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HERMITE ORTHOGONAL RATIONAL FUNCTIONS

BRIAN A. HAGLER

Dedicated to William B. Jones on the occasion of his 70th birthday

ABSTRACT. We recount previous development of d-fold
doubling of orthogonal polynomial sequences and give new
results on rational function coefficients, recurrence formulas,
continued fractions, Rodrigues’ type formulas, and differential
equations, for the general case and, in particular, for the d-fold
Hermite orthogonal rational functions.

1. Introduction. Orthogonal rational functions and related sub-
jects today are active areas of investigation for researchers around the
world, yielding theoretical and applicable results spanning a gamut of
interests. Included among these are various techniques and methods of
numerical integration. [1, 2, 3, 6, 9, 10, 11, 15] are examples. It was
shown in [10] that the transformation given in [12, 13] taking systems
of orthogonal polynomials to systems of orthogonal Laurent polynomi-
als applies in a more general context of certain function spaces, leading
to a recursive construction of hierarchies of rational function spaces.
Consequently, Gaussian quadrature rules of a new kind were obtained,
ones in which the number of nodes are doubled and redoubled and the
abscissas and weights themselves are given by simple recursive formu-
las, extending the results in [9, 11].

It is our goal here to explicate the family of orthogonal rational func-
tion sequences that is constructed from the classical Hermite polyno-
mials, although new and recounted theorems are given for the general
case of d-fold doubling of orthogonal polynomial sequences that was
introduced in [10].
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2. Recursive transformation. The doubling transformation of
parameters γ, λ > 0 we denote here by

(2.1) v(γ,λ)(x) :=
1
λ

(
x − γ

x

)
.

Its inverses are

(2.2) v
(γ,λ)
j (y) :=

λ

2

(
y + j

√
y2 +

4γ
λ2

)
, j = ±1.

The work in [10] begins with the following very general theorem
concerning recursive building of function spaces. The spaces need not
be comprised of rational functions and may not be ordered by inclusion.

Theorem 2.1 (Recursive transformation, proof in [10]). Let m be
a non-negative integer and Nm be a positive integer. Let (γ, λ) :=
{(γd, λd)}∞d=1 be a sequence of pairs of positive real numbers, and
let v(γm+1,λm+1)(x) and v

(γm+1,λm+1)
±1 (y) be given by (2.1) and (2.2),

respectively. Suppose

(i) I
(γ,λ)
m := ∪Nm

i=1(a
(γ,λ)
m,i , b

(γ,λ)
m,i ) is the union of disjoint intervals

(a(γ,λ)
m,i , b

(γ,λ)
m,i ), i = 1, 2, 3, . . . , Nm,

(ii) F(γ,λ)
m is a real vector space of real, continuous functions on I

(γ,λ)
m ,

(iii) w
(γ,λ)
m (x) is a non-negative real, continuous function on I

(γ,λ)
m

such that (f, g)(γ,λ)
m :=

∫
I
(γ,λ)
m

f(x)g(x)w(γ,λ)
m (x) dx is an inner product

on F(γ,λ)
m ,

(iv) F
(γ,λ)
m := {f

(γ,λ)
m,n (x)}∞n=0 is an ordered orthogonal basis for F(γ,λ)

m

under (·, ·)(γ,λ)
m .

Set

Nm+1 := 2Nm,(2.3a)

a
(γ,λ)
m+1,i := v

(γm+1,λm+1)
−1 (a(γ,λ)

m,i ), i = 1, 2, 3, . . . , Nm,(2.3b)

a
(γ,λ)
m+1,Nm+i := v

(γm+1,λm+1)
1 (a(γ,λ)

m,i ), i = 1, 2, 3, . . . , Nm,(2.3c)

b
(γ,λ)
m+1,i := v

(γm+1,λm+1)
−1 (b(γ,λ)

m,i ), i = 1, 2, 3, . . . , Nm,(2.3d)
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b
(γ,λ)
m+1,Nm+i := v

(γm+1,λm+1)
1 (b(γ,λ)

m,i ), i = 1, 2, 3, . . . , Nm,(2.3e)

f
(γ,λ)
m+1,2k(x) := λk

m+1f
(γ,λ)
m,k (v(γm+1,λm+1)(x)), k = 0, 1, 2, . . . ,

(2.3f)

f
(γ,λ)
m+1,2k+1(x) := (−λm+1/γm+1)k(1/x)f (γ,λ)

m,k (v(γm+1,λm+1)(x)),
(2.3g)

k = 0, 1, 2, . . . ,

F
(γ,λ)
m+1 := {f

(γ,λ)
m+1,n(x)}∞n=0(2.3h)

F(γ,λ)
m+1 := the real linear span of F

(γ,λ)
m+1(2.3i)

w
(γ,λ)
m+1 (x) := w(γ,λ)

m (v(γm+1,λm+1)(x)).(2.3j)

Then, with reference to the equations (2.3),

(I) I
(γ,λ)
m+1 := ∪Nm+1

i=1 (a(γ,λ)
m+1,i, b

(γ,λ)
m+1,i) is the union of disjoint intervals

(a(γ,λ)
m+1,i, b

(γ,λ)
m+1,i), i = 1, 2, 3, . . . , Nm+1,

(II) F(γ,λ)
m+1 is a real vector space of real, continuous functions on

I
(γ,λ)
m+1 ,

(III) w
(γ,λ)
m+1 (x) is a non-negative real, continuous function on I

(γ,λ)
m+1

such that (f, g)(γ,λ)
m+1 :=

∫
I
(γ,λ)
m+1

f(x)g(x)w(γ,λ)
m+1 (x) dx is an inner product

on F(γ,λ)
m+1 ,

(IV) F
(γ,λ)
m+1 := {f

(γ,λ)
m+1,n(x)}∞n=0 is an ordered orthogonal basis for

F(γ,λ)
m+1 under (·, ·)(γ,λ)

m+1 .

3. ORFS constructions and d-fold Gauss quadrature. The
theory of Orthogonal Polynomial Sequences (OPS’s) is a relatively rich
one, and the theories of Orthogonal Laurent Polynomial Sequences
(OLPS’s) and, still more generally, Orthogonal Rational Function Se-
quences (ORFS’s) are currently experiencing a period of rapid growth.
For introductions to these subjects, we suggest [5, 21] for OPS’s, [7,
17] for OLPS’s and [4] for ORFS’s. Recent studies in addition to [12,
13] have examined OLPS’s generated from OPS’s via transformations.
For example, in [8], the doubling transformation (2.1) is used to de-
velop the strong Chebyshev OLPS, and in [18, 19], a closely related
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transformation of the form u(x) = 1/λ(
√

x−γ/
√

x ) is used to generate
strong moment distribution functions from symmetric moment distri-
bution functions. Considering the recursive transformation theorem
and the work done in [9, 11, 12, 13], we now recount those results
given in [10] that show how OPS’s can be used to construct not only
OLPS’s, but ORFS’s and associated Gaussian quadrature rules.

We restrict our attention here to continuous, non-negative weight
functions w(x) on unions of disjoint intervals I := ∪N

i=1(ai, bi) ⊆ R
which give inner products,

(f, g) :=
∫

I

f(x)g(x)w(x) dx,

on infinite dimensional subspaces P of the space of real rational func-
tions, where P has an ordered orthogonal basis P := {Pn(x)}∞n=0,
orthogonal with respect to (·, ·). P is called an Orthogonal Ratio-
nal Function Sequence (ORFS) with respect to (·, ·) on P. If P is
the space of real polynomials and the ORFS P is ordered by polyno-
mial degree, P is called an Orthogonal Polynomial Sequence (OPS).
If P is the space of real Laurent polynomials with ordered basis
{1, x−1, x, x−2, x2, x−3, x3, . . . }, implying the term L-degree, and the
ORFS P is ordered by L-degree, P is called an Orthogonal Laurent
Polynomial Sequence (OLPS).

Let (γ, λ) := {(γd, λd)}∞d=1 be a sequence of pairs of positive real
numbers, and assume w

(γ,λ)
0 (x) is a continuous, non-negative weight

function on an interval I
(γ,λ)
0 := (a(γ,λ)

0,1 , b
(γ,λ)
0,1 ), −∞ ≤ a

(γ,λ)
0,1 < b

(γ,λ)
0,1 ≤

∞, giving an inner product,

(3.1) (f, g)(γ,λ)
0 :=

∫ b
(γ,λ)
0,1

a
(γ,λ)
0,1

f(x)g(x)w(γ,λ)
0 (x) dx,

on the space of real polynomials, which we designate by P(γ,λ)
0 . We let

P
(γ,λ)
0 := {P

(γ,λ)
0,n (x)}∞n=0 denote the OPS of monic polynomials. For

fixed positive integer n,

(3.2) P
(γ,λ)
0,n (x) =

n∏
k=1

(x − x
(γ,λ)
0,n,k),
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for distinct real zeros x
(γ,λ)
0,n,1 , x

(γ,λ)
0,n,2 , x

(γ,λ)
0,n,3 , . . . , x

(γ,λ)
0,n,n. For func-

tions f(x) where the integral exists, Gaussian quadrature, as in [14]
for example, then gives unique positive real numbers w

(γ,λ)
0,n,1 , w

(γ,λ)
0,n,2 ,

w
(γ,λ)
0,n,3 , . . . , w

(γ,λ)
0,n,n such that

(3.3a)
∫ b

(γ,λ)
0,1

a
(γ,λ)
0,1

f(x)w(γ,λ)
0 (x) dx =

n∑
k=1

f(x(γ,λ)
0,n,k)w

(γ,λ)
0,n,k + E

(γ,λ)
0,n [f(x)],

where E
(γ,λ)
0,n (xm) = 0, for m = 0, 1, . . . , 2n − 1, or, more generally,

(3.3b) E
(γ,λ)
0,n [f(x)] =

f (2n)(ν)
(2n)!

(P (γ,λ)
0,n , P

(γ,λ)
0,n )(γ,λ)

0 ,

for f(x) having a continuous (2n)-th derivative and some ν ∈
(a(γ,λ)

0,1 , b
(γ,λ)
0,1 ).

Applying the recursive transformation theorem, we obtain a sequence
{P(γ,λ)

d }∞d=0 of function spaces. To begin to describe the spaces P(γ,λ)
d ,

let

s
(γ,λ)
d,0 := −∞, d = 0, 1, 2, . . . ,(3.4a)

s
(γ,λ)
0,1 := ∞,(3.4b)

and define recursively, for d = 1, 2, 3 . . . ,

s
(γ,λ)
d,j := v

(γd,λd)
−1 (s(γ,λ)

d−1,j), j = 1, 2, 3, . . . , 2d−1,(3.4c)

s
(γ,λ)
d,j := v

(γd,λd)
1 (s(γ,λ)

d−1,j−2d−1), j = 2d−1+1, 2d−1+2, . . . , 2d.

(3.4d)

Form the finite sequences, for d = 0, 1, 2, . . . ,

(3.4e) S
(γ,λ)
d := {s

(γ,λ)
d,j }2d

j=1.

It follows by induction, using monotonicity of v
(γ,λ)
±1 (y) and the fact

that v
(γ,λ)
−1 (y) = v

(γ,λ)
1 (−y), that S

(γ,λ)
d \ {∞} is monotone increasing

and symmetric about the origin.
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Next, form the sets, for k = 1, 2, 3, . . . ,

(3.5a) B
(γ,λ)
0,k := {xk},

and, for d = 1, 2, 3, . . . ,

(3.5b)

B
(γ,λ)
d,k :=

{ 1

(x − s
(γ,λ)
d,1 )k

,
1

(x − s
(γ,λ)
d,2 )k

,
1

(x − s
(γ,λ)
d,3 )k

, . . . ,

1

(x − s
(γ,λ)

d,2d−1
)k

, xk
}

,

and finally, for d = 0, 1, 2, . . . , set

B
N(γ,λ)
d := {1} ∪

N⋃
k=1

B
(γ,λ)
d,k(3.5c)

and

B
(γ,λ)
d := {1} ∪

∞⋃
k=1

B
(γ,λ)
d,k .(3.5d)

B
(γ,λ)
d is a linearly independent set of rational functions with the

set of poles S
(γ,λ)
d . B

(γ,λ)
d forms a basis for a real vector space of

rational functions. For example, B
(γ,λ)
0 = {1, x, x2, x3, . . . } is a basis

for P(γ,λ)
0 , the space of real polynomials. By the work in [12, 13],

P(γ,λ)
1 is the space of real Laurent polynomials, and hence has basis

B
(γ,λ)
1 = {1, 1/x, x, 1/x2, x2, 1/x3, x3, . . . }. In general, we have the

following theorem.

Theorem 3.1 (Proof in [10]). Let (γ, λ) := {(γd, λd)}∞d=1 be a
sequence of pairs of positive real numbers, and let d be any non-negative
integer. B

(γ,λ)
d given in (3.5) is a basis for P(γ,λ)

d , the d-fold doubling
of the space P(γ,λ)

0 of real polynomials, given by Theorem 2.1. Hence,
S

(γ,λ)
d given in (3.4) is the set of poles of the rational functions of P(γ,λ)

d .
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Remark 3.2. We suppress the explicit notational reference to the
dependence on the sequence of parameters (γ, λ) at times, hereafter,
when the relief from notation is deemed desirable for expositional
purposes and there is little loss of clarity.

In the cases d = 0, 1, if we consider Bd as an ordered set, with ordering
as implied in the definition (3.5), then Pd is obtained by applying the
Gram-Schmidt process to Bd, using (·, ·)d provided by the recursive
transformation theorem. However, a close reading of the argument in
[10] that Bd ⊂ Pd reveals that this is not true for d = 2, 3, 4, . . . .
Next, we collect some additional facts pertaining to the structure of
the ordered orthogonal basis Pd of Pd before turning our attention to
related quadrature rules. The next theorem is an easy consequence of
the previous two.

Theorem 3.3 (d-Fold doubling of Orthogonal Polynomial Sequences,
proof in [10]). Let (γ, λ) := {(γd, λd)}∞d=1 be a sequence of pairs
of positive real numbers, and let d be any positive integer. Suppose
P

(γ,λ)
0 := {P

(γ,λ)
0,n (x)}∞n=0 is an OPS with respect to (f, g)(γ,λ)

0 :=∫ b
(γ,λ)
0,1

a
(γ,λ)
0,1

f(x)g(x)w(γ,λ)
0 (x) dx on the space P(γ,λ)

0 of real polynomials,

where w
(γ,λ)
0 (x) is a continuous, non-negative weight function defined

on an interval I
(γ,λ)
0 := (a(γ,λ)

0,1 , b
(γ,λ)
0,1 ), −∞ ≤ a

(γ,λ)
0,1 < b

(γ,λ)
0,1 ≤ ∞.

Then P
(γ,λ)
d is an ORFS with respect to (f, g)(γ,λ)

d , given by the
continuous, non-negative weight function w

(γ,λ)
d (x) defined on the union

I
(γ,λ)
d of disjoint intervals, on the space P(γ,λ)

d of real rational functions
with basis B

(γ,λ)
d given in (3.5), where

P
(γ,λ)
d,2k (x) := λk

d P
(γ,λ)
d−1,k(v

(γd,λd)(x)), k = 0, 1, 2, . . . ,(3.6a)

P
(γ,λ)
d,2k+1(x) := (−λd/γd)k (1/x)P

(γ,λ)
d−1,k(v

(γd,λd)(x)),(3.6b)

k = 0, 1, 2, . . . ,

P
(γ,λ)
d := {P

(γ,λ)
d,n (x)}∞n=0,(3.6c)

a
(γ,λ)
d,i := v

(γd,λd)
−1 (a(γ,λ)

d−1,i), i = 1, 2, 3, . . . , 2d−1,(3.7a)

a
(γ,λ)

d,2d−1+i
:= v

(γd,λd)
1 (a(γ,λ)

d−1,i), i = 1, 2, 3, 2d−1,(3.7b)
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b
(γ,λ)
d,i := v

(γd,λd)
−1 (b(γ,λ)

d−1,i), i = 1, 2, 3, . . . , 2d−1,(3.7c)

b
(γ,λ)

d,2d−1+i
:= v

(γd,λd)
1 (b(γ,λ)

d−1,i), i = 1, 2, 3, . . . , 2d−1,(3.7d)

I
(γ,λ)
d :=

2d⋃
j=1

(a(γ,λ)
d,j , b

(γ,λ)
d,j ),(3.7e)

w
(γ,λ)
d (x) := w

(γ,λ)
d−1 (v(γd,λd)(x)),(3.7f)

(f, g)(γ,λ)
d :=

∫
I
(γ,λ)
d

f(x)g(x)w(γ,λ)
d (x) dx,(3.7g)

for v(γd,λd)(x) and v
(γd,λd)
±1 (y) given by (2.1) and (2.2), respectively.

The next two results follow by induction arguments on d.

Theorem 3.4 (d-Fold doubling of zeros, see [10]). Let (γ, λ) :=
{(γd, λd)}∞d=1 be a sequence of pairs of positive real numbers, and let
d be any positive integer. Suppose that {P

(γ,λ)
0,n (x)}∞n=0 is an OPS, as

in Theorem 3.3, and that P
(γ,λ)
0,n (x), for n ≥ 1, has zeros {x

(γ,λ)
0,n,k}n

k=1

satisfying

−∞ =: s
(γ,λ)
0,0 ≤ a

(γ,λ)
0,1 < x

(γ,λ)
0,n,1 < x

(γ,λ)
0,n,2 < · · · < x

(γ,λ)
0,n,n < b

(γ,λ)
0,1 ≤ s

(γ,λ)
0,1

:= ∞.

For m = 0, 1, 2, . . . , 2d − 1, P
(γ,λ)

d,2dn+m
(x) given in (3.6) has 2dn real,

distinct, simple zeros, denoted by {x
(γ,λ)
d,n,k}2dn

k=1, which satisfy

x
(γ,λ)
d,n,i = v

(γd,λd)
−1 (x(γ,λ)

d−1,n,i), i = 1, 2, 3, . . . , 2d−1n,(3.8a)

x
(γ,λ)

d,n,2d−1n+i
= v

(γd,λd)
1 (x(γ,λ)

d−1,n,i), i = 1, 2, 3, . . . , 2d−1n,(3.8b)

for v
(γd,λd)
±1 (y) given by (2.2), and satisfy

(3.9)

s
(γ,λ)
d,j−1 ≤ a

(γ,λ)
d,j < x

(γ,λ)
d,n,n(j−1)+1 < x

(γ,λ)
d,n,n(j−1)+2 < · · · < x

(γ,λ)
d,n,nj < bd,j

≤ s
(γ,λ)
d,j
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for j = 1, 2, 3, . . . , 2d, where s
(γ,λ)
d,j is given by (3.4) and a

(γ,λ)
d,j , b

(γ,λ)
d,j by

(3.7).

Theorem 3.5 (See [10]). Let (γ, λ) := {(γd, λd)}∞d=1 be a sequence
of pairs of positive real numbers, and let d be any positive integer. For
any positive integer n, P

(γ,λ)

d,2dn
(x), defined in (3.6), is given by

(3.10) P
(γ,λ)

d,2dn
(x) =

2dn∏
k=1

(x − x
(γ,λ)
d,n,k)

2d−1∏
j=1

(
1

x − s
(γ,λ)
d,j

)n

,

where s
(γ,λ)
d,j is given by (3.4) and x

(γ,λ)
d,n,k by (3.8).

We turn our attention now to Gaussian Quadrature.

Theorem 3.6 (d-Fold Gauss quadrature, proof in [10]). Proceed
under the assumptions and notation of Theorem 3.3 and Theorem 3.4.
For k = 1, 2, . . . , 2dn, set

(3.11) w
(γ,λ)
d,n,k :=

∫
I
(γ,λ)
d

l
(γ,λ)
d,n,k(x)w

(γ,λ)
d (x) dx,

where

(3.12) l
(γ,λ)
d,n,k(x) :=

P
(γ,λ)

d,2dn
(x)

(x − x
(γ,λ)
d,n,k)P

′ (γ,λ)

d,2dn
(x(γ,λ)

d,n,k)
.

Then, for every rational function q(x) in the real linear span of
B

2n (γ,λ)
d \ {x2n},

(3.13)
∫

I
(γ,λ)
d

q(x)w
(γ,λ)
d (x) dx =

2dn∑
k=1

q(x(γ,λ)
d,n,k)w

(γ,λ)
d,n,k.

We call (3.13) the (2dn)-point d-fold Gauss quadrature formula of
parameters (γ, λ) := {(γd, λd)}∞d=1.
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Theorem 3.7 (d-Fold Gauss quadrature weights, proof in [10]).
Let d and n be positive integers, and let x

(γ,λ)
d,n,k and w

(γ,λ)
d,n,k, for

k = 1, 2, 3, . . . , 2dn, be the abscissas and weights, respectively, in the
(2dn)-point d-fold Gauss quadrature formula of parameters (γ, λ) :=
{(γd, λd)}∞d=1, formula (3.13). Then

w
(γ,λ)
d−1,n,i = v′ (γd,λd)(x(γ,λ)

d,n,i )w
(γ,λ)
d,n,i , i = 1, 2, 3, . . . , 2d−1n,

(3.14a)

w
(γ,λ)
d−1,n,i = v′ (γd,λd)(x(γ,λ)

d,n,2d−1n+i
)w

(γ,λ)

d,n,2d−1n+i
,

(3.14b)

i = 1, 2, 3, . . . , 2d−1n,

where w
(γ,λ)
d−1,n,i, for i = 1, 2, 3, . . . , 2d−1n, are the weights in the (2d−1n)-

point (d − 1)-fold Gauss quadrature formula of parameters (γ, λ) :=
{(γd, λd)}∞d=1.

Theorem 3.8 (d-Fold Gauss quadrature error, proof in [10]). Pro-
ceed under the assumptions and notation of Theorems 3.3, 3.4 and 3.6.
Suppose

(3.15) Q(x) := q(x)
2d−1∏
j=1

(
x − sd,j

)2n

has a continuous (2d+1n)-th derivative on I
(γ,λ)
d . Then there exists εj

in (a(γ,λ)
d,1 , b

(γ,λ)

d,2d ), for j = 1, 2, . . . , 2d, such that

(3.16)
∫

I
(γ,λ)
d

q(x)w
(γ,λ)
d (x) dx =

2dn∑
k=1

q(x(γ,λ)
d,n,k)w

(γ,λ)
d,n,k + E

(γ,λ)
d,n [q(x)],

where

(3.17) E
(γ,λ)
d,n [q(x)] =

2d∑
j=1

Q(2d+1n)(εj)
(2d+1n)!

∫ b
(γ,λ)
d,j

a
(γ,λ)
d,j

[P (γ,λ)

d,2dn
(x)]2 wd(x) dx.

These results concerning d-fold doubling and Gaussian quadrature
constituted the successful completion of the main goal of the work in
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[10] and give a template from which special case studies can begin.
As we shall see in the next section, an OPS with support I0 =
(−∞,∞), like the Hermite polynomials, offers an opportunity for useful
refinements of the general d-fold Gauss quadrature presented above.
In addition, in any case, taking (γ, λ) to be a constant sequence of
parameters leads to simpler descriptions and formulas, as illustrated by
the next theorem. Theorem 3.9 also gives some justification in calling
Pd the d-fold doubling of P0 and in the use of similar terminology in
the more general context of the recursive transformation theorem.

Theorem 3.9 (Proof in [10]). Let (γ, λ) := {(γd, λd)}∞d=1 be a
sequence of pairs of positive real numbers, and let {P(γ,λ)

d }∞d=0 be the
sequence of real inner product spaces of rational functions such that
P(γ,λ)

d has basis B
(γ,λ)
d given in (3.5). For any d ≥ 2, P(γ,λ)

0 ⊂ P(γ,λ)
1 ⊂

P(γ,λ)
d . However, P(γ,λ)

0 ⊂ P(γ,λ)
1 ⊂ P(γ,λ)

2 ⊂ · · · if and only if (γ, λ) is
a constant sequence.

Remark 3.10. Henceforth, at times we will find it convenient to
identify a constant sequence (γ, λ) with the ordered pair of the same
name, and vice versa.

Remark 3.11. As mentioned above, technically, we are concerned with
Pd as real-valued functions defined on a union of disjoint intervals Id.
Id is at most the real numbers without the 2d − 1 points of Sd \ {∞}.
However, the proof and the conclusions of the present theorem, in
particular, are presented from the point of view of largest domain of
definition for the rational functions involved.

4. d-Fold Hermite rationals and Hermite-Gauss quadrature.
Let {Hn(x)}∞n=0 be the sequence of monic Hermite polynomials, or-
thogonal with respect to

(4.1) (f(x), g(x))H :=
∫ ∞

−∞
f(x)g(x) e−x2

dx.

Using the known formula

(4.2) (Hn(x), Hn(x))H =
n!
2n

√
π,
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we write the quadrature (3.3) in the compact form

(4.3)
∫ ∞

−∞
f(x)e−x2

dx =
∑

k=1,2,...,n

f(h(γ,λ)
0,n,k)H

(γ,λ)
0,n,k +

f (2n)(ν)
(2n)!

n!
2n

√
π,

for f(x) having a continuous (2n)th derivative, and some ν ∈ (−∞,∞).
We have thus denoted the zeros of Hn(x) by h

(γ,λ)
0,n,k and the correspond-

ing quadrature weights by H
(γ,λ)
0,n,k , for k = 1, 2, . . . , n.

Now, let γ and λ be constant positive numbers, and set

(4.4a) v[0](γ,λ)(x) := x

and

(4.4b) v[d](γ,λ)(x) := v[d−1](γ,λ)(v(γ,λ)(x))

for d = 1, 2, 3, . . . . v[d](γ,λ)(x) is the d-fold composition of the doubling
transformation v(γ,λ)(x) given in Definition (2.1). Since

(4.5) lim
x→s

(γ,λ)
d,j

(x − s
(γ,λ)
d,j )me−[v[d](γ,λ)(x)]2 = 0,

for j = 1, 2, . . . , 2d − 1, m = 0,±1,±2, . . . and s
(γ,λ)
d,j given by (3.4), we

can then write (3.7g), in this case, as

(4.6) (f(x), g(x))
H

(γ,λ)
d

:=
∫ ∞

−∞
f(x)g(x)e−[v[d](γ,λ)(x)]2 dx,

as an inner product for the space P(γ,λ)
d of real rational functions with

basis Bd defined in (3.5).

Denote by {H
(γ,λ)
d,n (x)}∞n=0 the ORFS for P(γ,λ)

d with respect to (4.6),
yielded by Theorem 3.3 applied to the Hermite OPS {Hn(x)}∞n=0. We
call the functions H

(γ,λ)
d,n (x) the d-fold Hermite rationals of parameters

γ, λ > 0. By (3.8), the zeros, which we denote by h
(γ,λ)
d,n,k for k =

1, 2, . . . 2dn, of H
(γ,λ)

d,2dn
(x), n ≥ 1, satisfy

(4.7a)
h

(γ,λ)
d,n,i =

λ

2

(
h

(γ,λ)
d−1,n,i −

√
(h(γ,λ)

d−1,n,i)2 +
4γ
λ2

)
,

i = 1, 2, 3, . . . , 2d−1n,
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(4.7b)
h

(γ,λ)

d,n,2d−1n+i
=

λ

2

(
h

(γ,λ)
d−1,n,i +

√
(h(γ,λ)

d−1,n,i)2 +
4γ
λ2

)
,

i = 1, 2, 3, . . . , 2d−1n.

The corresponding weights, which we denote by H
(γ,λ)
d,n,k for k =

1, 2, . . . 2dn, considering Theorem 3.7, we can write as

H
(γ,λ)
d,n,i =

λ(h(γ,λ)
d,n,i )

2

(h(γ,λ)
d,n,i )2 + γ

H
(γ,λ)
d−1,n,i, i = 1, 2, 3, . . . , 2d−1n,

(4.8a)

H
(γ,λ)

d,n,2d−1n+i
=

λ(h(γ,λ)

d,n,2d−1n+i
)2

(h(γ,λ)

d,n,2d−1n+i
)2 + γ

H
(γ,λ)
d−1,n,i,

(4.8b)

i = 1, 2, 3, . . . , 2d−1n.

The following theorem gives the (2dn)-Point d-fold Hermite-Gauss
quadrature formula of parameters γ, λ > 0.

Theorem 4.1 (d-Fold Hermite-Gauss quadrature, see [10]). Let
γ, λ > 0, and let d and n be positive integers. With h

(γ,λ)
d,n,k and H

(γ,λ)
d,n,k

given in (4.7) and (4.8), respectively,

(4.9)
∫ ∞

−∞
q(x)e−[v[d](γ,λ)(x)]2 dx =

2dn∑
k=1

q(h(γ,λ)
d,n,k)H

(γ,λ)
d,n,k + E

(γ,λ)
d,n [q(x)]

with

(4.10) E
(γ,λ)
d,n [q(x)] :=

Q(2d+1n)(ε)
(2d+1n)!

n!
2n

√
π λd(2n+1),

for some ε in (−∞,∞), provided Q(x) := q(x)
∏2d−1

j=1 (x − s
(γ,λ)
d,j )2n has

a continuous (2d+1n)-th derivative, s
(γ,λ)
d,j defined in (3.4).

Examples, comparisons and observations concerning d-Fold Hermite-
Gauss Quadrature are given in [10], along with the following applica-
tion to the computation of special functions. Consider the system of
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differential equations

(4.11)
x X ′′

m(x)− (m − 1/2)X ′
m(x)− Xm(x) = 0,

m = 0,±1,±2, . . . ,

which might arise in the study by separation and superposition of the
wave equation

x Uxx + Uxt = U ;

for example, U(x, t) =
∑∞

m=1 Xm(x)e−(m−1/2)t.

A solution to (4.11) is

(4.12) Xm(x) := e−2
√

x

∫ ∞

−∞
τ2me−[v[1](

√
x,1)(τ)]2 dτ, x > 0,

and d-fold Hermite-Gauss quadrature, Theorem 4.1, yields

(4.13) Xm(x) = e−2
√

x
2n∑

k=1

(h(
√

x,1)
1,n,k )2m H

(
√

x,1)
1,n,k ,

for any positive integer n with n > m ≥ 0.

In order to see that (4.12) satisfies (4.11), note that

Xm(x) =
∫ ∞

0

um−1/2e−u−x/u du,

by the substitution u = τ2 in (4.12). From this last equation, we obtain

(4.14) X ′
m(x) = −Xm−1(x),

and, by the integration by parts formula,

(4.15) Xm(x) = (m − 1/2)Xm−1(x) + xXm−2(x).

The differential equation (4.11) results by combining these last two
equations.

From Equation (4.13), we obtain

(4.16) X0(x) =
√

π e−2
√

x
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and

(4.17) X1(x) = (1/2 +
√

x )
√

π e−2
√

x.

These expressions for X0(x) and X1(x) and the formula (4.15) can
then be used recursively to find expressions for Xm(x), for all other
integers m.

5. Results and observations. We first focus on P
(γ,λ)
d :=

{P
(γ,λ)
d,n (x)}∞n=0, the general d-fold doubling of an OPS P

(γ,λ)
0 , before

turning to the Hermite special case. A weaker version of the following
inner product relation was used to obtain the error formula, equation
(4.10). The proof, which we omit here, parallels that of Theorem 2.2.8
in [12].

Theorem 5.1. Let d ≥ 1, and let k be a non-negative integer. Then

(
P

(γ,λ)
d,2k , P

(γ,λ)
d,2k

)(γ,λ)

d
= γ2k+1

d

(
P

(γ,λ)
d,2k+1, P

(γ,λ)
d,2k+1

)(γ,λ)

d

= λ2k+1
d

(
P

(γ,λ)
d−1,k, P

(γ,λ)
d−1,k

)(γ,λ)

d−1
.

In practice, one may require the partial fraction decomposition

(5.1) P
(γ,λ)
d,n (x) =

� n

2d �∑
i=0

a
(γ,λ)
d,n,i xi +

� n

2d �∑
i=1

2d−1∑
j=1

b
(γ,λ)
d,n,i,j

(
x − s

(γ,λ)
d,j

)−i

,

for real coefficient a
(γ,λ)
d,n,i and b

(γ,λ)
d,n,i,j . Here, �n/2d� is the least integer

greater than n/2d. Having P
(γ,λ)
d,n (x) in the form given by the definition,

(3.6), an algorithm for finding these coefficients is given in Figure 1.
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1. For i = � n
2d �, � n

2d � − 1, � n
2d � − 2, . . . , 1, in that order, calculate

b
(γ,λ)
d,n,i,j = lim

x→s
(γ,λ)
d,j

(
x−s

(γ,λ)
d,j

)i
(

P
(γ,λ)
d,n (x)−

� n

2d �−i−1∑
k=0

b
(γ,λ)
d,n,� n

2d �−k,j(
x − s

(γ,λ)
d,j

)� n

2d �−k

)
,

for each j from 1 to 2d − 1.

2. For each i from 0 to � n
2d �, calculate

a
(γ,λ)
d,n,i = lim

x→0

di

dxi

(
P

(γ,λ)
d,n (x)−

� n

2d �∑
k=1

2d−1∑
j=1

b
(γ,λ)
d,n,k,j(

x − s
(γ,λ)
d,j

)k

)
.

FIGURE 1. A partial fraction decomposition algorithm.

Orthogonal rational function sequences, under certain regularity con-
ditions, satisfy three-term recurrence, see [4]. Consider the possibility
that P

(γ,λ)
d satisfies a three-term recurrence of the form P

(γ,λ)
d,n (x) =

qn(x)P
(γ,λ)
d,n−1(x) − rn(x)P

(γ,λ)
d,n−2(x), for some qn(x) and rn(x) in the

space P(γ,λ)
d . Since P

(γ,λ)
d,2k−2(x) = (−γd)k−1xP

(γ,λ)
d,2k−1(x), we would

then have P
(γ,λ)
d,n (x) = sn(x)P

(γ,λ)
d,n−1(x), for sn(x) in P(γ,λ)

d ; thus, if

P
(γ,λ)
d satisfies a three-term formula, then it satisfies a two-term for-

mula. In fact, each odd indexed function is, by Definition (3.6), given
in terms of the preceding even indexed one. However, one observes
from the d-fold doubling of zeros theorem (3.4) that P

(γ,λ)

d,2dj
(x) has 2d

more distinct zeros than does P
(γ,λ)

d,2dj−1
(x). Hence, we can see that

s2dj(x) = P
(γ,λ)

d,2dj
(x)/P

(γ,λ)

d,2dj−1
(x) is not in P(γ,λ)

d , and we have the fol-
lowing.

Theorem 5.2. If d ≥ 1, then P
(γ,λ)
d does not satisfy a 3-term

recursion of the form P
(γ,λ)
d,n (x) = qn(x)P

(γ,λ)
d,n−1(x) − rn(x)P

(γ,λ)
d,n−2(x),

where qn(x), rn(x) ∈ P(γ,λ)
d .

It is well known that monic orthogonal polynomial sequences, in our
notation P

(γ,λ)
d with d = 0, always satisfy a 3-term recurrence formula,

(5.2) P
(γ,λ)
0,n (x) = (x − an)P

(γ,λ)
0,n−1(x)− bnP

(γ,λ)
0,n−2(x),
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an and bn constants. It was shown in [12] that P
(γ,λ)
d with d = 1,

the Laurent polynomial case, satisfies a four-term recurrence relation
with Laurent polynomial coefficients. The next theorem extends these
results to P

(γ,λ)
d for general d. It says that subsequences of P

(γ,λ)
d of

period 2d are given by three-term recursion. A proof by induction on
d is straightforward from the definition of d-fold doubling (3.6) and
formula (5.2), and we will omit it.

Theorem 5.3. Let d ≥ 0 and j ∈ {0, 1, 2, . . . , 2d − 1}. For
n = 0, 1, 2, . . . , set

(5.3) R
(γ,λ)
d,j,n (x) := P

(γ,λ)

d,2dn+j
(x).

Then, for n ≥ 2, there are rational functions q
(γ,λ)
d,j,n (x) and r

(γ,λ)
d,j,n (x) in

P(γ,λ)
d such that

(5.4) R
(γ,λ)
d,j,n (x) = q

(γ,λ)
d,j,n (x)R

(γ,λ)
d,j,n−1(x)− r

(γ,λ)
d,j,n (x)R

(γ,λ)
d,j,n−2(x).

As a consequence of the theorem, there are 2d continued fractions
associated with P

(γ,λ)
d , in that each of the 2d-periodic subsequences

indexed by j is given as nth denominators of the continued fraction

K
(− r

(γ,λ)
d,j,n (x)

q
(γ,λ)
d,j,n (x)

)
.

It’s convenient here to renormalize P
(γ,λ)
d by setting

(5.5) p
(γ,λ)
0,n (x) := P

(γ,λ)
0,n (x), n = 0, 1, 2, . . . ,

and, for d ≥ 1, defining recursively

p
(γ,λ)
d,2n (x) := p

(γ,λ)
d−1,n(v

(γd,λd)(x)), n = 0, 1, 2, . . .
(5.6a)
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Then it’s clear that p
(γ,λ)
d,n (x) and P

(γ,λ)
d,n (x) differ by a nonzero multi-

plicative constant and, hence, {p
(γ,λ)
d,n (x)}∞n=0 is an ORFS with respect

to (·, ·)(γ,λ)
d on P(γ,λ)

d . Also, note that

(5.7) p
(γ,λ)

d,2dn
(x) =

( d∏
k=1

λn
k

)
P

(γ,λ)

d,2dn
(x).

In terms of this new ORFS, Theorem 5.3 can readily be reformulated
as follows, recalling v[d](γ,λ)(x) given in Equations (4.4).

Theorem 5.4. Suppose P
(γ,λ)
0 := {P

(γ,λ)
0,n (x)}∞n=0 is a monic OPS

such that

P
(γ,λ)
0,n (x) = (x − an)P

(γ,λ)
0,n−1(x)− bnP

(γ,λ)
0,n−2(x), n = 1, 2, 3, . . . ,

for constants an and bn, and where we set P
(γ,λ)
0,−1 (x) := 0.

Then, for d ≥ 0 and j ∈ {0, 1, 2, . . . , 2d − 1},
(5.8)

p
(γ,λ)

d,2dn+j
(x) =

(
v[d](γ,λ)(x)− an

)
p
(γ,λ)

d,2d(n−1)+j
(x)− bnp

(γ,λ)

d,2d(n−2)+j
(x),

for n = 1, 2, 3, . . . , where we define p
(γ,λ)

d,2d(−1)+j
(x) := 0.

We can now see that {p
(γ,λ)
d,n (x)}∞n=0 and, thus, P

(γ,λ)
d := {P

(γ,λ)
d,n (x)}∞n=0

can be associated with the nth denominators of

K
( −bn

v[d](γ,λ)(x)− an

)
.

In several special cases, the monic OPS P
(γ,λ)
0 is given by a formula

of the type
(5.9)

P
(γ,λ)
0,n (x) =

1

Knw
(γ,λ)
0 (x)

(
d

dx

)n(
ρn(x)w(γ,λ)

0 (x)
)
, n = 0, 1, 2, . . . ,
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where Kn is independent of x and ρ(x) is a polynomial independent of
n. See [5], page 146. Formulas of this kind are called Rodrigues’ type
formulas. The next theorem extends the result for the d = 1, Laurent
polynomial case in [12] to d-fold doubling. The proof again is direct
from the definitions and is omitted.

Theorem 5.5. Suppose P
(γ,λ)
0 := {P

(γ,λ)
0,n (x)}∞n=0 is given by a

Rodrigues’ type formula (5.9). Then, for d ≥ 0 and n = 0, 1, 2, . . . ,

(5.10)
p
(γ,λ)
d,n (x) =

1

Knw
(γ,λ)
d,n (x)

(
d

dv[d](γ,λ)(x)

)	n/2d


·
(

ρ	n/2d
(v[d](γ,λ)(x))w(γ,λ)
d (x)

)
,

where we define

(5.11a) w
(γ,λ)
0,n (x) := w

(γ,λ)
0 (x), n = 0, 1, 2, . . . ,

and, recursively for d ≥ 1, we set

(5.11b) w
(γ,λ)
d,2m(x) := w

(γ,λ)
d−1,m(v(γd,λd)(x))

and

(5.11c) w
(γ,λ)
d,2m+1(x) := x w

(γ,λ)
d−1,m(v(γd,λd)(x)),

and where �n/2d� denotes the greatest integer less than n/2d.

Hence, if P
(γ,λ)
0 is given by a Rodrigues’ type formula (5.9), then

{p
(γ,λ)
d,n (x)}∞n=0 and P

(γ,λ)
d := {P

(γ,λ)
d,n (x)}∞n=0 are given by generalized

Rodrigues’ type formulas. We also have, as a corollary, using (5.7),

(5.12)

P
(γ,λ)

d,2dn
(x) =

∏d
k=1 λn

k

Knw
(γ,λ)
d (x)

(
d

dv[d](γ,λ)(x)

)n(
ρn(v[d](γ,λ)(x))w(γ,λ)

d (x)
)
,

for d ≥ 1 and n = 0, 1, 2, . . . , if P
(γ,λ)
0 is given by formula (5.9).
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Closely related to Rodrigues’ formulas are second order differential
equations. For example, there are monic OPS’s which are the eigen-
functions for certain self-adjoint differential operators. See [5], page
148.

Theorem 5.6. Let d ≥ 1, and let n be a non-negative integer.
Suppose y = P

(γ,λ)
d−1,n(t) satisfies

(5.13)
d

dt

(
k(t)

dy

dt

)
− bnw(t)y = 0,

for all t in I
(γ,λ)
d−1 . Then Y = P

(γ,λ)
d,2n (x) satisfies

(5.14)
d

dx

(
K(x)

dY

dx

)
− bnW (x)Y = 0,

for all x in I
(γ,λ)
d , where K(x) := k(v(γd,λd)(x))/[dv(γd,λd)(x)/dx] and

W (x) := w(v(γd,λd)(x))[dv(γd,λd)(x)/dx].

Proof. For x ∈ I
(γ,λ)
d and t = v(γd,λd)(x), we have t ∈ I

(γ,λ)
d−1 ,

Y (x) = λn
dy(t), and

d

dx

(
K(x) fracdY dx

)
− bnW (x)Y

= λn
d

(
dv(γd,λd)(x)/dx

)( d

dt

(
k(t)

dy

dt

)
− bnw(t)y

)

= λn
d

(
dv(γd,λd)(x)/dx

)
(0)

= 0.

Hence, if P
(γ,λ)
0 := {P

(γ,λ)
0,n (x)}∞n=0 satisfies a system of differen-

tial equations of the form (5.13), then so do {p
(γ,λ)

d,2dn
(x)}∞n=0 and

{P
(γ,λ)

d,2dn
(x)}∞n=0.

Returning now to the d-fold Hermite Rationals H
(γ,λ)
d,n (x), the monic

Hermite polynomials H
(γ,λ)
0,n (x) are given by a Rodrigues’ type formula
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(see [5, p. 145])

(5.15) H
(γ,λ)
0,n (x) =

1
(−2)ne−x2

(
d

dx

)n

e−x2
, n = 0, 1, 2, . . . ,

and are eigenfunctions for a self-adjoint differential operator, in that,
for all x,
(5.16)

d

dx

(
e−x2 d

dx
H

(γ,λ)
0,n (x)

)
+ 2ne−x2

H
(γ,λ)
0,n (x) = 0, n = 0, 1, 2, . . . .

Hence, by Theorem 5.5, {H
(γ,λ)
d,n (x)}∞n=0 is given by a generalized

Rodrigues’ type formula, and, by Theorem 5.6, {H
(γ,λ)

d,2dn
(x)}∞n=0 satisfies

a system of differential equations of the form (5.14). In particular, for
d ≥ 1 and n = 0, 1, 2, . . . ,
(5.17)

H
(γ,λ)

d,2dn
(x) =

∏d
k=1 λn

k

(−2)ne−[v
[d](γ,λ)(x)]2

(
d

dv[d](γ,λ)(x)

)n(
e−[v

[d](γ,λ)(x)]2
)

,

and, for all x not in the set of singularities S
(γ,λ)
d ,

d

dx

(
e−[v

[d](γ,λ)(x)]2[
v[d](γ,λ)(x)

]′ d

dx
H

(γ,λ)

d,2dn
(x)

)

+ 2ne−[v
[d](γ,λ)(x)]2

[
v[d](γ,λ)(x)

]′
H

(γ,λ)

d,2dn
(x) = 0.

Finally, the fundamental recurrence formula for the monic Hermite
polynomials is

(5.19) H
(γ,λ)
0,n (x) = xH

(γ,λ)
0,n−1(x)−

n−1
2

H
(γ,λ)
0,n−2(x), n=1, 2, 3, . . . ,

where H
(γ,λ)
0,−1 (x) := 0 [5, p. 158]. If we define

(5.20) h
(γ,λ)
0,n (x) := H

(γ,λ)
0,n (x), n = 0, 1, 2, . . . ,
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and, for d ≥ 1, set

(5.21a) h
(γ,λ)
d,2n (x) := h

(γ,λ)
d−1,n(v

(γd,λd)(x)), n = 0, 1, 2, . . .

and

(5.21b) h
(γ,λ)
d,2n+1(x) :=

1
x

h
(γ,λ)
d−1,n(v

(γd,λd)(x)), n = 0, 1, 2, . . . ,

then the recurrence formula (5.8) translates as

(5.22)

h
(γ,λ)

d,2dn+j
(x) = v[d](γ,λ)(x)h(γ,λ)

d,2d(n−1)+j
(x)− n−1

2
h

(γ,λ)

d,2d(n−2)+j
(x),

for n = 1, 2, 3, . . . , j = 0, 1, 2, . . . , 2d − 1, and all d ≥ 0, and where we
define h

(γ,λ)

d,2d(−1)+j
(x) := 0. In this sense, we see that the d-fold Hermite

ORFS {H
(γ,λ)
d,n (x)}∞n=0 is associated with the nth denominators of the

continued fraction

K
(−(n − 1)/2

v[d](γ,λ)(x)

)
.
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