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Dedicated to W.B. Jones on the occasion of his 70th birthday

ABSTRACT. We study the convergence of quadrature for-
mulas for integrals over the positive real line with an arbi-
trary distribution function. The nodes of the quadrature for-
mulas are the zeros of orthogonal Laurent polynomials with
respect to the distribution function and with respect to a cer-
tain nesting. This ensures a maximal domain of validity and
the quadratures are therefore called Gauss-type formulas. The
class of functions for which convergence holds is characterized
in terms of the moments of the distribution function. More-
over, error estimates are given when f satisfies certain con-
tinuity conditions. Finally, these results are applied to the
family of distributions dϕ(x) = xα exp{−(xγ1 + x−γ2 )} dx,
γ1, γ2 ≥ 1/2, α ∈ R.

1. Introduction. The main aim of this work is the approximate
calculation of integrals of the form

I(f) =
∫ ∞

0

f(x) dϕ(x),

ϕ being a distribution function on R+, i.e., a real-valued, bounded,
nondecreasing function with infinitely many points of increase on any

The work of the first author is partially supported by the Fund for Scientific
Research (FWO), projects CORFU and SMA, the K.U. Leuven research project
SLAP and the Belgian Programme on Interuniversity Poles of Attraction, initiated
by the Belgian State, Prime Minister’s Office for Sci., Tech. and Culture. The
scientific responsibility rests with the author.

The work of the second, third and fourth authors is partially supported by
the scientific projects of the Spanish Minister of Sci. and Tech. under Contract
BFM2001-3411 and for the last two authors also by a research project of the
Comunidad Autónoma Canaria under contract PI 2002/136.

2000 Mathematics Subject Classification. 42C05, 41A55.
Key words and phrases. Laurent polynomials, Gaussian quadrature, interpola-

tory quadrature, error estimates.

Copyright c©2003 Rocky Mountain Mathematics Consortium

585
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interval [a, b] ⊂ R+ = [0,∞) and f a Riemann-Stieltjes integrable
function with respect to dϕ whose singularities can only be the origin
and/or infinity. It will also be assumed that the following integrals
(moments) exist

(1.1) cn =
∫ ∞

0

xn dϕ(x) <∞, ∀n ∈ Z.

The integral I(f) will be approximated by means of a quadrature
formula of the form

In(f) =
n∑

k=1

λkf(xk),

which is characterized by the coefficients or weights {λk}nk=1 and the
nodes {xk}nk=1 which are supposed to lie on (0,∞) and satisfy xj �= xk
if j �= k. An appropriate election of the 2n parameters is required if we
want In(f) to be a good estimation of I(f). This will be done in the
subsequent sections by imposing that In(f) integrates exactly as many
functions as possible in the space

Λ = span {xj : j ∈ Z}.

The elements in Λ are called Laurent polynomials or L-polynomials.
We also consider the subspaces

(1.2) Λm,n = span {xj : m ≤ j ≤ n},

with m,n ∈ Z and m ≤ n. In order to construct a sequence of nested
subspaces like (1.2), whose union is contained in Λ, let us start from
two nondecreasing sequences {p(n)} and {q(n)} of nonnegative integers
verifying p(n) + q(n) = n, n = 0, 1, 2, . . . . Set Ln = Λ−p(n),q(n) and
Λ−p,q = ∪∞

n=0Ln where p = limn→∞ p(n) and q = limn→∞ q(n). Note
that dim(Ln) = n+1 and Ln ⊂ Ln+1. For p = 0 and q = ∞, Λ0,∞ = Π
(the space of all polynomials), while for p = q = ∞, it results in Λ−p,q =
Λ−∞,∞ = Λ. In the sequel we denote for a nonnegative integer k, the
space of polynomials of degree k at most as Πk. Since {xj}q(n−1)

j=−p(n−1)

represents a Markov system in (0,∞) for n distinct nodes x1n, . . . , xn,n
on (0,∞), there exist uniquely defined weights λ1,n, . . . , λn,n such that
the quadrature formula In(f) =

∑n
i=1 λi,nf(xi,n) is exact in Ln−1.
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Furthermore, by taking Rn ∈ Ln−1, such that Rn(xi,n) = f(xi,n),
i = 1, . . . , n and writing

Rn(x) =
n∑
i=1

f(xi,n)Li,n(x)

where Li,n ∈ Ln−1 and Li,n(xk,n) = δi,k, it follows that

In(f) = I(f), ∀ f ∈ Ln−1 and λi,n = I(Li,n), i = 1, . . . , n.

For this reason, the quadrature formula defined above will be called of
interpolatory type in Ln−1.

Quadrature formulas based upon Laurent polynomials were intro-
duced earlier by Jones, Thron and Waadeland [13] in connection with
the solution of the so-called strong Stieltjes moment problem. Alge-
braic properties for such quadrature formulas were given by Jones and
Thron [12], see also [11]. These papers motivated the development of
a theory on orthogonal Laurent polynomials (see e.g., [6]) which is par-
allel to the theory known for the usual orthogonal polynomials. For an
alternative approach, see [15]. Connections of the quadrature formulas
with two-point Padé approximation have been studied by the present
authors in a series of papers [5, 2, 3]. On the other hand, McCabe and
Ranga [20] have considered the selection when ϕ′(x), dϕ(x) = ϕ′(x) dx,
satisfies certain symmetry properties (see also [19, 18]). Numerical
examples can be found in [9] (see also [4]). Meanwhile convergence
properties are given in the recent papers [2 4].

The paper is organized as follows. In Section 2 we recall some
results concerning Gauss-type quadrature formulas and derive some
technical results to be used in subsequent sections. In Section 3
we characterize certain weight functions which can be used to make
the set of polynomials (or Laurent polynomials) dense in the set of
continuous functions with respect to the uniform norm, weighted by this
weight function. The main result is some fundamental property of the
functions Q(z) =

∑∞
k=0 z

k/ck and M(z) =
∑∞

k=0 z
k/c−k. These play a

prominent role in Section 4 where we characterize a class of functions
for which the Gauss-type quadrature formulas converge. In Section 5,
error estimates for these quadratures are given when the integrand
f satisfies certain continuity conditions. Finally, in Section 6 such
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estimates are illustrated when applied to the family of distributions
dϕ(x) = xα exp{−(xγ1 + x−γ2)} dx, γ1, γ2 ≥ 1/2, α ∈ R.

This paper is devoted to Gauss-type quadrature formulas. In a
subsequent paper we shall look at the convergence properties of more
general interpolatory quadrature formulas, and we shall look at more
general (possibly complex) distribution.

2. Gauss-type quadrature formulas. As a consequence of (1.1),
we can define an inner product over Λ

〈f, g〉 =
∫ ∞

0

f(x)g(x) dϕ(x), ∀ f, g ∈ Λ.

By applying the Gram-Schmidt orthogonalization process to the basis
{xj : −p(n) ≤ j ≤ q(n)} of Ln an orthogonal basis {L0, L1, . . . , Ln}
can be obtained so that Ln ∈ Ln \ Ln−1 and Ln ⊥ Ln−1 (L−1 = ∅).
Observe that Ln is uniquely defined up to a multiplicative constant
factor.

The sequence {Ln}∞n=0 will be called a sequence of orthogonal Lau-
rent polynomials with respect to the distribution function ϕ and the
“ordering” induced by the sequence {p(n)}∞n=0 (or {q(n)}∞n=0). Paral-
leling the polynomial structure [14] rather closely, the following can be
easily proved.

Theorem 2.1. Let {Ln}∞n=0 be a sequence of orthogonal Laurent
polynomials as defined above. Then

(1) For each n ≥ 1, Ln(x) has exactly n distinct zeros x1,n, . . . , xn,n
on (0,∞).

(2) Let In(f) =
∑n

i=1 λi,nf(xi,n) be the interpolatory quadrature
formula based upon the zeros of Ln(x), then

(a) λi,n > 0, i = 1, . . . , n,

(b) In(R) = I(R) for all R ∈ Λ−a,b, a = p(n) + p(n − 1) and
b = q(n) + q(n− 1).

Remark 2.2. Observe that diam (Λ−a,b) = 2n. For this reason, such
a quadrature formula will be called of Gauss-type. However, it should
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be remarked that, unlike in the polynomial case, now it does not hold
in general that I(f) = In(f) for all f ∈ L2n−1. This happens if and
only if the sequence {p(n)} satisfies p(n) + p(n− 1) = p(2n− 1). Thus
if we take p(n) = 0 (or equivalently q(n) = n) for all n, then Ln = Πn

and the classical Gaussian quadratures are recovered.

Also, when considering p(n) = E
[
n+1

2

]
or p(n) = E

[
n
2

]
, where E[x]

denotes the integer part of x, we see that p(n) + p(n− 1) = p(2n− 1).
These are the cases that have been basically studied in the literature
on orthogonal Laurent polynomials. See e.g. [6] and the references
mentioned there. As far as we know, the situation involving a general
sequence {p(n)} still remains to be studied.

Positivity of the weights λj,n, j = 1, . . . , n, n = 1, 2, . . . , turns
out to be essential when considering the convergence of the sequence
In(f) =

∑n
j=1 f(xj,n)λj,n to I(f). The positivity is clearly displayed

in the following.

Theorem 2.3. Let {λj,n}nj=1 denote the weights in the Gauss-type
quadrature formula defined above. Then

n∑
j=1

λj,n = c0 and λj,n = I(L2
j,n), j = 1, . . . , n

where the L-polynomials Lj,n ∈ Ln−1 satisfy Lj,n(xk,n) = δj,k, 1 ≤
j, k ≤ n and c0 =

∫ ∞
0

dϕ(x).

Proof. Since Lj,n ∈ Ln−1, we have L2
j,n ∈ Λ−2p(n−1),2q(n−1) ⊂ Λ−a,b

with a = p(n) + p(n− 1) and b = q(n) + q(n− 1). Hence,

I(L2
j,n) = In(L2

j,n) =
n∑

k=1

λk,nL
2
j,n(xk,n) = λj,n,

and
n∑

j=1

λj,n = I

( n∑
j=1

Lj,n

)
= I(1) = c0.

Remark 2.4. The L-polynomials {Lj,n}nj=1 represent an orthogonal
set, i.e.,

〈Lj,n, Lk,n〉 = λj,nδj,k, 1 ≤ j, k ≤ n.
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On the other hand, the authors prove in [4] that the above Gauss-type
quadrature formulas are actually Riemann-Stieltjes sums providing the
following result on convergence for such formulas which will be crucial
for our results in Section 4 in terms of the behavior of the weights λj,n.
Thus one has [4, Theorem 3.1].

Theorem 2.5. Let {λj,n}nj=1 be the weights of the Gauss-type
quadrature formula with either p = ∞ or q = ∞. Then limn→∞ In(f) =
I(f) for any function f , Riemann-Stieltjes integrable with respect to dϕ,
if and only if limn→∞ λj,n = 0 uniformly in j.

Furthermore, as a consequence of the results given by López-
Lagomasino et al. [10, 15], the following general result can be deduced.

Theorem 2.6. Let ϕ be a distribution function on R+ so that the
moments cn =

∫ ∞
0
xn dϕ(x) exist for any integer n. Assume that either

lim
n→∞[n− p(n)] = ∞ and

∞∑
n=1

c−1/2n
n = ∞(2.1)

or

lim
n→∞ p(n) = ∞ and

∞∑
n=1

c
−1/2n
−n = ∞(2.2)

hold. Then the sequence {In(f)} of Gauss-type quadrature formulas
converges to I(f) for any function that is Riemann-Stieltjes integrable
with respect to dϕ.

Proof. Denote Ĉ = C ∪ {∞}. In [15] it can be seen that conditions
(2.1) (2.2) are sufficient to ensure the convergence of the sequence of
rational functions Fn(z) = In

(
1

z−x

)
, z ∈ Ĉ \R+ to Fϕ(z) =

∫ ∞
0

dϕ(x)
z−x

on compacts of Ĉ \ R+. On the other hand, in [10] the authors
establish that the convergence of such rational approximants, called
two-point Padé approximants to Fϕ(z) can be characterized in terms
of the convergence of the sequence {In(f)} to I(f) for any Riemann-
Stieltjes integrable function with respect to dϕ.
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By using similar arguments as in the paper by Uspensky [22], we get
as a consequence of the last two theorems:

Corollary 2.7. Let f be a function satisfying one of the following
conditions.

(1) f is locally Riemann integrable on R+ and there exist constants
M and m such that

|f(x)| ≤ xm, x ≥M ≥ 0 and m ∈ N

and conditions (2.1) hold.

(2) f is Riemann integrable on any interval [b,∞) ⊂ R+ and there
exist constants K and k such that

|f(x)| ≤ x−k, x ≤ K, K ≥ 0 and k ∈ N

and conditions (2.2) hold.

Then limn→∞ In(f) = I(f) where {In(f)} is the sequence of Gauss-
type quadrature formulas.

It seems quite natural that convergence can be assured for integrands
f exhibiting a behavior similar to Laurent polynomials around the
origin and at infinity because of the existence of the moments cn =∫ ∞
0
xn dϕ(x) for all integers n.

However, when convergence is intended in a larger class of functions
with a more general behavior than the one displayed in Corollary 2.7,
then conditions (2.1) or (2.2) should be more deeply analyzed. In the
forthcoming section the necessary ingredients will be given.

3. Density results. In order to establish an estimation for the rate
of convergence of the sequence of Gauss-type quadrature formulas, an
essential role will be played by the two functions associated with the
moments sequence, namely {cn}∞−∞

Q(z) =
∞∑
k=0

zk

ck
, z ∈ C,(3.1)

M(z) =
∞∑
k=0

zk

c−k
, z ∈ C.(3.2)
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Take into account that, since ϕ is a distribution function that has
infinitely many points of increase on any [a, b] ⊂ R+, it follows that for
k ≥ 1 and for any a > 0

ck =
∫ ∞

0

xk dϕ(x) ≥
∫ ∞

a

xk dϕ(x) ≥ ak
∫ ∞

a

dϕ(x).

Since 0 <
∫ ∞
a

dϕ(x) < c0, we get limk→∞[
∫ ∞
a

dϕ(x)]1/k = 1. Hence,
limk→∞(ck)1/k ≥ a and, since a can be arbitrarily large, the limit has
to be infinite.

Similarly, using the interval [0, a] for a > 0 arbitrary (small), it can
be derived in a similar way that also limk→∞(c−k)1/k = ∞. Therefore,
limn→∞ 1/ n

√
c±n = 0 and by Lemma 3.1 below we conclude that

limn→∞ 1/ n
√
c±n = 0, and hence both functions Q(y) and M(y) are

entire.

It is our intention to show that these functions can be used to con-
struct weight functions for the uniform norm, such that the polynomials
or the L-polynomials can approximate any continuous function to an
arbitrary precision in (0,∞). In other words, that the polynomials or
L-polynomials are dense in the set of continuous functions with respect
to this weighted uniform norm.

For our purposes, we will start with the following.

Lemma 3.1. Let {cn}∞n=0 be the sequence of positive moments for
dϕ and assume that c0 = 1. Then

(1) c2n ≤ cn−1 · cn+1, n = 1, 2, . . . .

(2) n
√
cn ≤ n+1

√
cn+1, n = 1, 2, . . . .

(3) cj · cn−j ≤ cn with n ∈ N and 1 ≤ j ≤ n.

Proof. (1) This follows immediately from the Cauchy-Schwarz in-
equality.

(2) This follows from Hölder’s inequality with f(t) = tn, g(t) = 1 and
p = (n+ 1)/n, q = n+ 1.

(3) This follows directly from (2) since for 0 ≤ j ≤ n we have cj ≤ c
j/n
n

and cn−j ≤ c
(n−j)/n
n .
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Remark 3.2. The above result is also valid for the sequence {cn} with
n ≤ 0.

Definition 3.3. Let A be an unbounded subset of R and h a positive
bounded continuous function defined on A. Consider the space

Ch(A) = {f : A → C : f is a continuous function
and lim

|x|→∞
f(x)h(x) = 0}

and the norm |f |h = supx∈A |f(x)|h(x). Then h will be called a weight
with respect to the uniform norm in A if Π is dense in Ch(A) in the
sense that, for any f ∈ Ch(A) and any ε > 0, there is a polynomial P
such that |f − P |h < ε. We shall refer to | · |h as the weighted uniform
norm in A.

Remark 3.4. Note that if f is a weight in A, then Ch(A) is a Banach
space with this weighted uniform norm. See [16, p. 28] and [1].

As a consequence of the density of the polynomial set Π, an interesting
question could be to find an estimate of the error of the best “weighted”
uniform approximation of degree at most k ≥ 0, i.e., to find an estimate
for

(3.3) εk(f ;h,A) = inf
P∈Πk

‖f−P‖h = inf
P∈Πk

sup
x∈A

|[f(x)− P (x)]h(x)|.

A solution can be found in the following (see [17, p. 102]).

Theorem 3.5. Let h̃ > 0 be a weight function in R such that
p(x) = − log h̃(x) is even, continuous and strictly increasing on R+. If
f admits a derivative of order d which is uniformly continuous on R
with modulus of continuity ωf (δ) as defined below, then

εk(f ; h̃,R) ≤ Bν−d
k ωf (ν−1

k )

where q(t) is the inverse of p(t), νk =
∫ k

1
dt/q(t),

ωf (δ) = sup
{
|f(x)− f(y)| : |x− y|

(1 + |x|) · (1 + |y|) < δ, x, y ∈ R
}
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and B a positive constant independent of f .

Now we can immediately prove the following

Proposition 3.6. Let h(x) be defined in R+ and set h̃(x) = h(x2),
x ∈ R. If h̃(x) is a weight in R, then h(x) is a weight in R+ and if
f ∈ Ch(R+), then the weighted minimax errors satisfy

εn(f ;h,R+) = ε2n(f̃ ; h̃,R),

where f̃(x) = f(x2).

Proof. Let Pn ∈ Πn and Q2n ∈ Π2n be the weighted minimax
polynomials which are the solution to the problems

inf
P∈Πn

{
sup
x≥0

|[f(x)− P (x)]h(x)|
}

and
inf

Q∈Π2n

{
sup
x∈R

|[f̃(x)−Q(x)]h̃(x)|
}
,

respectively. Because

sup
x∈R

[f̃(x)−Q2n(x)]h̃(x) = sup
x∈R

[f(x2)−Q2n(x)]h(x2)

= sup
x∈R

[f(x2)−Q2n(−x)]h(x2)

= sup
x∈R

[f̃(x)−Q2n(−x)]h̃(x),

it follows from the unicity of the minimax solution that Q2n(x) =
Q2n(−x), so that there should exist a polynomial S ∈ Πn such that
Q2n(x) = S(x2). Thus

ε2n(f̃ ; h̃,R) = sup
x∈R

|[f(x2)− S(x2)]h(x2)|

= sup
x≥0

|[f(x)− S(x)]h(x)|

≥ sup
x≥0

|[f(x)− Pn(x)]h(x)| = εn(f ;h,R+).
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On the other hand,

εn(f ;h,R+) = sup
x≥0

|[f(x)− Pn(x)]h(x)|

= sup
x∈R

|[f(x2)− Pn(x2)]h(x2)|

= sup
x∈R

|[f̃(x)−Q(x)]h̃(x)| ≥ ε2n(f̃ ; h̃,R)

since Q(x) := Pn(x2) ∈ Π2n. This proves the proposition.

Definition 3.7. Consider a positive bounded continuous function H
defined on (0,∞), on the space

CH((0,∞)) = {f : (0,∞) → C : f continuous and
lim
x→∞ f(x)H(x) = lim

x→0
f(x)H(x) = 0},

and the norm ‖f‖H = supx∈(0,∞) |f(x)|H(x). We shall call H an L-
weight on (0,∞) with respect to the uniform norm if the space Λ of
all Laurent polynomials is dense in CH((0,∞)) in the sense that for
all f ∈ CH((0,∞)) and any ε > 0, there is an L ∈ Λ such that
‖f − L‖H < ε.

Remark 3.8. We note that also here, if H is an L-weight in (0,∞),
then CH((0,∞)) is a Banach space with the weighted uniform norm
|f |∞H .

Finally let us see how to find L-weights in (0,∞) from weights in R+.
The following holds.

Proposition 3.9. Let h and p be two weights in R+. Set H(x) =
h(x)p(1/x); then H(x) is an L-weight in (0,∞).

Proof. Let f ∈ CH((0,∞)). For a given ε > 0, we have to find a
Laurent polynomial L(x) so that

|[f(x)− L(x)]H(x)| < ε, ∀x ∈ (0,∞).
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Define f0(x) and f∞(x) as follows:

f0(x) =
{
f(x), x ∈ (0, 1]
f(1), x ∈ (1,∞)

; f∞(x) =
{
f(1), x ∈ (0, 1]
f(x), x ∈ (1,∞).

Clearly f(x) = f0(x) + f∞(x) − f(1). Since f0(1/x) ∈ Cp(R+), there
exists a polynomial P0(x) such that

(3.4) ‖[f0(1/x)− P0(x)]p(x)‖∞ = ‖[f0(x)− P0(1/x)]p(1/x)‖∞ < δ0.

On the other hand, f∞ ∈ Ch(R+). Therefore,

(3.5) ‖[f∞(x)− P1(x)]h(x)‖∞ < δ∞.

Now, for any x ∈ (0,∞), one has

|[f(x)− (P0(1/x) + P1(x)− f(1))]h(x)p(1/x)|
= |[f0(x)− P0(1/x) + f∞(x)− P1(x)]h(x)p(1/x)|
≤ C1|[f0(x)− P0(1/x)]p(1/x)|+ C2|[f∞(x)− P1(x)]h(x)|

where C1 = ‖h‖∞ < ∞ and C2 = ‖p‖∞ < ∞. From (3.4) (3.5)
and taking L(x) = P0(1/x) + P∞(x) − f(1), the proof follows for
δ0 = ε/(2C1) and δ∞ = ε/(2C2).

Corollary 3.10. If for f ∈ CH((0,∞)) we denote by

Mn(f ;H) = inf
L∈Ln

‖f − L‖H ,

the L-weighted minimax error, then

Mn(f ;H) ≤ C1εp(n)(f̂0; p,R+) + C2εq(n)(f∞;h,R+),

where f̂0(x) = f0(1/x), C1 and C2 are constants and εk(f ;h,A) is as
in (3.3).

Next a theorem due to Bernstein (see e.g. [17]) will be stated in order
to characterize a weight in R.
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Theorem 3.11. Let {ak}∞0 be a sequence of nonnegative real
numbers with a0 > 0. Let ω(x) =

∑∞
k=0 akx

2k and h̃(x) = 1/ω(x).
Then h̃ is a weight in R if and only if

∫ ∞
1

logω(x)
1+x2 dx = ∞.

Before stating the main theorem of this section, we need the following
classical result concerning quasi-analytic functions (see [21]).

Theorem 3.12 (Denjoy-Carleman). Let {Mn}∞n=0 be a sequence
of positive numbers satisfying M0 = 1 and M2

n ≤ Mn−1Mn+1 for
n ≥ 1. Define the function F (x) =

∑∞
k=0(x

k/Mk), x > 0. Then∫ ∞
0

logF (x)
1+x2 dx = ∞ if and only if

∑∞
k=1

1
k√Mk

= ∞.

Now we can prove the main result of this section.

Theorem 3.13. Let Q be the function defined by (3.1), i.e., Q(x) =∑∞
k=0 x

k/ck, x ∈ C with ck =
∫ ∞
0
xk dϕ(x), k = 0, 1, 2, . . . satisfying

(2.1). Set h̃(x) = 1/Q(x2). Then h̃(x) is a weight in R.

Proof. Observe that Q(x2) =
∑∞

k=0 x
2k/ck; then by Theorem 3.11 it

suffices to check that

∫ ∞

1

log(Q(x2))
1 + x2

dx = ∞.

For this, let us consider the sequence {log ck}. By (1) of Lemma 3.1
we know that {(log ck − log ck−1)/2} is a nondecreasing sequence.
This fact enables us to construct a convex polynomial l(x) verifying
l(2k) = log(ck) for any k ∈ N. Thus, one can immediately see that

l(k) ≤ 1
2
l(k − 1) +

1
2
l(k + 1), k ∈ N.

Let us consider a new sequence {σ(k)}∞0 given by σ(k) = el(k) and the
function

F (x) =
∞∑
k=0

xk

σ(k)
.
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By Theorem 3.12,
∫ ∞
0

logF (x)
1+x2 dx = ∞ if and only if

∑∞
k=0

1
k
√

σ(k)
= ∞.

Now ∞∑
k=0

1
k
√
σ(k)

=
∞∑
k=0

1
2k
√
σ(2k)

+
∞∑
k=0

1
2k+1

√
σ(2k + 1)

=
∞∑
k=0

1
2k
√
ck

+
∞∑
k=0

1
2k+1

√
σ(2k + 1)

.

We are assuming that
∑∞

k=0
1

2k
√
ck

= ∞ (condition (2.1)). Therefore,∫ ∞
0

logF (x)
1+x2 dx = ∞. On the other hand,

F (x) = Q(x2) +
∞∑
k=0

x2k+1

σ(2k + 1)
≤

(
1 +

x√
c1

)
Q(x2), x ≥ 0.

By the definition of l(x) and (3) of Lemma 3.1, we have σ(2k + 1) =√
ck
√
ck+1 ≥ √

c1 · ck. Hence,
∫ ∞

0

log
[
(1 + (x/

√
c1))Q(x2)

]
1 + x2

dx = ∞

and thus ∫ ∞

1

logQ(x2)
1 + x2

dx = ∞.

Remark 3.14. Making use of similar arguments and starting from
condition (2.2), it can be proved that 1/M(x2) is a weight in R
with M defined by (3.2), i.e., M(x) =

∑∞
k=0(x

k/c−k), x ∈ C and
ck =

∫ ∞
0
xk dϕ(x), k = 0,−1,−2, . . . .

Corollary 3.15. The functions h(x) = 1/Q(x) and p(x) = 1/M(x)
are weight functions in R+.

Corollary 3.16. The function H(x) =
1

Q(x) ·M(1/x)
is an L-

weight function in (0,∞).

4. Convergence. The results of this section complete those given
by the present authors in [4]. As usual, In(f) =

∑n
j=1 λj,nf(xj,n) will
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denote the n-point Gauss-type quadrature formula which is exact in
Λ−(p(n)+p(n−1)),(q(n)+q(n−1)) with {p(n)} and {q(n)} two nondecreasing
sequences of nonnegative integers satisfying p(n) + q(n) = n, n =
0, 1, 2, . . . . Recall also that the nodes {xj,n} are the zeros of the nth
Laurent polynomial orthogonal with respect to dϕ and the ordering
induced by {p(n)} (or {q(n)}). Under these conditions, we have our
first result (compare with Theorem 3.6 in [4]).

Theorem 4.1. Let ϕ be a distribution function on R+ whose
moments satisfy

(4.1)
∞∑
n=1

c−1/2n
n = ∞,

and assume that limn→∞ q(n) = ∞. Let {In(f)} be the sequence of
Gauss-type formulas introduced above. Then, for any locally integrable
function f on R+ satisfying for sufficiently large x

(4.2) |f(x)| ≤ c ·Q(sx), 0 < s < 1, c > 0

(Q as given by (3.1)) it holds that

lim
n→∞ In(f) = I(f).

Proof. Our main goal will be to first show that the integral I(Q(sx))
exists.

Take b > 0; then because of the uniform convergence of the series
(3.1) on [0, b], we have

∫ b

0

Q(sx) dϕ(x) = lim
n→∞

n∑
l=0

sl

cl

∫ b

0

xl dϕ(x) =
∞∑
l=0

sl

cl

∫ b

0

xl dϕ(x)

≤
∞∑
l=0

sl

cl

∫ ∞

0

xl dϕ(x) =
∞∑
l=0

sl <∞.

Thus we conclude that I(Q(sx)) exists for all s : 0 < s < 1. Now,
making use of Theorem 2.5 and Theorem 2.6 and Upenski’s arguments
[22], the proof of the theorem is easily completed.
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Remark 4.2 In case the moments {ck}∞k=0 satisfy another condi-
tion, for instance

∑∞
k=1 ck−1/ck < ∞, the class of functions where

convergence holds can be enlarged. This implies that the integral
I(Q(x)/(1 + x)) exists. Indeed,

∫ b

0

Q(x)
1 + x

dϕ(x) = lim
n→∞

n∑
k=0

1
ck

∫ b

0

xk

1 + x
dϕ(x)

≤ lim
n→∞

n∑
k=0

1
ck

∫ b

0

xk−1 dϕ(x)

= lim
n→∞

n∑
k=0

ck−1

ck
= 1 +

∞∑
k=0

ck−1

ck
.

Therefore, Theorem 4.1 is also true for any locally integrable function
f on R+ such that

|f(x)| ≤ c
Q(x)
1 + x

, x > T, c > 0,

for T sufficiently large. For instance, take dϕ(x) = exp{−√
x}

2
√
x

dx. Then
cn = (2n)! and Q(x) = cosh(

√
x).

If, instead of condition (4.1), we have that

∞∑
n=1

c
−1/2n
−n = ∞,

a similar result can be proved in an analogous way, but now replacing
the function Q(x) by M(x) given in (3.2).

Theorem 4.3. Let ϕ be a distribution function on R+ whose
moments satisfy

(4.3)
∞∑
n=1

c
−1/2n
−n = ∞

and assume that limn→∞ p(n) = ∞. Finally, let {In(f)} be the
sequence of Gauss-type quadrature formulas as discussed above. Then,
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for any integrable function f on [a,∞), a > 0, satisfying for sufficiently
small x,

(4.4) |f(x)| ≤ c̃M(r/x), 0 < r < 1, c̃ > 0,

(M as given by (3.1)), it holds that

lim
n→∞ In(f) = I(f).

Remark 4.4. Theorem 4.1 and Theorem 4.3 are also valid for any
locally integral function on (0,∞) with both local behavior (4.2) and
(4.4). In this case, both conditions (4.1) and (4.3) are required.

Remark 4.5. Note that, for p(n) = 0, n = 1, 2, . . . , the classical
Gaussian formulas are recovered. Assuming cn ≤ CR2n(2n + 1)! with
C,R > 0, the convergence results given by Uspensky [22] can be
obtained. Other results of convergence for Gauss-type formulas were
given in [8] concerning the “balanced” situation, i.e., p(n) = E

[
n+1

2

]
and assuming cn ≤ CR2n(2n + 1)!. In a more general setting, if we
assume cn ≤ CRnγΓ(γ(n + 1 + θ)) with C,R > 0, 0 < γ ≤ 2, and
θ > −1, the results given by the present authors in [4] are deduced.

5. Error estimates. In this part we give error estimates for the
n-point Gauss-type quadrature formula In(f). More precisely certain
upper bounds for |En(f)| = |I(f)−In(f)| will be given when f satisfies
certain continuity conditions.

Theorem 5.1. Let {In(f)} be the sequence of Gauss-type formulas
introduced above and f in Ch(R+) with h(x) = 1/Q(sx) for some s
such that 0 < s < 1 and Q given by (3.1). Then

|En(f)| ≤ 2I(Q(sx))εb

(
f ;

1
Q(sx)

,R+

)

where b = q(n) + q(n− 1) and εk(f ;h,A) as defined in (3.3).
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Proof. Taking into account that

En(f) = I(f)− In(f) =
∫ ∞

0

f(x) dϕ(x)−
n∑

j=1

λj,nf(xj,n)

and recalling that the n-point Gauss-type formula is exact in Πb, one
can write

En(f) = I(f)− In(f)

=
∫ ∞

b

[f(x)−P (x)] dϕ(x)−
n∑

j=1

λj,n[f(xj,n)−P (xj,n)], ∀P ∈Πb.

Then

|En(f)| ≤
∫ ∞

0

|f(x)− P (x)| dϕ(x) +
n∑

j=1

λj,n|f(xj,n)− P (xj,n)|,

∀P ∈ Πb

≤ ‖f − P‖h ·
(
I(Q(sx)) +

n∑
j=1

λj,nQ(sxj,n)
)
.

On the other hand, it is known that (see [3])

En(Q(sx)) =
[xaQ(sx)](2n)

x=p

(2n)!
· γn, ρ > 0

where a = p(n) + p(n − 1) and γn =
∫ ∞
0
Qn(x)2x−a dϕ(x) > 0 with

Qn the nth monic orthogonal polynomial for the distribution function
x−a dϕ(x). Since

[xaQ(sx)](k) > 0, ∀x : x > 0, k ∈ N,

we have
n∑

j=1

λj,nQ(sxj,n) ≤ I(Q(sx)),

so that
|En(f)| ≤ 2I(Q(sx))‖f − P‖h, ∀P ∈ Πb.
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This proves the theorem.

Remark 5.2. It is immediately clear that 1/Q(sx) with 0 < s < 1 is a
weight function on R+, since {cn/sn}∞n=0 satisfies the same properties
as {cn}∞n=0.

Observe that in Theorem 5.1 nothing has been said about the se-
quence {p(n)}. Thus when taking p(n) = 0 (q(n) = n) then b = 2n− 1
and an estimate for error in the n-point classical Gauss formula can
be obtained. Now, when dealing with a proper “Laurent polynomial”
situation, we have the following.

Theorem 5.3. Let {In(f)} be the sequence of Gauss-type formu-
las introduced above with f belonging to CH((0,∞)) where H(x) =

1
Q(sx)·M(r/x) for some s, r such that 0 < s < 1 and 0 < r < 1, while Q
and M are defined in (3.1) and (3.2). Then

|En(f)| ≤ 2I(Q(sx)M(r/x))[C1εa(f0(1/x); 1/M(rx),R+)
+ C2εb(f∞, 1/Q(sx),R+)]

where a = p(n) + p(n− 1), b = q(n) + q(n− 1), f0, f∞, C1 and C2 as
defined in the proof of Proposition 3.9 and εk(f ;h,A) as in (3.3).

Proof. We can proceed in a similar way as in the proof of Theorem 5.1
but now replacing P ∈ Πb by L ∈ Λ−a,b, h byH and taking into account
that

xaQ(sx)M(r/x) = T (1/x) + T̃ (x)

where T (1/x) =
∑∞

k=1 tkx
−k and T̃ (x) =

∑∞
k=0 t̃kx

k with tk, t̃k > 0,
we have that

[xaQ(sx)M(r/x)](2n)
x=ρ̃ > 0, ρ̃ > 0.

Thus, we obtain

|E(f)| ≤ 2I(Q(sx)M(r/x))Mn(f ;H),

with Mn(f ;H) as defined in Corollary 3.10. Now the proof follows by
the statement of Corollary 3.10.
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6. An illustrative example. In this section the results given in
Sections 3 and 5 will be applied to the family of distribution functions

(6.1)
dϕ(x) = ϕ′(x) dx, ϕ′(x) = xα exp{−(xγ1 + x−γ2)},

γ1, γ2 ≥ 1/2, α ∈ R.

In this respect, it should be remarked that in [15] asymptotic properties
for certain sequences of orthogonal Laurent polynomials associated with
the distribution (6.1) were studied. It is easy to prove that the moments
of this family of distributions satisfy the conditions (2.1) and (2.2).

Now our purpose will be to give upper bounds for |En(f)| = |I(f)−
In(f)| where

I(f) =
∫ ∞

0

f(x)xα exp{−xγ1 + x−γ2)} dx

when f satisfies certain continuity conditions. More precisely, f is a
continuous function in (0,∞), verifying

lim
x→∞ f(x)ϕ′(x) = lim

x→0
f(x)ϕ′(x) = 0.

In this case, our problem clearly reduces to finding an estimate for

I(g) =
∫ ∞

0

g(x) exp{−(xγ1 + x−γ2)} dx

with g a continuous function in (0,∞) satisfying

lim
x→∞ g(x)µ(x) = lim

x→0
g(x)µ(x) = 0,

where µ(x) = exp{−(xγ1 + x−γ2)}, γ1, γ2 ≥ 1/2.

Define the auxiliary Mittag-Leffer function

Eγ(z) =
∞∑
k=0

zn

Γ(γk + 1)
, z ∈ C, γ > 0,

which satisfies (see [7])

Eγ(z) =
1
γ
exp(z1/γ) +O

(
1
|z|

)
, z → ∞, |Arg (z)| ≤ γ · π

2
,
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and thus, for real x,

lim
x→∞

∣∣∣∣ γ · Eγ(x)
exp(x1/γ)

∣∣∣∣ = 1.

Now, proceeding as in [4], we have

Theorem 6.1. Let {In(f)} be the sequences of Gauss-type formu-
las introduced above and f belonging to CH((0,∞)) where H(x) =
exp{−((sx)γ1 + (x/r)−γ2)} for some s, r such that 0 < s < 1 and
0 < r < 1. Then

|En(f)| ≤ 2χ
[
εa(f0(1/x); exp{−(rx)γ2},R+)

+ εb(f∞(x); exp{−(sx)γ1},R+)
]

where a = p(n) + p(n− 1), b = q(n) + q(n− 1), γ1, γ2 ≥ 1/2,

χ =
∫ ∞

0

exp
{
−

(
(1− sγ1)xγ1 +

1− rγ2

xγ2

)}
dx,

and f0 and f∞ are as in the proof of Proposition 3.9. and εk(f ;h,A)
as in (3.3).

Let us next see how we can estimate the minimax error
εk(f ; e−(σx)γ

,R+), σ > 0, γ ≥ 1/2, k ∈ N.

For this purpose set h(x) = e−(σx)γ

, γ ≥ 1/2, x ∈ R+ and define
h̃(x) = h(x2) = e−(σ′·x)2γ

, σ′ =
√
σ.

Since we have that εk(f ;h,R+) = ε2k(f̃ ; h̃,R) where f̃(x) = f(x2).
Using Theorem 3.5 for this family of weight functions, h̃(x) = e−(σ′x)2γ

,
σ′ > 0, γ ≥ 1/2, we find that the following holds.

Theorem 6.2. Let g be a real function defined on R such that
g ∈ Cm(R) and g(m) is uniformly continuous on R with modulus of
continuity ωg(ε). Then

εn(g; h̃,R) ≤ Cν−m
n (σ′, γ)ωg(ν−1

n (σ′, γ))

where C is a positive constant independent of g and νn(σ′, γ) =
σ′ ∫ n

1
x−1/2γ dx.
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Note that

νn(σ′, γ) =




2γσ′

2γ − 1
[
n

2γ−1
2γ − 1

]
, 2γ > 1

σ′ log n 2γ = 1.

Thus, from the above theorem, it follows that
(6.2)
εn(g; h̃,R)

≤ C




(
2γ − 1
2γσ′

1

n
2γ−1
2γ − 1

)m

ωg

(
2γ − 1
2γσ′

1

n
2γ−1
2γ − 1

)
, 2γ > 1

1
σ′ log n

ωg

(
1

σ′ log n

)
, 2γ = 1.

Finally, by (6.2) and Proposition 3.6, we have

Corollary 6.3. Under the same assumptions as in Theorem 6.1
with f uniformly continuous on R+ with modulus of continuity ωf (ε),
it holds

|En(f)| ≤ C(Ω0 +Ω∞)

where in the case γ1, γ2 > 1/2,

Ω0 = ωf0(1/x2)

(
2γ2 − 1
2γ2

√
r

· 1

(2a)
2γ2−1
2γ2 − 1

)

and

Ω∞ = ωf∞(x2)
(
2γ1 − 1
2γ1

√
s

· 1

(2b)
2γ1−1
2γ1 − 1

)

and, in the case of γ1 = γ2 = 1/2,

Ω0 = ωf0(1/x2)

(
1√

r log 2a

)
and Ω∞ = ωf∞(x2)

(
1√

s log 2b

)

where f0 and f∞ are as in the proof of Proposition 3.9, a = p(n) +
p(n− 1) and b = q(n) + q(n− 1).
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5. A. Bultheel, P. González-Vera and R. Orive, Quadrature on the half line and
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