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1. The frequency analysis problem. The frequency analysis
problem is to determine the unknown frequencies and amplitudes in a
trigonometric signal when the signal values are known. A method for
solving this problem by using the asymptotic properties of the zeros
of certain orthogonal polynomials, has been established in [2, 7]. The
method has its root back to Wiener-Levinson [14, 4]. The method
starts with measured signal values from a sample of observations of the
signal. In discrete form the signal is

(1.1)
x (m) =

I∑
j=−I

αje
imωj

for m = 0, 1, . . . , N − 1, α0 = 0, 0 otherwise.

Here |αj | are the amplitudes, ωj are the unknown normalized frequen-
cies and N denotes the number of observed values in {x (m)}.

From the observations is constructed an absolutely continuous mea-
sure ψN (θ) defined by

(1.2)
dψN (θ)

dθ
=

1
2π

∣∣∣∣
N−1∑
m=0

x (m) e−im θ

∣∣∣∣
2

, θ ∈ [−π, π] .

For any fixedN the measure gives rise to a sequence of moments {µ(N)
m }.

For practical purpose we use

(1.3) µ̃(N)
m :=

µ
(N)
m

N
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since we are interested in the asymptotic behavior.

The measure also gives rise to a sequence of monic orthogonal polyno-
mials; the Szegö polynomials {ρn (ψN ; z)} . All the zeros of {ρn (ψN ; z)}
are located in the open unit disc.

The number of frequencies is denoted n0 := 2I. Since n0 is unknown,
we choose a number n which we believe is such that n > n0. In this
situation there are two important properties:

(i) If we go to certain subsequence {Nk} of {N}, we obtain conver-
gence of the limit polynomial when k → ∞. In each convergence case
the limit polynomial is

(1.4)

lim
k→∞

{ρn (ψNk
; z)} =

I∏
j=1

(
z − eiωj

) (
z − e−iωj

)

·
n∏

p=n0+1

(
z − z(k,n)

p

)
.

Thus n0 of the zeros in the limit polynomial tend to the frequency points
e±iωj . In addition we have (n− n0) “uninteresting” zeros. Those zeros
depend upon the degree n of the polynomial and the subsequence {Nk}
[2, 7].

(ii) For a given n > n0 there exists a number Kn < 1 such that

(1.5) |z(n)
p | ≤ Kn < 1 for p = n0 + 1, . . . , n.

Hence the “uninterested” zeros can be separated from the frequency
points [7].

The method briefly described above is called the N -process.

2. Modifications. Several modifications of the N -process are
established during the last ten years. There are two main approaches.
One way is to construct new modified measures which can be used to
find the frequency points, another is to modify the moments in different
ways. In this paper we deal with the second approach.

In this situation the moments

µ̃(N)
m :=

µ
(N)
m

N
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from the N−process or

(2.1) µm = lim
N→∞

µ̃(N)
m =

I∑
j=1

|αj |2 cosmωj

are multiplied by certain factors.

The first modification of that type is called the R-process [3]. In the
R-process we multiply (2.1) by R|m| where R ∈ (0, 1). Then we have a
new sequence

(2.2) µ(R)
m = µmR

|m| =
( I∑

j=1

|αj |2 cosmωj

)
R|m|.

We know that the sequence (2.2) is a moment-sequence and that the
properties (1.4) (1.5) hold [3, 5].

3. Notation. Before the next sections we introduce some determi-
nant formulas for the N -process: The Szegö polynomials

(3.1) ρn (ψN ; z) =
1

∆(N)
n−1

∣∣∣∣∣∣∣∣∣∣∣

µ̃
(N)
0 µ̃

(N)
−1 · · · µ̃

(N)
−n

µ̃
(N)
1 µ̃

(N)
0 · · · µ̃

(N)
−n+1

...
...

. . .
...

µ̃
(N)
n−1 µ̃

(N)
n−2 · · · µ̃

(N)
−1

1 z · · · zn

∣∣∣∣∣∣∣∣∣∣∣
where ∆(N)

n−1 is the Toeplitz determinant of order n.

The Toeplitz determinant of order n

(3.2) ∆(N)
n−1 =

∣∣∣∣∣∣∣∣∣

µ̃
(N)
0 µ̃

(N)
−1 µ̃

(N)
−2 · · · µ̃

(N)
−n+1

µ̃
(N)
1 µ̃

(N)
0 µ̃

(N)
−1 · · · µ̃

(N)
−n+2

...
...

...
. . .

...
µ̃

(N)
n−1 µ̃

(N)
n−2 µ̃

(N)
n−3 · · · µ̃

(N)
0 .

∣∣∣∣∣∣∣∣∣
The reflection coefficients

(3.3) δ(N)
n =

(−1)n

∆(N)
n−1

∣∣∣∣∣∣∣∣∣

µ̃
(N)
−1 µ̃

(N)
−2 µ̃

(N)
−3 · · · µ̃

(N)
−n

µ̃
(N)
0 µ̃

(N)
−1 µ̃

(N)
−2 · · · µ̃

(N)
−n+1

...
...

...
. . .

...
µ̃

(N)
n−2 µ̃

(N)
n−3 µ̃

(N)
n−4 · · · µ̃

(N)
−1

∣∣∣∣∣∣∣∣∣
.
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The identities

(3.4) cosmωj = 2 cosωj cos (m− 1)ωj − cos (m− 2)ωj .

and

(3.5) cos (m− 2)ωj −2 cosmωj +cos (m+ 2)ωj = −4 sin2 ωj cosmωj

will play an important role in the following section. For the sake of
simplicity we will use the notation cosmωj = Tm (xj) =: Tm. Hence
we may write

(3.6) Tm − 2xjTm−1 + Tm−2 = 0

and

(3.7) Tm−2 − 2Tm + Tm+2 = −4(1 − x2
j)Tm.

4. Modifications of the moments. A new type of modification of
the moments was inspired from the R-process. The idea was to multiply
the sequence (2.1)

µm =
I∑

j=1

|αj |2 cosmωj

by Rm2
where R ∈ (0, 1). Then we have a new sequence

(4.1) µ(V )
m = µmR

m2
=

( I∑
j=1

|αj |2 cosmωj

)
Rm2

In this situation we can pick up the frequency points (1.4) but the
property (1.5) does not hold [9].

A more general idea, introduced in [13], was to multiply the sequence
(2.1) by R|m|α where R ∈ (0, 1) and α > 0. Then we have a new
sequence

(4.2) µ(α)
m = µmR

|m|α =
( I∑

j=−I

|αj |2 cosmωj

)
R|m|α .
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In [13] we find the following result

Proposition 1. For any ω ∈ [0, π] and R ∈ (0, 1) and α > 2, the
function

FR(z) = 1 + 2
∞∑

m=1

Rmα

cos(mω)zm

is not always a Carathéodory-function, or equivalently

{R|m|α cos(mω)}∞−∞

is not always positive definite.

For the reflection coefficients we have the lemma

Lemma 2. For the reflections coefficients δ(N)
n the following holds:

(i) lim
N→∞

∣∣∣δ(N)
n

∣∣∣ = 1 for n = n0

(ii) lim
N→∞

∣∣∣δ(N)
n

∣∣∣ 
= 1 for n > n0

The first part of the lemma means that the product of the zeros in
the limit polynomial ρn0 (ψNk

; z) equals one if n = n0. In this situation
we get the n0 frequency points.

The second part means that the product of the zeros in the limit
polynomial is different from one if n > n0. In this situation we get
the n0 frequency points, and in addition the (n− n0) zeros which are
located inside the unit circle.

4.1 The reflection coefficients for n = 2. In this section we
consider the reflection coefficients. It is known that the following
property holds:

A sequence {µm}∞−∞ of complex numbers, µn = µ−n, is positive
definite, if and only if, δ0 > 0 and |δn| < 1 for every n ≥ 1, where the
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{δn} are the corresponding reflection coefficients, (see Theorem 3.2 in
[1]).

This property is the reason why we study the reflection coefficients
for a given signal and a given n ≥ n0, and the results obtained are the
reason to state a later conjecture.

We use the simple signal (1.1):

(4.1.1) x(m) =
1√
2
eimω +

1√
2
e−imω =

√
2 cosmω.

In our situation the “moments” are

µ(α)
m = µ

(α)
−m = cosmωR|m|α .

An important property regarding the reflection coefficients [1] is that
for n 
= n0 we have ∣∣∣δ(N)

n

∣∣∣2 < 1.

Let x := cosω, and consider δ
(α,R)
2 . We know that x2 ∈ [0, 1] and

R ∈ (0, 1). From (3.3) we have

(4.1.2)
δ
(α,R)
2 = (−1)2

∣∣∣∣xR
(
2x2 − 1

)
R2α

1 xR

∣∣∣∣∣∣∣∣ 1 xR
xR 1

∣∣∣∣
=

R(2α) − 2R(2α)x2 + x2R2

1 − x2R2

We want to find out when the product of the zeros is less than one, so
we look at δ(α,R)

2 < 1.

R2α − 2R2α

x2 + x2R2

1 − x2R2
< 1

R2α − 2R2α

x2 + x2R2 < 1 − x2R2

2x2R2
(
1 −R2α−2

)
< 1 −R2α

.
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The “worst” case is for x2 = 1

R2α − 2R2 + 1 > 0
α ≤ 2

Hence for α ≤ 2, the product of the zeros is less than one. This means
that the zeros tend to the frequency points from the inside of the unit
circle.

For α > 2 the product of the zeros is greater than one for any fixed
R in this interval and sufficiently small

(
1 − x2

)
. This means that the

zeros may tend to the frequency points from the outside of the unit
circle for special values of x ∈ [−1, 1].

An alternative way is to consider the situation where R is replaced
by R = 1 − d. We use the power series expansion, and look at the
influence of the terms O

(
d2

)
. Here x2 ∈ [0, 1] and R ∈ (0, 1). From

(4.1.2) we get

δ
(α,d)
2 =

(1 − d)(2
α) − 2 (1 − d)(2

α)
x2 + x2 (1 − d)2

1 − x2 (1 − d)2

We look at the case δ(α,d)
2 < 1

(4.1.3)
(1 − d)(2

α) − 2 (1 − d)(2
α)
x2 + x2 (1 − d)2

1 − x2 (1 − d)2
< 1

The power series expansion in d of (4.1.3) is

1 −
(
4 − 2α+1

)
x2 + 2α

1 − x2
d+O

(
d2

)
.

Thus we consider

(4.1.4)

1 −
(
4 − 2α+1

)
x2 + 2α

1 − x2
d < 1

−
(
4 − 2α+1

)
x2 + 2α

1 − x2
d < 0(

4 − 2α+1
)
x2 + 2α > 0



720 V.B. PETERSEN

The “worst” case is for x2 = 1

(
2α−1 − 1

)
< 2α−2

α < 2

Hence for α < 2 the product of the zeros is less than one. This means
that the zeros tend to the frequency points from the inside of the unit
circle.

For α > 2 the product of the zeros is greater than one for any fixed
R in this interval and

(
1 − x2

)
sufficiently small. This means that the

zeros may tend to the frequency points from the outside of the unit
circle for special values of x ∈ [−1, 1].

For α = 2 we observe from (4.1.4) that the zeros tend to the frequency
points from the inside of the unit circle for all x ∈ [−1, 1].

The value α = 2 is such a border case.

4.2 The reflection coefficients for n = 3. The next step is to
look at the absolute value of the “uninteresting” zero where n0 = 2
and n = 3. The reflection coefficients are

δ
(α)
3 =

(−1)3

∆(α)
2

∣∣∣∣∣∣
x(1−d) (2x2− 1)(1−2αd) (4x3− 3x)(1−3αd)

1 x(1−d) (2x2− 1)(1−2αd)
x(1−d) 1 x(1−d)

∣∣∣∣∣∣+O(d)

= −

∣∣∣∣∣∣
x(1−d) (2x2− 1)(1−2αd (4x3− 3x)(1−3αd)

1 x(1−d) (2x2− 1)(1−2αd)
x(1−d) 1 x(1−d)

∣∣∣∣∣∣∣∣∣∣∣∣
1 x(1−d) (2x2− 1)(1−2αd)

x(1−d) 1 x(1−d)
(2x2− 1)(1−2αd) x(1−d) 1

∣∣∣∣∣∣
+O(d).

The expression leads to

(4.2.1)∣∣∣∣ − (4 • 3α− 2α+3 + 4)x5 − (7 • 3α+ 3 • 2α+2 + 1)x3 + (3α+1− 2α+2− 3)x

(2α+2 − 8)x4 − (3 • 2α+1 − 8)x2 + 2α+1

∣∣∣∣
+ O(d)
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FIGURE 1. 0 < α < 1.99.

Neglecting the O-terms, rewriting (4.2.1) and cancelling the factor(
1 − x2

)
, we may write

(4.2.2) lim
d→0

|δ3| =
∣∣∣∣x2

∣∣∣∣
∣∣∣∣ (8 • 2α − 4 • 3α − 4)x2 − (

4 • 2α − 3α+1 + 3
)

(2α+1 − 4)x2 − 2α

∣∣∣∣.
We consider (4.2.2) for different α-values.

In Figure 1 we observe that the absolute value of the “uninteresting”
zero is less than one for all x ∈ [−1, 1].

In Figure 2 we observe that the absolute value of the “uninteresting”
zero can be greater than one for some x ∈ [−1, 1].

FIGURE 2. 2.01 < α < 2.10.
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FIGURE 3. 2.1 < α < 4.0.

In Figure 3 we observe that the absolute value of the “uninteresting”
zero can be much greater than one for some x ∈ [−1, 1].

Conjecture 3. For α ∈ (0, 2] the sequence {cosmωR|m|α}∞m=−∞ is
positive definite.

We consider some known results:

(i) The R-process (α = 1) with moments

µ(R)
m = µmR

|m| = µm (1 − d)|m| .

In the R-processes n0 of the zeros tend to the frequency points e±iωj

[3]. The remaining zeros are such that
∣∣∣z(n)

p

∣∣∣ ≤ Kn < 1 [5].

For n0 = 2 we have the special result limd→0 |δ(R)
3 | = z

(R)
3 = |x/2|

[3].

(ii) The V-process (α = 2) with moments

µ(V )
m = µmR

m2
= µm (1 − d)m2

.

Let n = βn0 + γ. Then βn0 of the zeros in the V-process tend
to the frequency points e±iωj . The remaining zeros are such that
|z(n)

p | ≤ Kn ≤ 1 [9].
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For n0 = 2 we have the special result limd→0 |δ(V )
3 | = z

(V )
3 = |x|.

Hence we know that the conjecture holds for α = 1, 2.

4.3 How important is the power of d in the Toeplitz determi-
nant? The power of d tells us at which rate the Toeplitz determinants
tend to zero. Let n = βn0 + γ.

In the R-process (α = 1) the power of d is [8]

(4.3.1) dn−n0 = d(β−1)n0+γ .

In the V -processes (α = 2) the power of d is [9]

(4.3.2) d
1
2 β(β−1)n0+βγ .

The power of d is closely related to α and hence to the power of m.

Proposition 4. For α ∈ (0, 2) and n = βn0 + γ, the rate at which
the Toeplitz determinant tends to zero is

dn−n0 = d(β−1)n0+γ .

Outline of proof. We use the simple signal (4.1.1) and consider the
Toeplitz determinant of degree n0 = 2 and n = 5, i.e., n = 2•2+1 = 5.

(4.3.3) ∆(α)
4 =

∣∣∣∣∣∣∣∣∣∣∣∣∣

µ
(α)
0 µ

(α)
−1 µ

(α)
−2 µ

(α)
−3 µ

(α)
−4

µ
(α)
1 µ

(α)
0 µ

(α)
−1 µ

(α)
−2 µ

(α)
−3

µ
(α)
2 µ

(α)
1 µ

(α)
0 µ

(α)
−1 µ

(α)
−2

µ
(α)
3 µ

(α)
2 µ

(α)
1 µ

(α)
0 µ

(α)
−1

µ
(α)
4 µ

(α)
3 µ

(α)
2 µ

(α)
1 µ

(α)
0

∣∣∣∣∣∣∣∣∣∣∣∣∣
We first simplify the determinant (4.3.3) by using row operations.
Notice that the indices of the “moments” are increasing in the columns.
Replace row k by

row (k) -2x row (k + 1) +row (k + 2) .
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We notice that all the terms without m vanish because of (3.6). The
remaining terms are:

(4.3.4)

(Tm(1−|m|α d) −2xTm+1 (1− |m+ 1|α d)+Tm+2 (1− |m+ 2|α d)+O (
d2

)
= d ((|m+ 1|α − |m|α)Tm − (|m+ 2|α − |m+ 1|α)Tm+2) +O

(
d2

)
= d (fm,m+2) .

Then we have

(4.3.5) ∆(α)
4 =

∣∣∣∣∣∣∣∣∣∣∣

f0,2 f−1,1 f−2,0 f−3,−1 f−4,−2

f1,3 f0,2 f−1,1 f−2,0 f−3,−1

f2,4 f1,3 f0,2 f−1,1 f−2,0

µ
(α)
3 µ

(α)
2 µ

(α)
1 µ

(α)
0 µ

(α)
−1

µ
(α)
4 µ

(α)
3 µ

(α)
2 µ

(α)
1 µ

(α)
0

∣∣∣∣∣∣∣∣∣∣∣
d3 + O

(
d4

)

We make a second simplification of the determinant. This time we
make column operations. From the left to the right we use the following
column-numbers: c = {1, 2, · · · , n + 1}. Notice that the indices of the
“moments” are decreasing in the rows.

Replace column c by

column (c) -2x column (c+ 1)+column (c+ 2) .

In our situation we obtain

(4.3.5) fm,m+2 − 2xfm−1,m+1 + fm−2,m

= ((|m+ 1|α − |m|α)Tm − (|m+ 2|α − |m+ 1|α)Tm+2)
− 2x ((|m|α − |m− 1|α)Tm−1 − (|m+ 1|α − |m|α)Tm+1)
+ ((|m− 1|α − |m− 2|α)Tm−2 − (|m|α − |m− 1|α)Tm)

We rewrite the expression

(4.3.6)
= − (|m|α − 2 |m− 1|α + |m− 2|α)Tm−2

+ 2 (|m+ 1|α − 2 |m|α + |m− 1|α)Tm

− (|m+ 2|α − 2 |m+ 1|α + |m|α)Tm+2
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For the determinant in question we have three expressions. The first
one P is for m = 0:

f0,2 − 2xf−1,1 + f−2,0 = − (2α − 2)T−2 + 4T0 − (2α − 2)T2

=
(
4T0 −

(
2α+1 − 4

)
T2

)
=: P

The second one Q is for m = −1:

f−1,1 − 2xf−2,0 + f−3,−1

= − (
1 − 2α+1 + 3α

)
T−3 +

(−4 + 2α+1
)
T−1 − (1 + 1)T1

=
(
2α+1 − 6

)
T1 −

(
3α − 2α+1 + 1

)
T3 =: Q

and the third one R is for m = −2:

f−2,0−2xf−3,−1+f−4,−2 =−(2α−2)T0+2
(
(3α)−2α+1+1

)
T2

−(4α−2 (3α)+2α)T4 =: R.

The determinant (4.3.5) now looks like

(4.3.7) ∆(α)
4 =

∣∣∣∣∣∣∣∣∣∣

P Q R f−3,−1 f−4,−2

Q P Q f−2,0 f−3,−1

R Q P f−1,1 f−2,0

df3,1 df2,0 f1,−1 µ
(α)
0 µ

(α)
1

df4,2 df3,1 df2,0 µ
(α)
1 µ

(α)
0

∣∣∣∣∣∣∣∣∣∣
d3 +O

(
d4

)

Now we have the cases:

(i)

(4.3.8)

∣∣∣∣∣∣
P Q R
Q P Q
R Q P

∣∣∣∣∣∣ = 0

(ii)

(4.3.9)

∣∣∣∣∣∣
P Q R
Q P Q
R Q P

∣∣∣∣∣∣ 
= 0
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Let us consider the “border” case α = 2 We have

P = 4T0 − 4T2 = 8
(
1 − x2

)
= 8

(
1 − x2

)
T0

Q = 2T1 − 2T3 = 8x
(
1 − x2

)
= 8

(
1 − x2

)
T1

R = −2T0 + 4T2 − 2T4 = 8
(
1 − x2

)
T2.

Let C = 8
(
1 − x2

)
. From (4.3.7) we find

(4.3.10) ∆(2)
4 =

∣∣∣∣∣∣∣∣∣∣

C T0 C T1 C T2 f−3,−1 f−4,−2

C T1 C T0 C T1 f−2,0 f−3,−1

C T2 C T1 C T0 f−1,1 f−2,0

df3,1 df2,0 f1,−1 µ
(2)
0 µ

(2)
1

df4,2 df3,1 df2,0 µ
(2)
1 µ

(2)
0

∣∣∣∣∣∣∣∣∣∣
d3 +O

(
d4

)

A second row operation leads (in a similar way as the first one) to

(4.3.11) ∆(2)
4 =

∣∣∣∣∣∣∣∣∣∣

d (∗) d (∗) d (∗) C T1 C T2

C T1 C T0 C T1 f−2,0 f−3,−1

C T2 C T1 C T0 f−1,1 f−2,0

df3,1 df2,0 f1,−1 µ
(2)
0 µ

(2)
1

df4,2 df3,1 df2,0 µ
(2)
1 µ

(2)
0

∣∣∣∣∣∣∣∣∣∣
d3 + O

(
d4

)

where (∗) is an expression in x, d.

A second column operation leads, in a similar way as the first one, to

(4.3.12) ∆(2)
4 =

∣∣∣∣∣∣∣∣∣∣

d (#) d (∗) d (∗) C T1 C T2

d (∗) C T0 C T1 f−2,0 f−3,−1

d (∗) C T1 C T0 f−1,1 f−2,0

dT1 df2,0 f1,−1 µ
(2)
0 µ

(2)
1

dT2 df3,1 df2,0 µ
(2)
1 µ

(2)
0

∣∣∣∣∣∣∣∣∣∣
d3 +O

(
d4

)

where (∗) and (#) are expressions in x, d.

The important fact is that we can pull out d from the first column in
(4.3.12), and hence the power of d is d4 (4.3.2). For more details, see
[10]. The value α = 2 is the only value where we can pull out more d’s
from the determinant.
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If α 
= 2 we have no possibility to pull out more d’s in the determinant,
so we have the situation (4.3.9). In that situation the determinant
(4.3.7) may be written

∆(2)
4 =

∣∣∣∣∣∣
P Q R
Q P Q
R Q P

∣∣∣∣∣∣
∣∣∣∣∣µ

(2)
0 µ

(2)
−1

µ
(2)
1 µ

(2)
0

∣∣∣∣∣ d3 +O
(
d4

)
.

For all α ∈ (0, 2) we thus have the situation stated in Proposition 4.

Proposition 4 holds for a signal with an arbitrary number of frequen-
cies and an arbitrary degree n ≥ n0. For more details, see [11]. If,
in addition, Conjecture 3 holds, a result of type (1.4) holds, but not
necessarily (1.5).
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with trigonometric polynomial signals, J. Approx. Theory 71 (1992), 239 251.

8. V. Petersen, A modification of two methods in frequency analysis: The R(N)-
process, Lecture Notes in Pure and Appl. Math., vol. 199, Marcel Dekker Inc., New
York, 1998, 399 408.

9. , Modification of a method using Szegö polynomials in frequency anal-
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