/MhR = R/P h

1 ⊕R/P h
2 .

For πj : R/MhR → R/P h
j equal to the coordinate projection, δj = πjι

is an isomorphism because R+ P h
j = R and a dimension argument for

j = 1, 2. Let βj : R → R/P h
j be the natural map and fj = δ−1

j βj . Then
R = {x ∈ R | f1(x) = f2(x)} and so (b) of (LO) holds. Therefore, R
has TFKS.
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Corollary 4.3. Let R be a one-dimensional Noetherian domain.
Then weak TFKS holds for R if and only if Pic (R) is torsion and R
has a complemented maximal ideal M such that if M splits in R, then
R is finitely generated over R and M splits as in Theorem 4.2.

Proof. Apply Theorems 3.4, Corollary 3.5 and Theorem 4.2.

It is shown in [6, Theorem 4.3] that the Krull-Schmidt property holds
for rank one modules of a one-dimensional UDI Noetherian domain. In
Theorem 4.5, we establish the converse.

Lemma 4.4. If R is an integral domain and every overring of R has
weak UDI, the set of nonmaximal prime ideals of R is linearly ordered.

Proof. Suppose P and Q are incomparable nonmaximal prime ideals
of R. Examination of the proof of Lemma 2.1(i) shows the hypothesis
of h-locality is not needed, so it follows that P and Q are contained in
a common maximal ideal M of R. Thus P +Q is a proper ideal of R.
By assumption, P +Q �= P ∪ Q, so let r ∈ (P +Q) \ (P ∪ Q). Define
S := R[r−1]. Then S is an overring of R contained in both RP and RQ.
Also SP �= S and SQ �= S, but S(P + Q) = S. This implies SP and
SQ are comaximal ideals of S. By Lemma 2.2, we may assume without
loss of generality that S = R + SP . Thus 1 ∈ Rr + SP ⊆ Q + SP so
1 = q + pr−k for some k ≥ 0. Hence rk(1 − q) ∈ P and, since r /∈ P ,
1− q ∈ P . But this implies 1 ∈ Q+ P , a contradiction.

Theorem 4.5. A Noetherian domain R is a one-dimensional UDI
domain if and only if the Krull-Schmidt property holds for rank one
modules of R.

Proof. The Krull principal ideal theorem implies that the set of
prime ideals of a Noetherian domain is linearly ordered only if the
domain has Krull dimension one. Hence, by Lemma 4.4, the Krull-
Schmidt property for rank one modules implies R is one-dimensional.
The converse is established in [6, Theorem 4.3].
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Example 4.6. Overrings of UDI domains need not have weak UDI.
Simply choose R to be an integrally closed local domain of Krull
dimension greater than one. Then R has UDI since all its ideals have
local endomorphism rings [4, Theorem I.9.8], but by Lemma 4.4, R has
an overring without UDI since the prime ideals of R are not linearly
ordered.

In [13], a geometric interpretation of our Krull-Schmidt properties
is given. A number of examples of UDI orders in algebraic number
fields is given in [6], many of which occur in quadratic number fields.
Evidently, if R is an order in a quadratic number field, R has (weak)
UDI if and only if R has (weak) TFKS. This is because every ideal
of R is 2-generated and, hence, torsionless R-modules are completely
decomposable [14]. Thus, using [6], Examples 4.6 and 4.7, one can list
a number of examples of TFKS domains.

5. Non-Noetherian case. In this section we briefly treat the
non-Noetherian case of UDI and TFKS, with special emphasis on the
Prüfer case. As noted in the introduction, all quasilocal Prüfer domains
(= valuation domains) have UDI. Using Theorem 3.4, it is then easy
to describe the h-local Prüfer domains with UDI. Since the rank one
modules of a valuation domain are either divisible or isomorphic to
ideals, the equivalence of UDI and Krull-Schmidt for rank one modules
is also immediate.

Proposition 5.1. The following statements hold for R, an h-local
Prüfer domain.

(i) R has UDI if and only if R has the Krull-Schmidt property
for rank one modules; if and only if R is a Bézout domain with
complemented maximal ideal.

(ii) R has weak UDI if and only if Pic (R) is torsion and R has a
complemented maximal ideal.

The Prüfer cases of TFKS and weak TFKS are not as transparent.
This is because, to our knowledge, the quasilocal case remains unde-
scribed.

Combining the Prüfer description of UDI with results on decompo-
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sitions of torsion-free modules, we obtain characterizations of some
strong forms of the Krull-Schmidt property. By way of application, we
are interested in some of the following variations of the Krull-Schmidt
property. In order to characterize these properties, we recall several
related notions. A Prüfer domain R satisfies (##) if every prime ideal
of R is the radical of a finitely generated ideal of R (see [5, Theorem 3]).
In particular, if every nonzero ideal of a Prüfer domain R is contained
in at most finitely many maximal ideals of R, then R satisfies (##),
but the converse is not true ([5, Theorem 5]). A Prüfer domain R is
h-local if and only if R satisfies (##) and each nonzero prime ideal of
R is contained in a unique maximal ideal of R [11, Proposition 3.4].

Recall that a D-ring is an integral domain R for which every torsion-
free finite rank R-module decomposes into a direct sum of rank one
R-modules. There is an extensive theory of D-rings due to Matlis (see
[10]).

We need also the notion of an almost maximal ring, that is, a ring for
which R/I is a linearly compact R-module for all nonzero ideals I. A
Prüfer domain R is almost maximal if and only if Q/R is an injective
R-module and R is h-local (see [2, Proof of (2)⇔ (5) in Theorem 4.8]).
The main thrust of the next proposition is that we do not have to
assume R is an h-local domain.

Proposition 5.2. Let R be an integral domain.

(i) R is an h-local Bézout domain with complemented maximal ideal
if and only if, for each R-module G := I1 ⊕ · · · ⊕ In, that is a direct
sum of ideals of R, every pure submodule of G is a summand of G that
is isomorphic to a direct sum of the Ijs.

(ii) R is an almost maximal Bézout domain with complemented
maximal ideal if and only if, for each torsionless R-module G, G ∼=
I1 ⊕ · · ·⊕ In for some ideals Ij of R, and every pure submodule of G is
a summand of G that is isomorphic to a direct sum of the Ijs.

(iii) R is an almost maximal Bézout domain with complemented
maximal ideal if and only if R is a Prüfer (##) domain such that
every torsionless R-module decomposes uniquely, up to isomorphism,
into a direct sum of rank one modules.

(iv) R is a quasilocal D-ring if and only if every torsion-free finite
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rank R-module decomposes uniquely, up to isomorphism, into a direct
sum of rank one R-modules.

Proof. (i) An integral domain R is an h-local Prüfer domain if
and only if pure submodules of completely decomposable torsionless
R-modules are summands ([12, Theorem 3.2]). This implies h-local
Prüfer domains have the property that pure submodules of completely
decomposable torsionless modules are completely decomposable. Thus,
the asserted property holds if and only if R is an h-local Prüfer domain
with UDI.

(ii) By (i), the stated decomposition property implies that R is an
h-local Prüfer domain with UDI. A Prüfer domain R is almost maximal
if and only if R is h-local and every torsionless R module is completely
decomposable [4]. Thus the given decomposition property and (i) imply
R is an almost maximal Bézout domain with complemented maximal
ideal. The converse is clear from (i) and the cited result.

(iii) Assume torsionless R-modules decompose uniquely into a direct
sum of modules and that R is a Prüfer (##) domain. We show
first that R is a locally almost maximal Prüfer domain. Let M be
a maximal ideal of R and G a torsionless RM -module. Then there is
a free R-module F such that G ⊆ FM . Define G′ := G ∩ F ; then G′

is a torsionless R-module and G′
M = G. By assumption G′, hence

G, is completely decomposable. If every torsionless RM -module is
completely decomposable, then RM is an almost maximal valuation
domain [4, Theorem XV.2.3]. Thus each localization of R at a maximal
ideal is an almost maximal valuation domain. We show R is h-local.
Since R satisfies (##), it is enough to check that each nonzero prime
ideal of R is contained in a unique maximal ideal of R. Suppose P is
a prime ideal of R contained in at least two maximal ideals N1 and
N2 of R. Set S := R \ (N1 ∪ N2), T := RS , A := MS , B := NS and
L := PS . Then LTL = L and T/L has quotient field TL/L. Since
RN1 and RN2 are almost maximal valuation domains, TA/L and TB/L
are independent maximal valuations with common quotient field TL/L.
As such, each must have a divisible value group [15, Theorem A]. But
since R has UDI, R has a complemented maximal ideal and at least
one of A and B is principal. In particular, the value group of TA/L or
TB/L must have a copy of Z as a summand. This contradiction implies
each nonzero prime ideal of R is contained in a unique maximal ideal of
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R. Consequently, since R satisfies (##), R is an h-local locally almost
maximal domain; hence, R is almost maximal [4, Theorem IV.3.9].
Since R has UDI, R must be a Bézout domain. This proves the claim.
The converse follows from (ii).

(iv) Suppose R is a quasilocal D-ring. Then the integral closure
of R is a valuation domain [10, Theorem 72]. Thus the integral
closure of every overring of R is a valuation ring, hence quasilocal,
and this forces every overring of R to be quasilocal. In particular,
rank one modules have quasilocal endomorphism rings so the Krull-
Schmidt property holds for rank one modules. Since R is a D-ring,
(d) follows. Conversely, suppose torsion-free finite rank R-modules
decompose uniquely into direct sums of rank one R-modules. Then
R is a D-ring with UDI. An integrally closed D-ring is the intersection
of at most 2 maximal valuation domains [10]. However, R has a
complemented maximal ideal, so if R has two maximal ideals M and
N , one of these ideals, say N , is principal. In particular, the maximal
valuation domain RN has a nondivisible value group. As in the proof of
(iii), this is in contradiction to the fact that two independent maximal
valuation domains having the same quotient field each have divisible
value group. Thus R is quasilocal; hence, R is quasilocal and a D-ring.

Using the following proposition, one can construct examples of non-
Noetherian UDI domains for which h-locality fails in a strong way.

Proposition 5.3. Let R be an integral domain with a prime ideal P
such that PRP = P . Then the Krull-Schmidt property holds for rank
one modules of R if RP is a DVR and the Krull-Schmidt property holds
for rank one modules of R/P .

Proof. For each ideal I of R, there is an exact sequence,

HomR(I, P ) −→ HomR(I, RP ) −→ HomR(I, RP /P ) −→ ExtR(I, P ).

Now P is a principal ideal of RP , so ExtR(I, P ) ∼= ExtRP
(IRP , P ) =

0. Also we have HomR(I, RP /P ) ∼= HomR(I/IP,RP/P ), hence
HomR(I, P )→ HomR(I, RP ) is surjective if and only if I = IP . Note
that, if I = IP , then clearly HomR(I/IP,RP/P ) = 0. On the other
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hand, if HomR(I/IP,RP/P ) = 0, then, since RP /P is the quotient
field of R/P and I/IP is a torsion-free R/P -module, it must be the
case that I = IP .

Tensoring both sides of I1 ⊕ · · · ⊕ In
∼= J1 ⊕ · · · ⊕ Jn with R/P yields

I1/PI1 ⊕ · · ·⊕ In/PIn
∼= J1/PJ1 ⊕ · · · ⊕Jn/PJn. After reindexing, we

may assume that m,m′ ≤ n exist such that I1/PI1 ⊕ · · · ⊕ Im/PIm
∼=

J1/PJ1 ⊕ · · · ⊕ Jm′/PJm′ and no Ik/PIk or Jl/PJl is trivial for
k ≤ m, l ≤ m′. The preceding argument shows that, for all k ≤ m,
HomR(Ik, P )→ HomR(Ik, RP ) is not surjective, so Ik is isomorphic to
an R-submodule of RP that is not contained in P . Similarly, for all
l ≤ m′, Jl is isomorphic to an R-submodule of RP that is not contained
in P . Thus we assume that Ik, Jl ⊆ RP but Ik, Jl �⊆ P for all k ≤ m,
l ≤ m′. In particular, IkRP = JlRP = RP implies IkP = JlP = P
for all k ≤ m, l ≤ m′. Since Ik/P , Jl/P ⊆ RP /P , each Ik/P , Jl/P
is a rank one R/P -module. Thus m = m′ and, after reindexing, we
may conclude that Ik/P ∼= Jk/P for each k ≤ m. It follows that
a, b ∈ R exists with b /∈ P such that aIk + P = bJk. If a ∈ P , then
aIk ⊆ PIk = P and P = bJk. However, this implies that RPJk = Jk,
hence PJk �= P since RP is a DVR. This contradiction forces a /∈ P .
Thus, since P = PIk ⊆ Ik and a−1P = P , we have P ⊆ aIk proving
that, for all k ≤ m, Ik

∼= Jk. If k > m, then IkP = Ik and JkP = Jk.
Since RP is a DVR, Ik and Jk are principal ideals of RP , hence Ik

∼= Jk.
It follows that R has UDI.

Finally, observe that if X is a proper submodule of Q, the quotient
field of R, then XP �= Q since XP = Q would force Q = XP ⊆ X.
Thus X is a fractional ideal of the DVR RP and, since RP is a fractional
ideal of R, X is a fractional ideal of R. It follows that every proper
rank one R-module is a fractional ideal of R. This proves the claim.

Example 5.4. There exist domains that are not h-local but that
satisfy the Krull-Schmidt property for rank one modules. Let R be any
domain that has the Krull-Schmidt property for rank one modules.
Denote its quotient field by Q and define S := R + XQ[X](X). Then
by Proposition 5.3, S has UDI. If R has infinitely many maximal ideals
(e.g. R = Z), then XQ[X](X) is a prime ideal of S that is contained in
infinitely many maximal ideals of S; hence, S is not h-local.
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