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A NEW METHOD FOR DERIVING
ADJACENT APPROXIMANTS IN THE PADÉ TABLE

DAVID A. FIELD

ABSTRACT. This paper derives formulas for adjacent ap-
proximants in the Padé table by using the Focal Point method
of solving systems of linear equations. In addition to present-
ing a new method to derive formulas, this paper gives inner
products to detect blocks in a nonnormal Padé table. These
inner products lead to characterizations of the corner entries
of the blocks.

1. Introduction. In the spirit of Baker’s [1] recursion formulas for
entries in the Padé table this paper derives additional formulas via a
novel method. Other and more numerous recursion formulas exist; for
instance, see Gragg [5], McCabe [6] and Wynn [9]. The latter formulas
all rely on auxiliary tables. The new approach relies instead on the
Focal Point method [2] for solving systems of linear equations.

The second section of this paper defines nomenclature and notations
used for the Padé table. The third section presents short summaries
of published recursion formulas. The fourth section gives a very brief
encounter with the Focal Point method. The fifth section demonstrates
the derivation of adjacent approximants via the Focal Point method.
The sixth section shows how the FP-method can detect blocks in a
nonnormal Padé table.

2. The Padé table. The power series representation of f(x),

(2.1) f(x) =
∞∑

i=0

cix
i , c0 �= 0 ,

determines an infinite two dimensional table of rational functions of
f(x), called [n/m]-Padé approximants. The entries in the nth-column
of this table have numerator polynomials of degree n. The horizontal
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rows have denominator polynomials with fixed degree m. This section
assumes that f(x) has the necessary derivatives so that the [n/m]-entry
in this Padé table,

(2.2) rn/m(x) =
Pn/m(x)
Qn/m(x)

,

exists where Pn/m(z) and Qn/m(z) denote polynomials of degree n and
m, respectively. A normal Padé table has unique [n/m]-entries which
satisfy the following criteria. Nonunique entries will be discussed in
Section 6.

According to convention rn/m(x) has been reduced to lowest terms.
Let

Pn/m(x) = a
(n/m)
0 + · · ·+ a(n/m)

n xn

and

(2.3) Qn/m(x) = b
(n/m)
0 + · · ·+ b(n/m)

m xm .

Consequently, convention imposes the condition that b
(n/m)
0 = 1. This

condition makes all the denominators in the [n/0]-entries in the first
row equal one so that the first row of the Padé table contains the
Taylor polynomials of f(x). The additional criterion that the Maclaurin
expansion of rn/m(x) agrees with the series in (2.1) as far as possible
determines the coefficients a

(n/m)
0 , . . . , a

(n/m)
n , b

(n/m)
0 , . . . , b

(n/m)
m . This

criterion yields

(2.4) f(x)− Pn/m(x)
Qn/m(x)

=
f(x)Qn/m(x)− Pn/m(x)

Qn/m(x)
,

which has a power series expansion whose first m + n + 1 terms must
equal zero. The numerator in (2.4) produces the two sets of linear
equations in (2.5a) and (2.5b). Solutions to these equations determine
the values of a

(n/m)
k , 0 ≤ k ≤ n and b

(n/m)
k , 0 ≤ k ≤ m. For notational

convenience only, temporarily assume m < n. In general 0 ≤ n, 0 ≤ m,

c0b
(n/m)
0 − a

(n/m)
0 = 0

c1b
(n/m)
0 + c0b

(n/m)
1 − a

(n/m)
1 = 0(2.5a)
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· · ·
cnb

(n/m)
0 + · · ·+ c0b

(n/m)
n − a(n/m)

n = 0 ,

and

cn+1b
(n/m)
0 + · · ·+ cn+1−mb(n/m)

m = 0
· · ·(2.5b)

cn+mb
(n/m)
0 + · · ·+ cnb(n/m)

m = 0 .

The solution of the equations in (2.5a) depend on the solutions of the
equations in (2.5b). Singular systems in (2.5b) lead to degeneracies in
the Padé table; that is, repeated adjacent entries in the Padé table. A
normal Padé table has sets of nonsingular linear equations in (2.5b) for
n > 0 andm > 0 and unique corresponding entries in the table. Solving
these equations with standard linear equation solvers can be avoided
because formulas provide alternative recursive methods to populate the
Padé table [1, 5, 6, 9].

3. Recurrence relations and the Padé table. In a normal Padé
table known recurrence relations use two adjacent entries to calculate
a third adjacent entry. This section reviews recurrence relations asso-
ciated with this method for constructing the Padé table. The fourth
section will present the Focal Point method and the fifth section will
use the Focal Point method for deriving recurrence relations.

Starting with successive (n−1)-th- and n-th-Taylor Polynomials, the
[(n − 1)/0]- and [n/0]-entries in the Padé table, Baker [1] supplies
recursions for n > j ≥ 1;

(3.1a)
P(n−j)/j(x)
Q(n−j)/j(x)

=
a
((n−j)/(j−1))
n−j P(n+1−j)/(j−1)(x)− xa

((n+1−j)/(j−1))
n+1−j P(n−j)/(j−1)(x)

a
((n−j)/(j−1))
n−j Q(n+1−j)/(j−1)(x)− xa

((n+1−j)/(j−1))
n+1−j Q(n−j)/(j−1)(x)

and
(3.1b)
P(n−j−1)/j(x)
Q(n−j−1)/j(x)

=
a
((n−j)/j)
n−j P(n−j)/(j−1)(x)− a

((n−j)/(j−1))
n−j P(n−j)/j(x)

a
((n−j)/j)
n−j Q(n−j)/(j−1)(x)− a

((n−j)/(j−1))
n−j Q(n−j)/j(x)

.
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[(n-j)/(j-1)]                     [(n-j+1)/(j-1)]                                                 [(n-j)/(j-1)]

 [(n-j)/j]                                                                   [(n-j-1)/j]              [(n-j)/j]

FIGURE 3.1. Baker’s recursion formulas derive the shaded entries in the Padé
table.

The configurations in Figure 3.1 display the use of Baker’s recursions
to determine the unknown shaded entries associated with two known
adjacent and contiguous entries. Baker uses these recursions in a
staircase progression from the first row toward approximants on the
main diagonal, the usual location of the most accurate approximations
relative to the total number of coefficients used by the numerator and
denominator polynomials.

Note that equations (3.1) use the coefficients a
(∗/∗)
∗ of the numerator

polynomials, P∗/∗. Computationally, the recursions start with the
coefficients of a power series and subsequent approximants require the
coefficients of the four polynomials on the right hand of a formula. A
comparable recursion derived by the FP-method would not, as in (3.1),
explicitly use the highest coefficients from polynomials in the numerator
but instead exhibit coefficients from polynomials in the denominator.

Baker refers to Wynn’s extensive work on the qd-algorithm [9].
Wynn’s work includes determining the coefficients in the numerators of
the continued fraction in (5.13) whose approximants lie on the staircase
diagonals progressing down and parallel to the main downward diagonal
of the Padé table. Computationally, the qd-algorithm requires two
adjacent columns in a qd-table to compute the next column which
contains a coefficient of a partial numerator of the continued fraction
whose recurrence relation in (5.14) generates adjacent and contiguous
Padé approximants. The evaluation of rhombus rules determines the
entries in the qd-table.

Gragg’s comprehensive survey of the Padé table [5] also includes
recursive formulas similar to (3.1). Gragg uses a πζ-table which, in
similar fashion to the qd-algorithm, requires evaluating a rhombus rule
to compute the entries in the πζ-table. The evaluation of Gragg’s
recursion formulas have computational complexity similar to the qd-
algorithm.
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To produce approximants in the Padé table, McCabe [6] also uses an
auxiliary rectangular table whose entries contain coefficients of contin-
ued fractions. The entries depend on a somewhat different application
of the rhombus rules found in the qd-algorithm. McCabe’s method has
the significant advantage of determining Padé approximants toward
the right across rows, down columns as well as down staircase diago-
nals and up skew diagonals. The method depends on a normal Padé
table. To produce Padé approximants McCabe’s work uses the recur-
sion formulas in (5.14) and has computational requirements similar to
the qd-algorithm.

The Focal Point method will produce entries in the Padé table directly
from the power series and adjacent entries without using auxiliary qd-
type algorithms and tables. The recurrence formulas proceed in any
direction as long as two adjacent and unequal Padé approximants in
a row, a column, a diagonal or a skew diagonal have been calculated
in any manner whatsoever. Although the derivations of recurrence
relations for the Padé approximants assume normality, Padé tables that
do not satisfy normality still benefit from the derivations. In particular,
the Focal Point method can detect a block in a nonnormal Padé table
without evaluating a determinant. Section 6 contains theorems that
characterizes the upper left corner of a block in a nonnormal Padé
table. Computationally, evaluating the recursion formulas derived via
the FP-method requires, as in all the previous methods, the coefficients
of two adjacent Padé approximants and, commensurate with entries in
an auxiliary table, coefficients of the power series.

4. The focal point method. The FP-method solves the nonsingu-
lar set of linear equations in (4.1) without changing any coefficient aij

nor any value bi. For simplicity, assume that in (4.1) a1i �= 0, 1 ≤ i ≤ n,
and b1 �= 0.

(4.1)

a11x1 + · · ·+ a1nxn = b1

a21x1 + · · ·+ a2nxn = b2

· · ·
an1x1 + · · ·+ annxn = bn .

The FP-method begins by calculating n independent vectors v(1)
1 , . . . ,

v(1)
n where all but one of the components of each v(1)

i , 1 ≤ i ≤ n, equals
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0 and the i-th-component of v(1)
i equals b1/a1i. Clearly these vectors

are independent solutions of the first equation in (4.1). The next step
in the FP-method relies on the following lemma.

Lemma. If w1 and w2 are solutions to the i-th-equation in (4.1),
then for any real number t, (1 − t)w1 + tw2 is also a solution to the
i-th-equation.

In its second step, the FP-method applies the Lemma n − 1 times
by substituting the vector (1 − t)w1 + tw2 into the second equation
in (4.1), solving for t with w1=v(1)

1 and w2=v(1)
i for 2 ≤ i ≤ n and

thereby calculating n − 1 vectors v(2)
i , 1 ≤ i ≤ n − 1, as solutions to

the first two equations in (4.1). Iterating on the second step for the
successive n − 2 equations produces a solution vector to all the linear
equations in (4.1).

Relaxing the previous assumption that a1i �= 0, 1 ≤ i ≤ n, and
b1 �= 0 and dealing with possible degeneracies when applying the
lemma in successive equations have been addressed in [2]. The FP-
method requires approximately n2/2 storage registers. The number of
multiplications and divisions in the FP-method is, as with Gaussian
elimination [4], a cubic polynomial in n with a leading term n3/3.

The FP-method essentially produces sets of n + 1 − i vectors, Si,
1 ≤ i ≤ n, which generate solution spaces for the first i equations in
(4.1). In [3] the solution spaces have been exploited in solving heat
equations with high gradients near the boundary. In this case the
FP-method solves linear equations evolving from finite differences and
reduces nonlinear multivariate boundary conditions to a system of two
polynomial equations in two unknowns. The numerical characteristics
of the FP-method have interesting geometric interpretations [2].

A key aspect of the FP-method applies to the Padé table. To solve
the last linear equation in (4.1), the FP-method produces two linearly
independent solutions to the first n − 1 equations. To derive adjacent
approximants in the Padé table the FP-method will produce two vectors
which take advantage of the fact that the linear equations corresponding
to nearby Padé approximants table have much in common.
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5. The Padé table, FP-method and recurrence relations.
Formulas for deriving Padé approximants based on two known adja-
cent entries in the Padé table motivates the use of the FP-method.
Their derivations are conceptually simple and often lead to easily im-
plemented expressions involving inner products. A derivation of a re-
cursion for a staircase progression down diagonals parallel to the main
diagonal will illustrate the FP-method. As a byproduct this applica-
tion will offer an alternative method for computing the coefficients of
the s-fraction in (5.13).

Given the [(n − 1)/m]-th and [n/m]-th Padé approximants. First,
restructure the linear equations in (2.5b) for the [n/m]-th entry in the
Padé table into

(5.1)
cnb

(n/m)
1 + · · ·+ cn+1−mb(n/m)

m = −cn+1

· · ·
cn+m−1b

(n/m)
1 + · · ·+ cnb(n/m)

m = −cn+m .

Next, introduce the notation cj:k = (cj , . . . , cj+1−k) and denote the
solution of (5.1) by

(5.2) bn/m = (b
(n/m)
1 , . . . , b(n/m)

m )T .

Observe that the equations in (5.1) can be expressed as cj:m · bn/m =
−cj+1 for n ≤ j ≤ n+m − 1.
Now consider the corresponding linear equations for the [(n− 1)/m]-

and [n/(m+ 1)]-entries; namely, the m equations

(5.3)
cn−1b

((n−1)/m)
1 + · · ·+ cn−mb((n−1)/m)

m = −cn

· · ·
cn+m−2b

((n−1)/m)
1 + · · ·+ cn−1b

((n−1)/m)
m = −cn+m−1 ,

and the m+ 1 equations

(5.4)

cnb
(n/(m+1))
1 + · · ·+ cn−mb

(n/(m+1))
m+1 = −cn+1

· · ·
cn+m−1b

(n/(m+1))
1 + · · ·+ cn−1b

(n/(m+1))
m+1 = −cn+m

cn+mb
(n/(m+1)
1 + · · ·+ cnb

(n/(m+1)
m+1 = −cn+m+1 .
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Note that in (5.1), (5.3) and (5.4), ck = 0 whenever k < 0.

Append a null component to bn/m with an append operator α0,

(5.5) α0(bn/m) = (b
(n/m)
1 , . . . , b(n/m)

m , 0)T .

α0(bn/m) satisfies the first m equations in (5.4). Obtain another vector
that satisfies the homogeneous form of thesem equations by prepending
to the solution of (5.3) a unit first component. Use the prepend operator
ρ1,

(5.6) ρ1(b(n−1)/m) = (1, b
((n−1)/m)
1 , . . . , b((n−1)/m)

m )T .

Define w, a new solution to the first m equations in (5.4) and a solution
clearly independent from α0(bn/m), by

(5.7) w = α0(bn/m) + ρ1(b(n−1)/m) .

Since the linearity of the equations in (5.4) implies that

(5.8) wn/(m+1) = (1− t)α0(bn/m) + tw = α0(bn/m) + tρ1(b(n−1)/m)

must also satisfy the first m equations in (5.4) for all values of t,
substitute wn/(m+1) into the last equation in (5.4) and solve for the
unknown t. Denote the solution by

(5.9) tn/(m+1) =
−cn+m+1 − cn+m:m+1 · α0(bn/m)

cn+m:m+1 · ρ1(b(n−1)/m)
.

Associate the components of the vectors in (5.8) with the numerators
and denominators of the entries of the Padé table to yield

(5.10)
Pn/(m+1)(x)
Qn/(m+1)(x)

=
Pn/m(x) + tn/(m+1)xP(n−1)/m(x)
Qn/m(x) + tn/(m+1)xQ(n−1)/m(x)

.

Given the [(n−1)/m]-th and [(n−1)/(m+1)]-th Padé approximants.
The companion recurrence formula for the other step in the staircase
progression has a similar derivation which yields

(5.11)
Pn/(m+1)(x)
Qn/(m+1)(x)

=
P(n−1)/(m+1)(x) + tn/(m+1)xP(n−1)/m(x)
Q(n−1)/(m+1)(x) + tn/(m+1)xQ(n−1)/m(x)

.
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where,

(5.12) tn/(m+1) =
−cn+m+1 − cn+m:m+1 · b(n−1)/(m+1)

cn+m:m+1 · ρ1(b(n−1)/m)
.

The following theorem justifies using (5.10) and (5.11) as an alter-
native to the qd-type of algorithms that calculate coefficients of S-
fractions.

Theorem 5.1. The entries in a normal Padé table corresponding to
the series in (2.1) satisfy the recurrence relations in (5.10) and (5.11).
Furthermore, tn/(m+1) in (5.9) and (5.12) give the partial numerators
of the corresponding S-fraction

(5.13)
a0

1−
a1x

1−
a2x

1− . . . .

Proof. In his last chapter [8], Wall shows that the staircase entries
down the main diagonal in a normal Padé table correspond to the
power series in (2.1). Wall also shows that these entries agree with
the nth-approximants, An/Bn, of the S-fraction. An/Bn satisfies the
recurrence relations

(5.14) An = An−1 − anxAn−2 and Bn = Bn−1 − anxBn−2 ,

for n ≥ 2, A1 = a0, A0 = 0, B1 = 1 and B0 = 1. a0 = c0 and [8,
p. 382] the remaining ai satisfy equations now known as the rhombus
rules found in the qd-algorithm. The formulas in (5.10) and (5.11) cor-
respond to (5.14); see references [8, 9] for the S-fractions corresponding
to other parallel staircase diagonals.

Among the four entries of the Padé Table shown in Figure 5.1, the
two recurrence formulas in (5.10) and (5.11) use two horizontal and
two vertical entries respectively to derive the [n/(m + 1)]-th Padé
approximant. The FP-method applies to any two of the four [(n −
1)/m]-, [(n−1)/(m+1)]-, [n/m]- or [n/(m+1)]-th Padé approximants,
from which the remaining two can be derived. Consequently, for two
generic pairs of these approximants Figure 5.2 displays the footprint
of all contiguous adjacent approximants derivable via the FP-method.
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 [(n-1)/m]                 [n/m]

                                            [(n-1)/(m+1)]          [n/(m+1)]

FIGURE 5.1. Among the four approximants any pair can be derived from
remaining pair.

The derivations use combinations of an append operator which appends
a zero component to a vector, a prepend operator which prepends a
unit or a zero component to a vector and a truncation operator which
truncates the first or last component of a vector.

The footprints indicate that the FP-method allows progression to-
ward, in the sense of the Manhattan metric, the beginning of the Padé
Table. Even though none of the references in Section 3 show the devel-
opment of a recurrence formula in this direction, such derivations exist.
The data and arithmetic operations required for these derivations and
for the FP-method have the same orders of magnitude. The FP-method
offers a distinctly different alternative derivation that sometimes yields
striking simplicity. For instance, in Figure 5.2 the [(n− 1)/(m− 1)]-th
approximant satisfies

(5.15)
P(n−1)/(m−1)(x)
Q(n−1)/(m−1)(x)

=
Pn/m(x)− P(n−1)/m(x)
Qn/m(x)− Q(n−1)/m(x)

.

In Figure 5.2 the footprint of adjacencies for the pair of diagonal
approximants, [(n − 1)/m] and [n/(m + 1)], does not include the
continuation of the diagonal approximants; namely, the [(n − 2)/(m −
1)]-th and [(n+ 1)/(m+ 2)]-th approximants. It should be noted that
a recurrence formula can be derived directly from the linear equations
associated with the adjacent, but not contiguous, [(n − 1)/m]-th and
[n/(m+1)]-th approximants and thereby avoid staircase stepping along
the diagonal. Invoking the lemma in Section 4 for derivations of
approximants down staircase diagonals will produce inner products that
differ substantially from those produced by derivations that proceed
directly down a diagonal. Indeed, intermediate steps in deriving an
approximant in a footprint will occasionally produce an approximant
well outside the footprint. This behavior shows that the FP-method
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                                                   [(n-1)/(m-1)]           [n/(m-1)]

                         [(n-2)/m]            [(n-1)/m]                 [n/m]                         [(n+1)/m]

                                                    [(n-1)/(m+1)]          [n/(m+1)]

                                                    [(n-1)/(m-1)]

                         [(n-2)/m]             [(n-1)/m]                [n/m]

                                                     [(n-1)/(m+1)]          [n/(m+1)]                  [(n+1)/(m+1)]

                                                                                     [n/(m+2)]

FIGURE 5.2. The generic footprints of contiguous adjacent approximants
derivable via the FP-method from a horizontal or a diagonal pair of Padé
approximants. Vertical and skew pairs have similar footprints.

differs fundamentally from published methods to add approximants in
partially filled Padé tables.

6. Nonnormal Padé tables. This section describes another use of
the FP-method that stems from intermediate steps in the derivation of
approximants in typical footprints of contiguous adjacencies shown in
Figure 5.2. Wall [8] defines a square block of order r as a square array
of r2 identical approximants in a nonnormal Padé table. In Wall’s
Theorem 98.2, 5 determinants characterize blocks of order r. This
section contains theorems that give a simpler way to identify blocks in
nonnormal Padé tables.

All four approximants in Figure 5.1 may all be different even though
one or all may be a corner of a block within a nonnnormal Padé table.
A block that has its upper left corner at the [n/(m + 1)]-th can be
characterized by different [n/m]-th, [(n−1)/(m+1)]-th and [n/(m+1)]-
th approximants and the inability of the FP-method to produce unique
[(n+1)/(m+1)]-th and [n/(m+2)]-th approximants. The proof of the
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following theorem makes this observation more precise for the case of
an isolated block.

Theorem 6.1. Let the [(n − 1)/(m + 1)]-th and [n/m]-th Padé
approximants be unique. If the [n/(m + 1)]-th Padé approximant
satisfies

(6.1) −cn+m+2 − cn+m+1:m+2 · α0(bn/(m+1)) = 0 ,

then the [n/(m+ 1)]-th approximant lies at the upper left hand corner
of a block in a nonnormal Padé table.

Proof. To derive the [n/(m + 2)]-th approximant from the [(n −
1)/(m + 1)]-th and [n/(m + 1)]-th approximants use the derivation in
Section 5 for the [n/(m+ 1)]-th approximant with changes to account
for the (m+2)-th row instead of the (m+1)-th row in the Padé Table.
Equation (5.8) becomes

(6.2) wn/(m+2) = α0(bn/(m+1)) + tn/(m+2)ρ1(b(n−1)/(m+1)) .

Taking into account (6.1) and substituting wn/(m+2) to solve the last
linear equation for the [n/(m+2)]-th approximant implies that tn/(m+2)

or cn+m+1:m+2·ρ1(b(n−1)/(m+1)) equal zero. Since tn/(m+2) is arbitrary,
choose tn/(m+2) to be zero. The uniqueness of the [(n− 1)/(m+1)]-th
and [n/m]-th approximants proves the theorem.

Remarks. If instead of the hypothesis in Theorem 6.1

(6.3) cn+m+1:m+2 · ρ1(b(n−1)/(m+1)) = 0 ,

then the linear equations cj:m+2·bn/(m+2) =−cj+1 for n ≤ j ≤ n+m+1
corresponding to the [n/(m + 2)]-th approximant have a nonzero null
space. Furthermore, (6.3) implies that b(n−1)/(m+1) is also a solution to
the linear equations in (5.4) so that the equality of the [(n−1)/(m+1)]-
th and [n/(m+ 1)]-th approximants is equivalent to (6.3).

Suppose that the [(n−1)/(m+1)]-th and [n/(m+1)]-th approximants
are given and unequal. (6.1) implies that the [(n − 1)/(m + 1)]-th
approximant lies to the left boundary of a block that contains the
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[n/(m + 1)]-th approximant. To determine whether the upper left
hand corner of this block occurs at the [n/(m+1)]-th approximant, use
the FP-method to derive the [n/m]-th approximant. The FP-method
produces a vector

(6.4) wn/m = (1− tn/m)τm+1(b(n−1)/(m+1)) + tn/mτm+1(bn/(m+1)) ,

where τm+1 truncates the last component of the vectors b(n−1)/(m+1)

and bn/(m+1). Substituting wn/m into (5.1) produces on the right hand
side of each equation a term with the factor

(6.5) (1− tn/m)b
((n−1)/(m+1)))
m+1 + tn/mb

(n/(m+1))
m+1 .

which must be set to zero. This factor can be set to zero whenever

(6.6) b
((n−1)/(m+1)))
m+1 �= b

(n/(m+1))
m+1

in which case an upper left hand corner of a block occurs at the
[n/(m+ 1)]-th approximant. The following theorem summarizes some
of these remarks.

Theorem 6.2. If the [(n − 1)/(m+ 1)]-th and [n/(m+ 1)]-th Padé
approximants are unequal and if (6.1) and (6.6) are satisfied, then the
[n/(m+1)]-th approximant lies at the upper left hand corner of a block
in the Padé table.
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