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ABSTRACT. Jacobsen, Thron and Waadeland [1] deter-
mined results about the probability distribution for the val-
ues f of convergent continued fractions K(an/1) in the case
that the elements an are uniformly distributed both over the
“real Worpitzky inverval” [−ρ(1 − ρ), ρ(1 − ρ)] and over the

complex Worpitzky disk {z : |z| ≤ ρ(1 − ρ)}, for 0 < ρ ≤ 1
2
.

This note explores extensions of some of those results in the
case that the elements an are piecewise linearly distributed,
with symmetry about zero, on the real Worpitzky interval.

1. Introduction. We are considering the values of continued
fractions of the form

(1.1) K∞
n=1

(
an

1

)
=

a1

1+
a2

1+ + · · ·+
an

1+ · · ·
where the an �= 0 are taken from the real Worpitsky interval

(1.2) W = [−ρ(1 − ρ), ρ(1 − ρ)]

for 0 < ρ ≤ 1
4 . This interval is known to be a convergence region for

(1.1). The values, f , of (1.1) are known to fill in the best limit value
interval

(1.3) V = [−ρ, ρ].

Here, however, we assume that the an have a known distribution
on (1.2); the problem is to determine the distribution of the values,
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f , of (1.1) in (1.3). This issue was explored by Jacobsen, Thron and
Waadeland in Theorem 1 of [1] and by Waadeland in [2] in the case
that the an are uniformly distributed on (1.2). In [1] they determined
that the probability density for f, µ, is the constant 1

2ρ(1−ρ) over the

subinterval
[− ρ(1−ρ)

(1+ρ) , ρ(1−ρ)
(1+ρ)

]
of (1.3). This yields the result that

P

(
|f | ≤ ρ(1 − ρ)

1 + ρ

)
=

1
1 + ρ

and, by symmetry and taking complements, that on (1.3),

P

(
− ρ ≤ f < −ρ(1 − ρ)

(1 + ρ)

)
= P

(
ρ(1 − ρ)
(1 + ρ)

< f ≤ ρ

)
=

ρ

2(1 + ρ)
.

In this note we extend those results in the case that the an have a
symmetric distribution about zero on (1.2) which is piecewise linear
away from zero.

2. The extension. To extend the distribution on a to a linear
distribution symmetric about zero, we define the probability density
function D(a) by

D(−a) = D(a) (symmetry about zero)(2.1)
D(a) = b0 + b1a,(2.2)

for 0 < a ≤ ρ(1 − ρ), 0 < ρ ≤ 1
2 , which must satisfy

D(a) ≥ 0,(2.3) ∫ ρ(1−ρ)

−ρ(1−ρ)

D(a) da = 1,(2.4)

and

(2.5) E(a) =
∫ ρ(1−ρ)

−ρ(1−ρ)

aD(a) da = 0

from symmetry about zero, where E(a) denotes the expected value
of a.
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Condition (2.4) holds if and only if

b0 =
1 − b1ρ

2(1 − ρ)2

2ρ(1 − ρ)
.

Condition (2.3) holds, of course, if and only if

D(0) ≥ 0 and D(ρ(1 − ρ)) ≥ 0

both of which hold if and only if

(2.6) b0 ≥ 0 and |b1| ≤ 1
ρ2(1 − ρ)2

.

Now we extend to the full interval (1.2) by symmetry to get our
preliminary

Theorem 1. The linear density function for the elements a �= 0 on
[−ρ(1 − ρ), ρ(1 − ρ)] for the continued fraction (1.1) is of the form

(2.7) D(a) =
1 − b1ρ

2(1 − ρ)2

2ρ(1 − ρ)
+ b1|a|

for |b1| ≤ 1
ρ2(1−ρ)2 .

3. Special cases. We consider three special cases of linear density
functions on (1.2).

1. In the case that b1 = 0, we recover the uniform distribution

(3.1) D(a) = b0 =
1

2ρ(1 − ρ)

dealt with in Theorem 1 of [1]. When ρ = 1
2 we get D(a) = 2 on

[−1
4 , 1

4 ].

2. In the case that D(0) = b0 = 0, a more natural case since we
assume that a �= 0, we obtain

(3.2) D(a) =
1

ρ2(1 − ρ)2
|a|
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which linearly increases the density for a towards the boundaries of the
interval. When ρ = 1

2 we get D(a) = 16|a| on [−1
4 , 1

4 ].

3. In the case that D(ρ(1 − ρ)) = 0, the density is

(3.3) D(a) =
1

ρ(1 − ρ)
+

1
ρ2(1 − ρ)2

|a|

which linearly increases the probability of a near zero. When ρ = 1
2 we

get D(a) = 4 − 16|a| on [−1
4 , 1

4 ].

4. The technique. To find the probability density function h(v) for
values f of the continued fraction (1.1), we follow [1] and [2] in using the
cumulative distribution function technique. We let µ be the probability
measure for the continued fraction values, f . Then dµ(t) = h(t) dt. We
determine h(v) by

h(v) =
dH(v)

dv

where
H(v) = P (f ≤ v) =

∫ v

−∞
dµ(t)

with

H(v) =
{

0, v ≤ −ρ;
1, v ≥ ρ.

For fixed a in (1.2), f and the first tail value, g, where

(4.1) f =
a

1 + g

we have

(4.2) H(v) = P (f ≤ v) = P

(
a

1 + g
≤ v

)
.

That the distribution of f must be symmetric about zero follows
from the symmetry of D(a) about zero. It can also be seen as
follows. The distribution of g must be the same as the distribution
of f . Since |g| ≤ ρ ≤ 1

2 , clearly 1
1+g > 0. When −a is substituted
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for a, we just get −f . Therefore, for 0 < v1 < v2 ≤ ρ(1− ρ), we
have P (v1 ≤ f ≤ v2) = P (−v2 ≤ f ≤ −v1) and consequently
P (f < 0) = P (f > 0).

As a result, in determining H(v) we may assume, without loss of
generality, that a > 0 (and hence v > 0). Now, since

(4.3) P

(
a

1 + g
≤ v

)
=

∫∫
{(a,g)|a/(1+g)≤v}

D(a) da dµ(g)

for (a, g) ∈ [−ρ(1 − ρ), ρ(1 − ρ)] × [−ρ, ρ] we must determine when

a

1 + g
≤ v.

We distinguish between two cases.

Case (α). 0 < v ≤ ρ(1−ρ)
1+ρ . In this case 0 < a

1+g ≤ v if and only if
0 < a ≤ v(1 + g) which is always the case since, with g ≤ ρ,

v(1 + g) ≤ ρ(1 − ρ)
1 + ρ

(1 + ρ) = ρ(1 − ρ)

is always within the range of a. The bounding equation

a = v(1 + g)(4.4)

or

g =
a

v
− 1(4.5)

determines a level set of v for (a, g) ∈ [−ρ(1−ρ), ρ(1−ρ)]×[−ρ, ρ]. This
linear level set of v with the g intercept of −1 in the (α)-case can be
seen in Figure 1 to run through the entire [−ρ(1−ρ), ρ(1−ρ)]× [−ρ, ρ]
box entering at (a, g) = (v(1 − ρ),−ρ) and exiting the top at (a, g) =
(v(ρ + 1), ρ).

Case (β). ρ(1−ρ)
(1+ρ) < v ≤ ρ. In this case we cannot reach v for every

choice of g since we may have

ρ(1 − ρ)
(1 + g)

< v
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FIGURE 1.

for some g < ρ. This means that 0 < a
(1+g) ≤ v if and only if either

(i) g ≤ ρ(1 − ρ)
v

− 1 and 0 < a ≤ v(1 + g), or

(ii) g >
ρ(1 − ρ)

v
− 1 and 0 < a ≤ ρ(1 + ρ).

In this, the (β)-case, the linear level set of v can be seen in Figure 1 to
cut through the side of the [−ρ(1 − ρ), ρ(1 − ρ)] × [−ρ, ρ] box where
(a, g) =

(
ρ(1 − ρ), ρ(1−ρ)

v − 1
)
.

We now begin extending the results in [1] in the (α)-case. We will not
deal with the (β)-case in this note. In the (α)-case with 0 < v ≤ ρ(1−ρ)

(1+ρ) ,
we have

H(v) = 1 −
∫ +ρ

−ρ

( ∫ ρ(1−ρ)

v(g+1)

D(a) da

)
dµ(g)

(4.6)

= 1 −
∫ +ρ

−ρ

( ∫ ρ(1−ρ)

v(g+1)

(b0 + b1a) da

)
dµ(g)

(4.7)
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= 1 −
∫ +ρ

−ρ

{
b0[ρ(1 − ρ) − v(g + 1)]

(4.8)

+
b1

2
[ρ2(1 − ρ)2 − v2(g + 1)2]

}
dµ(g),

= 1 −
∫ +ρ

−ρ

{
b0[ρ(1 − ρ) − v] +

b1

2
[ρ2(1 − ρ)2 − v2]

}
dµ(g)

−
∫ +ρ

−ρ

{
b0(−vg) +

b1

2
[−v2(g2 + 2g)]

}
dµ(g).

(4.9)

Since only the variable g remains in this integration process, we obtain
(4.10)

H(v) = 1 −
{
b0[ρ(1 − ρ) − v] +

b1

2
[ρ2(1 − ρ)2 − v2]

}∫ +ρ

−ρ

dµ(g)

+ [b0v + b1v
2]

∫ +ρ

−ρ

g dµ(g) +
b1

2
v2

∫ ρ

−ρ

g2 dµ(g).

Recalling that
∫ +ρ

−ρ
dµ(g) = 1 and, with µ being symmetric with respect

to zero, that ∫ +ρ

−ρ

g dµ(g) = E(g) = 0,

it follows that, for 0 < v ≤ ρ (1−ρ)
(1+ρ) :

H(v) = 1− b0[ρ(1−ρ)− v]− b1

2
[ρ2(1−ρ)2− v2] +

b1

2
E(g2)v2

(4.11)

=
[
1− b0ρ(1−ρ)− b1

2
ρ2(1−ρ)2

]
+ b0v +

b1

2
(1 + E(g2))v2.

(4.12)

Consequently, for 0 ≤ v ≤ ρ (1−ρ)
(1+ρ) , we obtain h(v) by

(4.13)
h(v) =

dH(v)
dv

= b0 + b1(1 + E(g2))v,

=
1 − b1ρ

2(1 − ρ)2

2ρ(1 − ρ)
+ b1(1 + E(g2))v.
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We extend h(v) to −ρ (1−ρ)
(1+ρ) ≤ v ≤ ρ (1−ρ)

(1+ρ) by symmetry in defining
h(−v) = h(v) for v > 0. Thus we get our main:

Theorem 2. For elements an in the continued fraction (1.1) with
distribution (2.7) on the interval (1.2), the probability measure, µ, for
values f of the continued fraction have the piecewise linear probability
density function

(4.14)
dµ(t)

dt
= h(t) =

1 − b1ρ
2(1 − ρ)2

2ρ(1 − ρ)
+ b1(1 + E(g2)) |t|

on
[− ρ (1−ρ)

(1+ρ) , ρ (1−ρ)
(1+ρ)

]
for |b1| ≤ 1

ρ2(1−ρ)2 .

Remark 1. While this result is somewhat disappointing because h(v)
depends on E(g2), we do know from this that h(v) is piecewise linear
with a slope greater than |b1| in absolute value. This may, then, be
considered as a qualitative result.

5. Special cases. On the subinterval
[− ρ (1−ρ)

(1+ρ) , ρ (1−ρ)
(1+ρ)

]
of (1.3),

we get

1. In the case of [1] under the condition in (3.1) we recover their
Theorem 1:

(5.1) h(v) = b0 =
1

2ρ(1 − ρ)
.

In the case that ρ = 1
2 , we have h(v) = 2 on [−1

6 , 1
6 ].

2. In the case of (3.2) we get

(5.2) h(v) =
(

1 + E(g2)
ρ2(1 − ρ)2

)
|v|.

In the case ρ = 1
2 , we get h(v) = 16(1 + E(g2))|v| on [−1

6 , 1
6 ].

3. In the case of (3.3), we obtain

(5.3) h(v) =
1

ρ(1 − ρ)
−

(
1 + E(g2)
ρ2(1 − ρ)2

)
|v|.
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In case ρ = 1
2 , we get h(v) = 4 − 16(1 + E(g2))|v| on [−1

6 , 1
6 ].

6. Approximate bounds on E(g2). Since E(g2) =
∫ +ρ

−ρ
v2h(v) dv

and h(v) itself depends on E(g2), while we do not know E(g2) exactly,
we can get an idea of its size compared with the range, R = 2ρ, of
g and then use the Empirical Rule and Chebyshev’s Theorem. Since
Var (g) = σ2

g = E(g2) − E(g)2 and E(g) = 0, we have Var (g) = σ2
g =

E(g2).

The Empirical Rule derives from the normal distribution, but as an
approximating tool, does remarkably well for most distributions. The
Empirical Rule states in part that the probability the random variable
values lie within three standard deviations of its expected value is
approximately 99%. But since E(g) = 0, we have P (−3σg < g <
3σg) ≈ 0.99. If we estimate the range of g, R = 2ρ, with that interval
we obtain the approximation R ≈ 6σg or σg ≈ R

6 . Applying this, with
R = 2ρ, we obtain

(6.1) E(g2) = σ2
g ≈

(
ρ

3

)2

=
ρ2

9
.

On the other hand, Chebyshev’s Theorem applies to any distribution
for X, having a mean, µ, and standard deviation, σ. It states that

P (|X − µ| < kσ) ≥ 1 − 1
k2

.

It states, then, that the probability of a variable being within k = 10
standard deviations of its mean is at least 1− 1

102 = 0.99. If we estimate
the range with that interval of 20 standard deviations, we find

(6.2) E(g2) = σ2
g ≈

(
R

20

)2

=
(

2ρ

20

)2

=
ρ2

100
.

As a result, upon combining (6.1) and (6.2) we obtain the very rough
estimates that

(6.3) E(g2) �
{

ρ2

9
,

ρ2

100

}
.
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In the case that ρ = 1
2 , this gives rough lower bounds of

(6.4) E(g2) � {0.0277, 0.0025}.

On the other hand, we know that, at worst, σg ≤ R
2 = ρ so that

(6.5) E(g2) ≤ ρ2 =
1
4

= 0.25

when ρ = 1
2 .

As a result, we expect that

(6.6) {0.0277, 0.0025} � E(g2) ≤ 0.25.

7. Numerical examples. We now study the special cases (3.2) and
(3.3), with ρ = 1

2 , by computing the fourth approximates

(7.1)
a1

1+
a2

1+
a3

1+
a4

1
.

For ρ = 1
2 , the element interval is

W = [−ρ(1 − ρ), ρ(1 − ρ)] =
[
− 1

4
,

1
4

]

while the value interval is

V = [−ρ, ρ] =
[
− 1

2
,

1
2

]
.

Since ρ (1−ρ)
(1+ρ) = 1

6 , the value interval divides into the mid-interval
[−1

6 , 1
6 ] for the (α)-case over which we have characterized h(v) and

the tails [−1
2 ,−1

6 ) and ( 1
6 , 1

2 ] corresponding to the (β)-case which we
have not examined in this paper.

Special case (3.2). We used a systematic draw of the an from the
distributions by dividing the element interval [−1

4 , 1
4 ] into 12 equal

parts and listed the midpoint values of the intervals on D(a) = 16|a| in
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their corresponding relative frequencies. This gave a total listing of 72
values counting negative entries, positive entries and repeats. We then
computed all of the possible 724 combinations of assignment to each of
the four an values in the fourth approximants, (7.1).

Table 1 shows the relative frequencies of the computed values (7.1) in
cells of width 1

18 . The interval cell frequencies are rounded to thousands,
while the totals are not.

Remark 2. We can compare these results with our findings. First no-
tice the symmetry about zero. Notice also that the relative frequencies
in intervals [0, 1

18 ], ( 1
18 , 2

18 ) and ( 2
18 , 1

6 ) indicate linearity. The relative
frequency over those three intervals is 0.2324. We can compare that
with areas under h(v) = 16(1+E(g2))v over [0, 1

6 ] with different choices
of E(g2). If we set E(g2) = 0, the area under h(v) = 16v over [0, 1

6 ]
is 0.2222, just under the numerical model’s relative frequency. If we
use our upper bound of E(g2) = 0.25, the area is 0.2778. Choosing the
lower bound E(g2) = 0.0277 gives an area of 0.2284, somewhat closer.
These results suggest that the estimated bounds in (6.6) may be good.

Special case (3.3). Using the same method of systematic draw as in
special case (3.2), we again studied the relative frequencies of values
(7.1) in the total of 724 different combinations. See Table 2.

Recall that the interval cell frequencies are rounded to thousands,
while the totals are not.

Remark 3. Again notice the symmetry about zero of the numerical
model’s relative frequencies. Notice again also that the relative fre-
quencies in intervals [0, 1

18 ], [ 1
18 , 2

18 ) and [ 2
18 , 1

6 ) suggest linearity. The
relative frequency over those three intervals in this case is 0.4409. We
can compare that with various areas under h(v) = 4 − 16(1 + E(g2))v
over [0, 1

6 ] again with different choices of E(g2). If we set E(g2) = 0,
the area under h(v) = 4 − 16v over [0, 1

6 ] is 0.4442, just over the nu-
merical model’s relative frequency, suggesting again that E(g2) > 0. If
we again use our upper bound of E(g2) = 0.25, the area is a bit low
at 0.3892. Choosing the lower bound of E(g2) = 0.0277 gives an area
of 0.4383, again somewhat closer. These results again suggest that the
estimated bounds in (6.6) may be reasonable. In fact they suggest that
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the estimate derived from the Empirical Rule perhaps serves better
than that offered by the more conservative Chebyshev’s Theorem.

Finally notice, however, that in this second case the middle relative
frequencies indicate something of a dip at the top, rather than the
expected linear peak. This anomaly, however, seems to disappear upon
taking cells of width 1

24 rather than 1
18 as we have done before. Because

of the symmetry, we show this in Table 3 only over the positive interval
[0, 1

2 ) because of limitations of space.

Again recall that the interval cell frequencies are rounded to thou-
sands, while the totals are not.

TABLE 3.

[0, 1
24 ) [ 1

24 , 1
12 ) [ 1

12 , 3
24 ) [ 3

24 , 1
6 ) [16 , 1

2 ] Total

n 4106 3357 2571 1816 1588 724

n
724 0.1528 0.1249 0.0957 0.0676 0.0591 1.0000
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