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ABSTRACT. The purpose of this article is to introduce
an idea to an alternative method for solving the frequency
analysis problem by using univalent functions. The method
represents a bridge between univalent functions and frequency
analysis. More specifically we want to present a way of using
star-like functions in solving the frequency analysis problem.

1. Introduction. The frequency analysis problem is the problem
of determining the unknown frequencies ωj and amplitudes αj in a
trigonometric signal xN (m). The signal values from N observations
are known.

An established method for solving the problem (with roots back to
Wiener and Levinson) may be roughly described in the following way:
From the signal values a certain absolutely continuous measure on
the unit circle is constructed. This gives rise to an inner product,
and in turn to moments and monic orthogonal polynomials (Szegö-
polynomials) on the unit circle. Asymptotic values of some zeros of the
polynomials then lead to the frequencies.

The methods (variations obtained by different choices of measures or
modification of moments) are dealt with in [2] [4], [6] [9]. Throughout
this article these methods all together will be referred to as the “Szegö
polynomial method.”

The purpose of this article is to introduce an alternative method to
solve the problem by using a bridge between univalent functions and
frequency analysis. More specifically we want to present a way of using
star-like functions in solving the frequency analysis problem.

We begin with some definitions.

Received by the editors on September 30, 2001, and in revised form on March
8, 2002.

Copyright c©2003 Rocky Mountain Mathematics Consortium

743



744 R.J. RENSAA

Univalent functions. A function f analytic in the unit disk
D = {z : |z| < 1} is said to be univalent in D if it does not take the
same value twice, i.e.,

z1 �= z2 =⇒ f(z1) �= f(z2), z1, z2 ∈ D.

The theory of univalent functions is largely concerned with the family
S of functions f analytic and univalent in D, normalized by the
conditions f(0) = 0 and f ′(0) = 1, thus having the form

f(z) = z + a2z
2 + · · ·+ anz

n + · · · , z ∈ D.

For our purposes, we will concentrate on the subfamily S∗ of S
consisting of star-like univalent functions. If f ∈ S∗ then f(D) is star-
like with respect to the origin O. This means that the line segment
joining O to every other point w ∈ f(D) is in f(D).

The following result due to Nevanlinna [5] gives a useful analytic
description of star-like functions f :

(1) f ∈ S∗ ⇐⇒ Re
{
zf ′(z)
f(z)

}
≥ 0.

Any function, analytic in the unit disk and mapping D into the right
halfplane, is called a Carathéodory function. The class of such functions
ϕ where in addition ϕ(0) = 1, is denoted P . According to the Herglotz
formula (see, for instance, [1, p. 22]) every ϕ ∈ P can be represented
as a Poisson-Stieltjes integral

(2) ϕ(z) =
∫ 2π

0

eit + z

eit − z
dµ(t),

where dµ(t) ≥ 0 and
∫
dµ(t) = 1.

Remarks.

• The function (zf ′(z)/f(z)) = F (z) when f ∈ S∗ is a Carathéodory
function.

• Conversely, for each Carathéodory function F where F (0) = 1,
there is a function f ∈ S∗ given by F (z) = (zf ′(z)/f(z)).
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Frequency analysis. A noiseless signal is received, assumed to be
on the form

G(t) =
I∑

j=−I

Aje
2πifjt,

where t is the time and fj = −f−j , j = 1, 2, . . . , I, f0 = 0, Aj = A−j ∈
R. Here, fj are the frequencies and |Aj | the amplitudes. The frequency
analysis problem is to determine the unknown frequencies from signal
values observed at times m∆t. Let ωj = 2πfj∆t, where ∆t is chosen
such that we have reason to believe that ωj < π. With the assumption
A0 = 0 the signal may then be written in the form

(3) x(m) = 2
I∑

j=1

Aj cosmωj .

The terms are arranged so that the normalized frequencies satisfy
0 < ω1 < ω2 < · · · < ωI < π.

In the method to be used we shall need a special normalization which,
however, can be assumed without restriction of generality. Define
αj = Aj/K where K > 0 is such that

2
I∑

j=1

α2
j = 1, i.e., αj =

Aj√
2

∑I
j=1 A

2
j

.

The given signal (3) and the signal

(4)
x(m)
K

=: s(m) = 2
I∑

j=1

αj cosmωj

then only differ by the factor K =
√
2

∑I
j=1 A

2
j .

Let, for any positive integer N , ψ(N)(θ) be the positive measure on
the unit circle ∂D = {z : |z| = 1} given by

(5)
dψ(N)(θ)

dθ
=

1
2π

∣∣∣∣∣
N−1∑
m=0

x(m)e−miθ

∣∣∣∣∣
2

.
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In the next section we will use this ψ with s(m) instead.

A crucial point in the theory of frequency analysis is the weak
convergence of the measure (5) divided by N as N tends to infinity.
Then the measure will converge in the weak ∗-topology towards a
discrete measure with support at the points θ = ωj , j = 1, 2, . . . , I.
The weights are A2

j at these points.

2. The main result.

Theorem 1. Given a trigonometric signal of the form

s(m) = 2
I∑

j=1

αj cosmωj ,

αj ∈ R, 0 < ω1 < ω2 < · · · < ωI < π and 2
I∑

j=1

α2
j = 1.

Let

(6)
dψ(N)(θ)

dθ
=

1
2π

∣∣∣∣
N−1∑
m=0

s(m)e−imθ

∣∣∣∣
2

be a positive measure on ∂D and N be any positive integer. Finally,
let

F (N)(z) =
1
N

µ
(N)
0 + 2

∞∑
m=1

1
N

µ(N)
m zm

be the Carathéodory function with ψ(N) as the representing measure,
and let f (N)(z) be defined by

zf (N)′(z)
f (N)(z)

= F (N)(z).

Then

(7) lim
N→∞

f (N)(z) =: f(z) =
z∏I

j=1(1− 2z cosωj + z2)2α2
j

∈ S∗.
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Before proving the theorem, we comment on the mapping properties
of the function (7):

By letting z = eiθ, θ ∈ [0, 2π〉, (7) may be written in the form

f(eiθ) =
1

2(cos θ − cosω1)2α2
1(cos θ − cosω2)2α2

2 · · · (cos θ − cosωI)2α2
I

.

• θ ∈ [0, ω1〉 : f(eiθ) ∈ R+, with the smallest value for θ = θ0 = 0
and f(z)→ ∞ as θ → ω1.

• θ ∈ [ω1, ω2〉 : f(eiθ) is on the slit with angle 2πα2
1 with the positive

real axis, starting at infinity for θ = ω1. By Rolle’s theorem there is
at least one extremum θ = θ1 in the interval. By differentiating we
find that there is only one, giving a minimum for f : the slit endpoint
of the interval. The argument is similar for all intervals [ωi, ωi+1〉,
i = 2, 3, . . . , I − 1.

• θ ∈ [ωI , π] : f(eiθ) ∈ R− since
∑I

j=1 2πα
2
j = π. In this

interval f(eiθ) starts at infinity for θ = ωI , moving towards f(−1)
for θ = θI = π.

The function is symmetric about the real axis, thus its behavior in
the interval 〈π, 2π〉 is given and f(1), f(−1) are slit endpoints.

Example 1. Let I = 3 with ω1 = π/6, ω2 = π/2, ω3 = 3π/4 and
α1 =

√
3/4, α2 = 1/2, α3 = 1/4. Then

(8) f(eiθ) =
1

2(cos θ − (
√
3/2))3/8(cos θ)1/2(cos θ + (

√
2/2))1/8

.

This function maps D onto the complement of the slits given in
Figure 1.

This is an exact illustration as we know the function f(z) ∈ S∗

and are able to map the whole unit disk |z| < 1. In the figure we
count the number of angular openings in the upper halfplane to obtain
the number I of frequencies. The amplitudes are given by the angles
between the rays if we divide by 2π and take the square root of the
result. Frequencies are obtained by one of the methods in Section 4.

In a practical case we cannot for obvious reasons, use |z| < 1. Thus,
we map |z| < R for some R < 1 or by the maximum principle |z| = R.
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FIGURE 1.

FIGURE 2.
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Then the angular openings will be replaced by ”bumps,” and the
number of bumps in the upper halfplane will give I. With R = 0.98,
the function (8) produces the illustration in Figure 2. It is important
that R is chosen sufficiently large to produce bumps.

We will return to this example later.

Proof. Based upon the signal (4) we construct a positive measure as
given in (6). This measure gives rise to moments of the form

1
N

µ(N)
m =

∫ 2π

0

e−imθ d

(
ψ(N)(θ)

N

)
,

which may be rewritten in the form

(9)
1
N

µ(N)
m =

1
N

N−m−1∑
k=0

s(k)s(k +m), m = 0, 1, . . .

for practical use (see, e.g., [2]). By the Riesz-Herglotz theorem (2) with
our measure and moments at hand, the corresponding Carathéodory
function takes the form

F (N)(z) =
1
N

∫ 2π

0

eiθ+ z

eiθ− z
dψ(N)(θ) =

1
N

µ
(N)
0 + 2

∞∑
m=1

1
N

µ(N)
m zm.

When N → ∞, the weak convergence of the measure then gives
the limit moments µm := limN→∞ 1

N µ
(N)
m =

∑I
j=−I e

−imωjα2
j =

2
∑I

j=1 α
2
j cosmωj , in particular µ0 = 2

∑I
j=1 α

2
j = 1, and a limit

Carathéodory function

F (z) := lim
N→∞

F (N)(z) =
I∑

j=−I

eiωj + z

eiωj − z
· α2

j

= 1 + 2
I∑

j=1

2 cosωjz − 2z2

1− 2 cosωjz + z2
· α2

j

= µ0 + 2
∞∑

m=1

µmzm,
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where in particular µ0 is equal to 1. The corresponding star-like
function f ∈ S∗ is, as in (1), given by the relation

zf ′(z)
f(z)

= F (z).

A simple calculation gives the function in (7).

Comment. For an arbitrary signal we form the “moment” sequence
by using the autocorrelation formulas, and divide by

∑N
k=1 x(k)

2 for
normalization, i.e., the “moments” are

µ̃(N)
m =

∑N
k=1 x(k)x(k +m)∑N

k=1 x(k)2
.

Important then is that we later return to the original amplitudes of
the signal as follows:

Assume that the αj-values are found, except possibly for signs (see
next section). Let K be given by equation (4), i.e.,

K · 2
I∑

j=1

αj = x(0).

Then, the coefficients in the signal are

Aj = K · αj =
x(0)

2
∑I

j=1 αj

· αj .

3. Indication of an application I. How to find I and αj. If
we, somehow, can come from observations of the signal to f(z) in S∗,
it is easy to determine I and α2

j : I is the number of angular openings
in the upper halfplane, 2α2

j is the angle between the rays divided by π.

This is the ideal situation. In a practical case we have to do differently.
Rather than letting N → ∞, we solve the differential equation

f (N)′(z)
f (N)(z)

− 1
z
=

F (N)(z)− 1
z
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with the initial conditions f (N)(0) = 0 and f (N)′(0) = 1. The solution
is the function

(10) f (N)(z) = z exp
( ∞∑

m=1

2µ̃(N)
m

m
zm

)
.

In this expression we are forced to use a large value of N rather than
lettingN tend to infinity. Moreover, in the two sums involved the sum
in the exponent of f (N) and the sum of the exponent expression we
replace infinite sums by finite sums. The method to be presented is
not completely developed, it is more a sketch of an idea. A careful
discussion of errors caused by these substitutions is beyond the purpose
of this paper.

A proper choice of the R value in |z| = R is important.

Example 2. Unfortunately we have no “real signal” coming in to
our computer. We have chosen the same signal as in Example 1.

s(m) = 2
I∑

j=1

αj cosmωj =
√
3
2
cos

(
π

6
m

)
+cos

(
π

2
m

)
+
1
2
cos

(
3π
4
m

)

for which I = 3, but pretend not to know it as soon as the moments
are calculated. The computation is done by using MAPLE.

We first compute the autocorrelation coefficients in (9) as we choose
to replace N by 106. In the program, these coefficients are called Am.
By letting m be equal to 0 in Am we have the normalization coefficient
to divide upon as commented in Section 2. For our signal, A0 is nearly
1 since the signal is of the “right form” already. Next, we use Am/A0
as a substitute for the moment limits µm to produce the function (10)
with

∑∞
1 replaced by

∑100
1 . This function gives, with R = 0.98, the

following figure.

Figure 3 strongly indicates that I = 3 (number of bumps in the upper
halfplane). By measuring the angles rj ≈ 2α2

jπ we find that r1 = 67.8◦,
r2 = 90.4◦ and r3 = 21.8◦. This strongly indicates that the exact values
must be 3π/8, π/2 and π/8. This coincides with the values we know.
We will return to the frequencies later.
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FIGURE 3.

Comments.

• Signs of the amplitudes. By measuring the angles on the figures
obtained, we find |αj |. To get the correct signs on these amplitudes,
we have to use all combinations of signs; 2I possibilities, sum each of
these combinations and compare the results with s(1). This usually
tells us the one and only correct combination of signs. But if more
than one combination gives the wanted result, then we have to do the
same compared with s(2) and so on. Soon only one combination, with
the correct signs, is left. We remark that this method leading to the
signs is assumed to be done after we know the frequencies of the signal,
Section 4. For practical reasons it is mentioned here.

• Remarks on errors. As mentioned earlier, our estimates produce
errors, in particular of the following three types.

1. In (1/N)µ(N)
m we use a large N instead of N → ∞. Estimated

error here is known to be O(1/N).

2. In the exponent of f (N)(z) we use a high order Taylor polynomial
rather than an infinite series. A rough upper bound for this estimated
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error is (since |cm| ≤ 1 for all Carathéodory functions c0 + 2
∑

cmzm)

∣∣∣∣
∞∑

m=q+1

2cm

m
zm

∣∣∣∣ ≤ 2
q + 1

· Rq+1

1−R
.

3. For the function f (N)(z) itself, we use a Taylor polynomial of
order 100 instead of an infinite series. To illustrate the accuracy of
the approximated function (10) with N = 106 and upper limit 100, we
include the first 5 terms of its Taylor expansion;

f (100)(z) = z + 0.47273832z2 − 0.20076003z3

− 0.07119710z4 + 0.13759672z5 +O(z6).

Compared to the Taylor expansion of the exact function (7) with αj ś
and ωj ’s as in Example 1

f(z) = z+0.47274235z2− 0.20075733z3− 0.07119792z4+ 0.13759622z5

+O(z6),

we see that the expressions are comparable. Thus, (10) with the
restrictions gives an estimated result which is good enough for our
purposes. As long as we are able to use its mapping result to find the
number of frequencies and sizes of amplitudes, we are satisfied with the
figure not being exact. Of course, if the amplitudes are small or two or
more frequencies are close, the bumps will be difficult to separate. But
it is possible to zoom in the graph to make estimated counts.

4. Indication of an application II: How to determine ωj. We
give a list of alternative methods:

i) Combine with the Szegö polynomial method. There are developed
methods for how to solve the frequency analysis problem by using Szegö
polynomials (see [2 4], [6 9]). In these methods, one usually does not
know the number n0 of frequencies throughout the argument. Thus,
one has to pick an n assumed to be larger than n0 and use this n in
the discussion. This leads to the unknown frequencies, but in addition
there are n− n0 points as “leftovers,” called uninteresting zeros. If we
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combine the methods, the S∗-method produces the exact number of
frequencies n0. Then, with this n0, the Szegö polynomial method can
derive the unknown frequencies without struggling with uninteresting
zeros.

ii) Solve equations I. Solve the simultaneous set of equations

s(1) = 2
I∑

j=1

αj cosωj

s(2) = 2
I∑

j=1

αj cos 2ωj etc.

in which s(1), s(2), . . . , α1, . . . , αI are known. With cosωj = xj we
have cosmωj = Tm(xj) where Tm is a polynomial. The equations are
thus made algebraic. Hereby we get the unknown frequencies.

iii) Solve equations II. Same procedure as in ii), but replace some
of the equations with moment equations; see, for instance, (12) in
Example 3.

Example 3. We use the same values of the αj ’s and ωj ’s as
in Example 1 giving the signal values s(1) = 0.3964466095, s(2) =
−0.5669872980, s(3) = 0.3535533905 and the moment value µ̃

(N)
1 ≈

µ1 = 0.2363711787. In a practical case these values are measured.
Then we forget the frequencies while the amplitudes are known from
the earlier method.

If we let cosω1 = x, cosω2 = y and cosω3 = z, thus 1 > x > y >
z > −1 by the assumptions in Theorem 1, the equations in (ii) take
the form
(11)

2 ·
√
3
4

x+ 2 · 1
2
y + 2 · 1

4
z = 0.3964466095

2 ·
√
3
4
(2x2 − 1) + 2 · 1

2
(2y2 − 1) + 2 · 1

4
(2z2 − 1) = −0.5669872980

2 ·
√
3
4
(4x3 − 3x) + 2 · 1

2
(4y3 − 3y) + 2 · 1

4
(4z3 − 3z) = 0.3535533905.
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For the method in (iii) the first two equations in (11) are the same,
while the third one is replaced with

(12) 2 · 1
8
x+ 2 · 1

2
y + 2 · 1

8
z = 0.2363711787.

We solve the systems of equations (11) or (12) by using MAPLE.
Each calculation gives many solutions, but only one satisfies the order
1 > x > y > z > −1:
For method (ii) this solution is

x = 0.8660254038, y = −0.4258130110 · 10−10, z = −0.7071067812,
for method (iii) where the third equation is replaced with (12), this
solution is

x = 0.8660254032, y = 0.9550022899 · 10−9, z = −0.7071067823.
Both cases strongly indicate that ω1 = π/6, ω2 = π/2, ω3 = 3π/4.

Note. The methods described in this example do not distinguish
between amplitudes of different signs. If we, for instance, replace the
signs +++ assumed in Examples 1 and 2, by +−−, the set of equations
(11) will be

2 ·
√
3
4

x− 2 · 1
2
y − 2 · 1

4
z = 1.103553390

2 ·
√
3
4
(2x2 − 1)− 2 · 1

2
(2y2 − 1)− 2 · 1

4
(2z2 − 1) = 1.433012702

2 ·
√
3
4
(4x3 − 3x)− 2 · 1

2
(4y3 − 3y)− 2 · 1

4
(4z3 − 3z) = 0.3535533905.

which gives the solution

x = 0.8660254036, y = 0.4742328749 · 10−9, z = −0.7071067808.
As we see, it leads to the same frequencies.

iv) Use of slit endpoints. By measuring the distances from the origin
to the slit endpoints in f (N)(D), we are able, more theoretically, to
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FIGURE 4.

determine the unknown frequencies. We include a simple example for
which I = 2 and the exact function (7) is used, just to illustrate the
method.

Example 4. In this example we have picked two amplitudes α1 =√
2/4 and α2 =

√
6/4, and two frequencies ω1 = π/3 and ω2 = 3π/4,

to produce the slit mapping region in Figure 4. Then we pretend not
to know these quantities as soon as the region is drawn.

By the method presented in Section 3, we find that I = 2 and
α1 =

√
2/4 and α2 =

√
6/4. The function (7) with z = eiθ then takes

the form

f(eiθ) =
1

2(cos θ − cosω1)1/4(cos θ − cosω2)3/4
.

Elementary calculus leads to the θ-value representing the endpoint
on the π/4-angle slit. This is given for θ = θ1 where cos θ1 =
(3/4) cosω1 + (1/4) cosω2. Let a, b, c be the distances from the origin
to the endpoints of the slits, as shown in Figure 4. By the uniqueness
of the Riemann mapping theorem the third endpoint is determined
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when the two others are given. In our example we determine a ≈ 0.41,
b ≈ 0.73 and get the equations

1
2(1− cosω1)1/4(1− cosω2)3/4

= 0.41,

1

2
(

1
4

)1/4 (
3
4

)3/4 (cosω1 − cosω2)
= 0.73.

We solve this system with MAPLE and find that the only possible
solution is

cosω1 = 0.5025215490 and cosω2 = −0.6993725269,
i.e., ω1 ≈ π/3 and ω2 ≈ 3π/4.

This method depends upon careful measuring of the distances to
the slit endpoints. If the figure is an estimate as in Example 2, the
result can become rather inaccurate. Also for this method, calculations
become more complicated for larger number of frequencies.
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