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THE AFFINITY OF SET THEORY AND
ABELIAN GROUP THEORY

PAUL C. EKLOF

ABSTRACT. This paper reviews the uses of set theory to
solve some long-standing problems in a number of different
areas of abelian group theory. In some cases the solution is
an independence result (from ZFC, the ordinary axioms of set
theory); in other cases the result is a theorem of ZFC proved
by combinatorial methods. In the interests of breadth, and
to keep within the prescribed bounds of space, some depth
and detail have been sacrificed and the emphasis is on key
developments in the early history of each area. In general,
except for Butler groups, a cut-off date of about 1990 has
been observed, except for brief references to selected later
developments. Also, for reasons of space, the bibliography
is not complete.

1. Slenderness and reflexivity. One of the first cases where set
theory beyond ZFC had an impact on abelian group theory was the
appearance of measurable cardinals in the study of slender groups. As
is well known, the theory of slenderness originated with �Loś and first
appeared in Fuchs’ 1958 book [37]. While the definition of slender
involves homomorphisms from Zω into the slender group L, Theorem
47.2 of [37] states a property that holds for homomorphisms from Zκ

into L provided that κ is a cardinal less than the first measurable
cardinal, if there is one. (This is anticipated in [20].) Fuchs recalls
that �Loś, when he outlined the proof,

“had a clear idea that the cardinality restriction was unavoid-
able. The proof in the book follows closely his outline. I was
surprised, because I had never seen anything like that before
and was hoping that the restriction could be removed, but as
we worked on the details of the proof, it became clear to me
that it was impossible to get rid of it.”

The notion of a measurable cardinal was defined by Ulam in a 1930
paper [91]. Ulam and Tarski proved that a measurable cardinal λ
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is strongly inaccessible; a footnote in [37] incorrectly states that the
least measurable cardinal does not exceed the first inaccessible; in fact,
as Kanamori [57, p. 27] says, “whether the least measurable cardinal
is strictly larger than the least inaccessible cardinal became a focal
question, and was settled only thirty years later” (by Hanf and Tarski
in the affirmative).

A consequence of �Loś’s theorem is that, for cardinals κ less than the
first measurable cardinal, Zκ is reflexive, that is, naturally isomorphic
to its double dual; the key is that Hom (Zκ,Z) is naturally isomorphic
to ⊕κHom(Z,Z) ∼= Z(κ). (In 1954, Zeeman [92] proved this for κ
less than the first strongly inaccessible cardinal, generalizing Specker
who proved it for κ = ℵ0 and independently Ehrenfeucht and �Loś [20]
announced it for κ less than the first measurable cardinal.) In the
early 1980’s Eda [17, 19] generalized the result so that it applies to
all cardinals. The crucial idea is to use ω1-complete ultrafilters, i.e.,
those closed under countable intersections. (A cardinal κ is ≥ the first
measurable cardinal if and only if there is an ω1-complete ultrafilter on
κ which is not principal.) In particular, for arbitrary κ, Hom (Zκ,Z)
is naturally isomorphic to ⊕DHom(Zκ/D,Z) where the direct sum is
over all ω1-complete ultrafilters, D, and Zκ/D denotes the ultraproduct
with respect to D. It follows that the double dual of Zκ is free for all
cardinals κ, but Zκ is reflexive only if κ is below the first measurable
cardinal. (See [31] for an exposition.) It remains an open question
whether there is a reflexive group of measurable cardinality.

One can define a notion of M -slender by replacing Zω in the definition
of slender with a suitable subgroup M of Zω. Göbel and Wald [44]
showed that Martin’s axiom implies that there are the maximum
possible number of different notions of M -slender; on the other hand,
Blass and Laflamme [4] showed that it is consistent with ZFC that there
are exactly the minimal possible number, four, of different notions. If
the continuum hypothesis fails, it becomes an interesting question to
ask for the minimal size of a subgroup M of Zω such that Z is M -
slender; Eda [18] and Blass [3] considered the question and Blass, in
particular, related it to several other, well-studied, so-called cardinal
invariants of the real numbers.

In 1985 I visited Alan Mekler at Simon Fraser University and gave
a course on reflexive groups, with the aim of understanding and com-
pleting a construction by Shelah of strongly nonreflexive groups. This
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led to [33] and to the idea of writing a book [31] with Alan Mekler
on the broader subject of set-theoretic methods in module theory. It
contains a chapter of new results on dual groups by Mekler and Shelah,
as well as an exposition of results by the “Japanese school.” (The new
edition [32] contains later developments on dual groups, in particular
by Mekler’s student Greg Schlitt.)

2. Ext. Whitehead’s problem asks whether Ext (A,Z) = 0 implies
that A is free. In the 1950s, Stein and Ehrenfeucht showed that the
answer is affirmative for countable A. For uncountable A prior to
1973, Nunke [73] says: “Many people: J. Rotman, myself, S. Chase,
P. Griffith have studied this problem obtaining meager results.” In
hindsight, this was because the axioms of ZFC would not allow much
more to be proved. In one case, Chase [5] went beyond ZFC and
invoked a weak form of the continuum hypothesis (CH) to prove that,
in modern terminology, every Whitehead group is strongly ℵ1-free.

Saharon Shelah relates that in 1973 he had the habit of looking every
week at the new books displayed in the Hebrew University library.

“One day [in July 1973] I have come and see the second volume
of László; its colour was attractive green. I take it and ask
myself isn’t everything known on [abelian groups]... I start to
read each linearly; after reading about two thirds of the first
volume I move to the second volume and read the first third. I
mark the problems (I think six) which attract me combination
of being stressed by László, seem to me I have a chance, and
how nice the problem look.”

By September 4, 1973, Shelah had submitted to the Israel Journal
a paper [77] proving that the solution to Whitehead’s problem is
independent of ZFC and answering some other open problems as well.

“I have thought the most important is to build indecomposable
abelian groups in every cardinality. I thought the independence
of Whiteheads’ problem will be looked on suspiciously. As you
know abelian group theorists thought differently”.

The paper proved that two different set-theoretic hypotheses (Mar-
tin’s axiom +¬CH and V = L) each consistent with ZFC, implied,
respectively, negative and affirmative answers to Whitehead’s problem
for groups of cardinality ℵ1. The affirmative result used the fact that,
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under V = L, Jensen’s “diamond” prediction principles, �(S), held at
every stationary subset S of ℵ1. These principles have now become
familiar and useful instruments in the abelian group theorist’s toolbox,
but at the time they were unfamiliar to most algebraists and the proof
was not easy to read. Consequently, some false claims circulated that
the affirmative result could be derived from the continuum hypothesis
(CH) alone.

In the exposition [22] of Shelah’s independence result, I used strongly
ℵ1-free groups in the proof that MA +¬CH implies there are Whitehead
groups which are not free. However, Shelah’s original paper had used a
larger class of groups (those not satisfying “Possibility I”), previously
unknown to group theorists, which I later called the Shelah groups.
Shelah’s insight was demonstrated by the fact that it later became
clear that this larger class of groups consisted of precisely the groups
of cardinality ℵ1 which are Whitehead in a model of MA +¬CH;
by constructing a Shelah group which is not strongly ℵ1-free, Shelah
showed that Chase’s result requires the weak CH, cf. [82].

Among early workers who made use of Shelah’s method were Mekler
[66], Huber [53, 54, 55], Hiller [52], Sageev [75, 76] and myself [23].
The first four focused on the structure of Ext. Hiller (a graduate
student in topology at MIT) noticed the application to a topological
question posed by Kan andWhitehead [56]. Huber and Hiller, in a joint
paper with Shelah [51], provided a definitive account of the torsion-free
rank of Ext (A,Z) assuming V = L. Huber recalls how Shelah improved
the paper:

“Saharon himself came to Zurich for a talk on August 22, 1977.
After the talk I introduced myself to him. In no time he realized
how to adapt my argument to obtain a much better result. We
walked to downtown Zurich and had a Swiss cheese fondue in
the ‘Dézaley.’ While steering the bread in the cheese Saharon
was sketching the proof of the new result on a copy of the
preprint. I kept that preprint for a long time. Besides Saharon’s
hand-writing there were some spots of melted cheese from the
fondue!”

In particular, V = L implies Ext (A,Z) cannot equal Q. Later, Shelah
[85] proved, by a difficult direct forcing argument, that it is consistent
with GCH that Ext (A,Z) = Q.
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By 1976 Shelah had succeeded in proving that Whitehead’s problem
is independent of CH. (For more on this early history, see [27].) In the
course of this investigation, he and Devlin discovered the weak diamond
principle, which is equivalent to weak CH (and can be used to prove
Chase’s result). He also introduced the uniformization principles, which
are consistent with GCH and have become another important tool;
they have been used in algebra by Shelah, Mekler, Trlifaj and myself,
among others. They can also be used to give a purely combinatorial
equivalent to the Whitehead problem. (See [32, Chapter 13] for some
of these uses.)

The problem of whether Baer groups (groups A such that Ext (A, T ) =
0 for all torsion groups T ) are free was finally settled, in the affirmative,
in ZFC, by Griffith in 1969. Kaplansky, in 1962, began the study of
Baer modules over arbitrary domains; for nonhereditary domains, Grif-
fith’s method does not work, but Fuchs realized that Shelah’s argument
under V = L could be carried out in ZFC when the second factor in Ext
ranged over the class of torsion groups, rather than a single group. The
result was a proof in ZFC that Baer modules over valuation domains
are free [28] and a reduction of the problem for modules over arbitrary
domains to the countably-generated case [29].

3. Almost free groups. It is a consequence of Reinhold Baer’s
fundamental work on torsion-free groups that there are ℵ1-free groups,
e.g., Zω, which are not free. Problem 10 in Fuchs’ 1970 book [38] asked
for which cardinals κ are there κ-free groups which are not κ+-free. In
1972, Griffith [46] showed that, for all n ∈ ω, there are ℵn-free groups
which are not free, but didn’t determine their cardinality. In 1974, Hill
[49] constructed ℵn-free groups of cardinality ℵn which are not free;
the proof was an ingenious inductive construction of a “smooth chain”
{Gα : α < ωn} of free groups of cardinality ℵn−1, with requirements
on the quotients Gβ/Gα, α < β. (Some of the ideas go back to Hill’s
1969 construction [47] of a “Fuchs-5 group” of cardinality ℵ1.)

We will say that there is an almost free group of cardinality κ if
there is a κ-free group of cardinality κ which is not free. By 1973,
several people, including Alan Mekler, David Kueker and John Gregory,
had noticed that there is no almost free group of a weakly compact
cardinality. In 1973, John Gregory announced in an abstract [45] that
V = L implies that an almost free group of cardinality κ exists, even
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one which is strongly κ-free, whenever κ is regular but not weakly
compact. In trying to understand this, I discovered a ZFC result [21]:
that the existence of an almost free group of cardinality κ, for a regular
κ, implied the existence of an almost free group of cardinality κ+. A
key to this (and Gregory’s result) is the role of stationary sets; in order
for the union of the smooth chain {Gα : α < κ+} of free groups of
cardinality κ to be nonfree, it is sufficient that the set of “bad places,”
i.e., the set of α such that Gβ/Gα is nonfree for some β > α, be
stationary. I described how to turn this set into an invariant of an
almost free group, the so-called Γ-invariant [24, p. 259].

One of the most fortunate events of my mathematical career was
that Alan Mekler came from Toronto to become a graduate student at
Stanford in 1970, the same year I arrived there as an assistant professor.
It wasn’t too long before he came to me with some interesting new
results about almost free groups, and from then on I was learning as
much from him as the other way around. His Ph.D. work on almost
free groups (commutative and noncommutative) was published in 1980
[67], though the work was done much earlier. Shelah has said that he
enjoyed working with Alan because of the quickness of his mind and the
breadth of his knowledge and interests (covering many areas of logic
and algebra). Manfred Dugas says

“We are forever grateful for the great job Alan did lecturing to
us and our students [at Essen] on set theory, which did enable
us to make a contribution to the subject.”

Alan was exuberantly brilliant, and it was a great loss, both to math-
ematics and to many of us personally, when he died at age 44 in 1992.

In 1974 Shelah proved his “Singular Compactness Theorem,” a the-
orem of ZFC which (as one special case) says that there are no almost
free groups of singular cardinality [78]. Shelah was aware of Hill’s
proofs of the latter fact for singular cardinals of cofinality ω [48] and
cofinality ω1 [50]. An important motivation of seeking this result was
that it completed the proof from V = L that every Whitehead group,
of arbitrary cardinality, is free. (See [27] for more on the history of
“compactness” results.)

Shelah formulated the singular compactness theorem in an axiomatic
setting, so that it applies to an abstract notion of “almost free”; it
has been applied, for example, in settings where “free” means being
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the union of a certain kind of chain of subgroups, cf. [1] or [29].
Another application that Shelah had in mind from the beginning was
to transversal theory, a branch of combinatorial theory. There was, by
1974, a series of results in that area parallel to those about almost free
groups (for example, an analog of Gregory’s result). He conjectured,
as early as 1975, that this was not an accident and by 1981 was able
to prove it; this theorem (of ZFC) is easy to state but quite difficult
to prove. It says that, for any cardinal λ, there is an almost free
abelian group of cardinality λ if and only if the following combinatorial
property, denoted NPT(λ), holds:

...there is a family of size λ of countable sets which does not
have a transversal (a one-to-one choice function) but such that
every subfamily of size < λ does have a transversal.

The proof was published in 1985 [88] with thanks to Alan Mekler for
“industriously refereeing the paper,” and writing an appendix with
an alternate version of the proof. The most complete exposition of
the proof is published in [31, Chapter 7]. (We had assistance from
Menachem Magidor; Mekler was able to understand his explanations,
which at first were beyond me.) It remains open whether the existence
of a λ-free nonfree noncommutative group of cardinality λ implies
NPT (λ).

The most comprehensive answer, so far, to the question of which car-
dinals λ satisfy NPT(λ) is found in a large paper by Magidor and She-
lah [67]; it was finally published in 1994, but existed in various states
for many years before that while it went through many improvements,
including the elimination of some hypotheses on cardinal arithmetic
by means of Shelah’s powerful “pcf theory.” In particular, it is proved
(in ZFC) that NPT(λ) holds for every regular λ less than ℵω2 (a con-
siderable strengthening of the Hill result); moreover, it is consistent
with GCH (assuming the consistency of the existence of certain large
cardinal) that NPT(ℵω2+1) fails. But it remains open whether it is
consistent that there are only countable many λ satisfying NPT(λ).

In 1980 81 I worked on the structure and classification of ℵ1-separable
groups of cardinality ℵ1 under various set-theoretic hypotheses [26].
When I communicated the results to Mekler, he not only saw how to
simplify some of the proofs but found the deeper reason for the positive
results that followed from the Proper Forcing Axiom: a structural
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property he called “being in standard form” [69], which he presented
at the first Honolulu conference on abelian groups.

4. Indecomposable groups. Problem 21 of Fuchs’ 1958 treatise
[37] asked whether indecomposable groups of arbitrarily large cardinal-
ity exist. By 1958, the barrier of the continuum had been surmounted
and indecomposable groups of cardinality 22ℵ0 had been constructed
by Fuchs, Hulanicki and Sasiada. By the time that Fuchs’ 1973 book
[39] appeared, the work of Fuchs [36] and Corner [6] had led to a proof
of the existence of indecomposables of all cardinalities less than the
first strongly inaccessible cardinal. A construction that worked for all
cardinals was still elusive, although Fuchs [40] was able to go beyond
the first measurable cardinal.

In the same paper [77] in which he showed that the Whitehead
problem was undecidable, Shelah proved (in ZFC) that, for every
cardinal λ, there is a rigid system {Gi : i < 2λ} of abelian groups
of cardinality λ; that is, for every i, End (Gi) ∼= Z and for i 
= j,
Hom (Gi, Gj) = 0. In particular, each Gi is indecomposable. Shelah
followed up in [79] with a related result for p-groups (although just
for arbitrarily large λ-specifically for strong limit cardinals λ, that
is, 2κ < λ whenever κ < λ). Dugas and Göbel [11] corrected an
error in the latter and generalized the result to realize other rings as
endomorphism rings.

Shelah’s proof was based on a general combinatorial method which
he tried to advertise in his 1974 Vancouver ICM lecture (and which
was published in [81]), but “[a]s the suggestion has not been followed
up, ... we develop from it ‘black boxes’ which hopefully can be used by
algebraists.” [86, p. 240]

This is carried out more explicitly in the second half of the paper [87],
published in the proceedings of the 1984 Udine conference; there he
separated out the combinatorics from the algebra and extended it to a
wider class of cardinals than just strong limit cardinals. The two papers
began life as one handwritten paper during the 1980 81 Jerusalem
Model Theory Year. Corner and Göbel extracted another version of
the combinatorics from their reading of a preliminary version of the
paper. It was they who invented the term “Black Box” (as described
by Göbel)



AFFINITY OF SET AND ABELIAN GROUP THEORY 1127

“... on a nice summer evening at home in our backyard in 1982
sitting together with Tony Corner: We had just (essentially)
finished the joint paper in the Proc. LMS with an appendix
on the , and so we searched for a name for the appendix
and immediately liked the name Black Box because it somehow
describe what it is good for. ... I mentioned the [name] Black
Box to Saharon who immediately agreed and used that name.”

It was through the Corner-Göbel paper [7], which contained a wide
range of applications, that the term “Black Box” and the usefulness of
the method became known to algebraists. Since then a whole industry
of applications of the Black Box, to realize endomorphism rings and
give negative solutions to the Kaplansky test problems, among other
uses, has developed. One can consult, for example [31, Chapter 13],
[32, Chapter 14] or [42] for more information.

An additional element is added if one asks for indecomposable groups
which are almost free, or better. Mekler proved, in his thesis, that MA
+¬CH implies that strongly ℵ1-free groups of cardinality ℵ1 are ℵ1-
separable. Assuming V = L, we constructed strongly κ-free groups of
cardinality κ which are indecomposable [30]. Dugas [10] generalized
this to obtain rigid groups under the same hypothesis. Shelah [84]
used weak diamond, instead of diamond. Dugas and Göbel [12]
proved the most general result in this line by realizing suitable rings as
endomorphism rings of strongly κ-free groups, assuming V = L.

5. P -groups. In the early 1950s, Fuchs and Kulikov independently
gave necessary and sufficient conditions, involving cardinal arithmetic,
for a sequence of separable p-groups indexed by an ordinal to be the
Ulm sequence of a p-group, see [37, Section 38].

In 1974 Warfield posed a question about uniquely ω-elongating p-
groups, which he said “was raised long ago by Peter Crawley.” Charles
Megibben [64] employed the set-theoretic methods pioneered by Shelah
to prove that Crawley’s problem for groups of cardinality ℵ1 is undecid-
able in ZFC (by assuming V = L on the one hand and MA +¬CH on
the other). Mekler [69] built on this and used proper forcing to show
that the problem is undecidable in ZFC + GCH. Mekler and Shelah
[70, 71] completed the story of what happens for arbitrary cardinality
when V = L. Megibben also studied ω1-separable p-groups in [65] and
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proved, among other things, that it is undecidable in ZFC whether the
socle determines if the p-group is ω1-separable.

In a series of papers in the 1960s, Nunke studied the structure of
torsion products and, in particular, considered the question of when
Tor (A, B) is a direct sum of countable groups (dsc). He gave a complete
answer when A and B are p-groups of different lengths. The remaining
cases can be reduced to those where A and B are Cλ-groups of length
λ for some λ ≤ ω1. Patrick Keef proved [58] that there are Cω1-groups
A and B of length ω1 such that Tor (A, B) is not a disc if and only
if Kurepa’s hypothesis (KH) fails. KH is the combinatorial hypothesis
that there is a set Y of subsets of ω1 of size ℵ2 such that, for all α < ω1,
{y ∩ α : y ∈ Y } is countable. It is known that KH is independent of
GCH (and implied by V = L). A simplified proof of Keef’s result, using
valuated vector spaces, was given by Cutler and Dimitric [8]. Keef has
given other applications of set theory to the study of torsion products,
for example in [59] and [60]. See [61] for a survey and bibliography.

Ulm’s theorem implies that countable p-groups are determined by
their socles. Dugas and Vergohsen [16] proved that V = L implies that
the only separable p-groups of cardinality ℵ1 which are determined by
their socles are the Σ-cyclic and torsion-complete ones. Shelah [89]
derived the same result from GCH and Mekler and Shelah [72] proved
that the result is independent of ZFC.

6. Butler groups. A finite rank group is called a Butler group if it
is a pure subgroup of a completely decomposable group; these groups
are named for M.C.R. Butler, who studied them in a 1965 paper. In
1983 Bican and Salce [2] gave two different generalizations of the notion
to infinite rank torsion-free groups:

• A is B1 if Bext1(A, T ) = 0 for all torsion T ;

• A is B2 if A is the union of a smooth chain {Aα : α < σ} such that
Aα+1 = Aα + Gα for all α, where Gα is a finite rank Butler group.

They showed that the two notions coincide for all countable groups
and that B2 always implies B1, for arbitrary cardinality. The natural
question was then: does B1 always imply B2? This was answered in the
affirmative for groups of cardinality ≤ ℵω, assuming CH, by Dugas-Hill-
Rangaswamy [14]. Then Fuchs and Magidor, in a collaboration that
began at the Curaçao conference in 1991, gave an affirmative answer
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for all cardinalities under the hypothesis V = L [41]; the proof used
Jensen’s “square” principles. (In [35], Foreman and Magidor identify
a “very weak square” principle, which is sufficient for the result and
consistent with the existence of very large cardinals.) Only recently
have Shelah and Strüngmann [90] constructed a model of ZFC in which
CH fails (2ℵ0 = ℵ4, for example) and there is a B1-group which is not
B2.

Another key question in the subject has been whether Bext2(A, T ) =
0 for all torsion-free A and torsion T . Dugas and Thomé [15] proved
that an affirmative answer for all groups A of cardinality ℵ2 is equiv-
alent to CH. Rangaswamy [74] showed that, under CH, an affirmative
answer implies that every B1-group is B2. In their paper, Fuchs and
Magidor proved that V = L implies an affirmative answer. However,
Magidor and Shelah [63] have proved (with the necessary assumption of
the consistency of some large cardinals) that it is consistent with GCH
that the answer is negative. It remains open whether it is consistent
with CH that there is a B1-group which is not B2.

Acknowledgments. I would like to thank Manfred Dugas, László
Fuchs, Rüdiger Göbel, Martin Huber and Saharon Shelah for their
help; their reminiscences herein are taken from emails to me, with their
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