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GLOBAL ATTRACTIVITY IN
A GENOTYPE SELECTION MODEL

XIAN HUA TANG AND SUI SUN CHENG

ABSTRACT. We obtain a sufficient condition for global
attractivity to occur in the delay difference equation

xn+1 = xn exp(βn(1 − xn−τ )/(1 + xn−τ )).

This leads to the fact that when 0 < β ≤ 3/(τ + 1), the
positive equilibrium 1/2 of the genotype selection model

yn+1 =
yneβ(1−2yn−τ )

1 − yn + yneβ(1−2yn−τ )

is a global attractor for all solutions originated from positive
initial conditions. Our result matches the computational
result 0 < β ≤ 4 cos(τπ/(2τ + 1)) suggested in [3].

1. Introduction. In [1, pp. 513 563], May proposed a genotype
selection model of the form

yn+1 =
yneβ(1−2yn)

1− yn + yneβ(1−2yn)
, n = 0, 1, 2, . . . ,

and investigated the local stability of the equilibrium solution {yn} =
{1/2}. Later in [2], Grove et al. showed that the equilibrium 1/2 is
globally asymptotically stable if 0 < β ≤ 4, and unstable if β > 4. In
the same paper [2], a positive integer delay τ is introduced into the
above model to form

(1.1) yn+1 =
yneβ(1−2yn−τ )

1− yn + yneβ(1−2yn−τ )
, n = 0, 1, 2, . . . ,

and it is shown that the equilibrium 1/2 is locally asymptotically stable
if 0 < β < 4 cos (τπ/(2τ + 1)), and unstable if β > 4 cos (τπ/(2τ + 1)).
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Furthermore, when τ ≥ 1, this equilibrium is a global attractor for all
solutions {yn}∞n=−τ which satisfies the initial conditions

(1.2) 0 < y−τ , y−τ+1, . . . , y0 < 1,

if 0 < β ≤ (2/τ ). On the basis of computer simulations, the authors of
[2] also observe that the condition 0 < β ≤ (2/τ ) is far from perfect,
and therefore it is desirable to establish a better result which matches
experimental conditions.

In this paper, we will show that when τ > 2, the much improved
condition 0 < β ≤ (3/(τ + 1)) can be established. To achieve our goal,
it suffices to find a condition which implies that the solution {1} is the
global attractor of all solutions {xn}∞n=−τ of the nonautonomous delay
difference equation

(1.3) xn+1 = xn exp
(

βn(1− xn−τ )
1 + xn−τ

)
, βn > 0, n = 0, 1, 2, . . . ,

originated from positive initial conditions x−τ , . . . , x0 ∈ (0,∞). In-
deed, this can be seen by making the substitution [2]

xn =
yn

1− yn
,

which transforms (1.1) into

(1.4) xn+1 = xn exp
(

β(1− xn−τ )
1 + xn−τ

)
, n = 0, 1, 2, . . . ,

and (1.2) into x−τ , . . . , x0 ∈ (0,∞).

2. Auxiliary inequalities. Our investigations lead to the following
coupled pair of inequalities

lnu ≤ 2
(
1− v

1 + v

)
,(2.1)

ln v ≥ 2
(
1− u

1 + u

)
.(2.2)
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Clearly, (u, v) = (1, 1) is a solution of (2.1) (2.2). We will need the fact
that there are no other solutions in the region

Φ = {(u, v)| 0 < v ≤ 1 ≤ u} .

Lemma 1. (1, 1) is the only solution of (2.1) (2.2) in Φ.

Proof. Set

g(x) = exp
(
2(1− x)
1 + x

)
, x > −1.

Let (u, v) in Φ be a solution of (2.1) (2.2), then

g(u) ≤ v ≤ 1 ≤ u ≤ g(v) ≤ g(g(u)),

where the last inequality follows from the fact that g is strictly decreas-
ing on (−1,∞). We assert that g(g(u)) < u for u > 1. Indeed, this
follows from the fact that the function

f(x) = x − g(g(x)), x ≥ 1,

has the derivative

f ′(x) =
(1 + x)2(1 + g(x))2 − 16g(x)g(g(x))

(1 + x)2(1 + g(x))2
,

and the numerator h(x) in the righthand side of the above expression
satisfies h(1) = 0 and

h′(x) = 2 (1 + g(x)) ((1 + x) (1 + g(x))− 4g(x))

+
64

(1 + x)2
g(x)g(g(x))

(1− g(x))2

(1 + g(x))2

> 0

for x > 1. Thus we have u ≤ g(v) ≤ g(g(u)) < u, which is a
contradiction. By symmetry considerations, v cannot be greater than
1 either. The proof is complete.
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We will need three other inequalities which can be proved by looking
at the related first and second derivatives.

Lemma 2. (i) For any v ∈ [0, 1), ln
(
2e−v(1− v

2 ) − 1
) ≥ −2v.

(ii) For any u ∈ [0,∞), ln
(
2eu(1+ u

2 ) − 1
) ≥ 2u.

(iii) For any v ∈ (0, 1),

(2.3) ln
1 +

(
2e−v(1− v

2 ) − 1
)
e−vx

1 + e−vx
≤ −v

(
1− v

2

)
+

v2

2
x, x ≥ 0.

The first statement can be seen by showing the function f(v) =
2e−v(1− v

2 ) − e−2v is nondecreasing on [0, 1) and f(0) = 1, while
the second statement follows from showing g(u) = 2eu(1+ u

2 ) − e2u is
nondecreasing on [0,∞) and g(0) = 1. To see that the third statement
holds, we let h(x) be the lefthand side of (2.3) and then show that
h′′(x) ≤ 0 for x ≥ 0. Then

h(x) = h(0) + h′(0)x +
h′′(ξ)
2

x2 ≤ h(0) + h′(0)x

= −v

(
1− v

2

)
+

vx

2

(
ev(1− v

2 ) − 1
)

≤ −v

(
1− v

2

)
+

v2

2
x,

where the last inequality follows from ex(1− x
2 ) ≤ 1 + x for x ≥ 0.

3. Global attractivity. Our main objective is to show the following
result.

Theorem 1. Suppose {βn}∞n=0 is a positive sequence which satisfies

(3.1)
n∑

i=n−τ

βi ≤ 3

for all large n, and

(3.2)
∞∑

i=0

βi = ∞.
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Then every solution {xn}∞n=−τ of (1.3) under the initial conditions
x−τ , . . . , x0 > 0 will tend to 1.

Proof. Since every solution {xn}∞n=−τ of (1.3) that satisfies x−τ , . . . ,
x0 > 0 also satisfies xn > 0 for n ≥ 1, in order to prove the about result,
we need to consider three kinds of solutions. The first kind consists of
positive solutions that is eventually strictly bounded below by 1, and
the second kind consists of positive solutions that is eventually strictly
bounded above by 1. The third kind consists of positive solutions that
oscillate about 1. It is easy to show that if (3.2) holds, then the first
and the second kind of solutions will tend to 1. Indeed, let {xn} be a
positive solution which is of the first kind. Then in view of (1.3), {xn}
is decreasing and thus tends to a number L ≥ 1. Furthermore,

lnxn − lnxn+1 = βn
xn−τ − 1
1 + xn−τ

≥ βn
L − 1
1 + L

for all large n. Summing the above inequality, we have

lnxn − lnL ≥ L − 1
1 + L

∞∑
i=n

βi,

which, together with (3.2), imply L = 1. The case where {xn} is a type
two solution is similarly proved.

We will show that the same conclusion holds for the third kind of
solutions. To see this, let {xn}∞n=−τ be a solution of (1.3) which
oscillates about 1. We first show that {xn} is bounded above and
strictly bounded below by 0. Pick a positive integer N so large that
(3.1) holds for n ≥ N . Let n∗ ≥ N+τ such that xn∗+1 ≥ max {xn∗ , 1}.
Then in view of (1.3), xn∗−τ ≤ 1, and thus

xn∗+1 = xn∗−τ exp
( n∗∑

i=n∗−τ

βi
1− xi−τ

1 + xi−τ

)
≤ exp

( n∗∑
i=n∗−τ

βi

)
≤ e3.

It follows that lim supn→∞ xn ≤ e3. Next, let n∗ ≥ N + 3τ such that
xn∗+1 ≤ min {1, xn∗}. Then in view of (1.3), xn∗−τ ≥ 1, and thus

xn∗+1 = xn∗−τ exp
( n∗∑

i=n∗−τ

βi
1− xi−τ

1 + xi−τ

)
≥ exp

(
3(1− e3)
1 + e3

)
.
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Hence lim infn→∞ xn ≥ exp
(
3(1− e3)/(1 + e3)

)
> 0.

Let u = lim supn→∞ xn and v = lim infn→∞ xn. Since {xn} oscillates
about 1, 0 < v ≤ 1 ≤ u < ∞. Our proof will be complete if we can
show that u = v = 1. Set

x(t) = xn

(
xn+1

xn

)t−n

, β(t) = βn, n ≤ t < n + 1, n = 0, 1, 2, . . . .

Then x(t) is continuous on [0,∞) and satisfies x(n) = xn for n =
0, 1, 2, . . . . It is easy to see that x(t) is monotonic on each interval
[n, n + 1], which implies that

(3.3) u = lim sup
t→∞

x(t), v = lim inf
t→∞ x(t).

Let [·] denote the greatest integer function. Then x(t) satisfies the
following equation with piecewise constant argument

(3.4) x′(t) = β(t)x(t)
1− x([t − τ ])
1 + x([t − τ ])

, t ≥ 0,

where the derivative x′(t) exists at each point t ∈ [0,∞), except
possibly when t ∈ {0, 1, 2, . . . } at which the left-sided derivative exists.

In view of (3.1) and (3.3), for any ε ∈ (0, v),there exists a positive
integer n0 = n0(ε) such that

(3.5) v1 ≡ v − ε < x([t − τ ]) < u + ε ≡ u1, t ≥ n0,

and

(3.6)
∫ t

[t−τ ]

β(s)ds ≤ 3, t ≥ n0 − τ.

Using (3.4) and (3.5), we have

x′(t)
x(t)

≤ β(t)
1− v1

1 + v1
, t ≥ n0,(3.7)

and
x′(t)
x(t)

≥ −β(t)
u1 − 1
u1 + 1

, t ≥ n0.(3.8)
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Let {ni} be an increasing sequence of integers such that ni > n0 + τ ,
xni

≥ max{xni−1, xni+1, 1}, ni → ∞ and xni
= x(ni) → u as i → ∞.

It is easy to show that xni−τ ≥ 1 and xni−τ−1 ≤ 1, and so there exists
ξi ∈ [ni − τ − 1, ni − τ ] such that x(ξi) = 1. For ξi ≤ t ≤ ni, by
integrating (3.7) from [t − τ ] to ξi, we obtain

x([t − τ ]) ≥ exp
(
− 1− v1

1 + v1

∫ ξi

[t−τ ]

β(s) ds

)
, ξi ≤ t ≤ ni.

Substituting this into (3.4), we have

x′(t)
x(t)

≤ β(t)
1− exp

(
−1−v1

1+v1

∫ ξi

[t−τ ]
β(s) ds

)
1 + exp

(
−1−v1

1+v1

∫ ξi

[t−τ ]
β(s) ds

) , ξi ≤ t ≤ ni.

Denote (1− v1)/(1 + v1) by v2. Then 0 < v2 < 1. Thus

(3.9)
x′(t)
x(t)

≤ min


β(t)v2,

β(t)
[
1− exp

(
−v2

∫ ξi

[t−τ ]
β(s) ds

)]
1 + exp

(
−v2

∫ ξi

[t−τ ]
β(s) ds

)

 ,

ξi ≤ t ≤ ni.

Since 0 < v2 < 1, it follows from Lemma 2(i) that

ln
(
2e−v2(1− v2

2 ) − 1
)
≥ −2v2,

and so the number

Γ ≡ − 1
v2

ln
(
2e−v2(1− v2

2 ) − 1
)

satisfies 0 < Γ ≤ 2. There are now two possibilities:

∫ ni

ξi

β(s) ds ≤ Γ,

or

Γ <

∫ ni

ξi

β(s) ds ≤ 3.
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In the former case, in view of (3.6) and (3.9),

lnx(ni) ≤
∫ ni

ξi

β(t)
[
1− exp

(
−v2

∫ ξi

[t−τ ]
β(s) ds

)]
1 + exp

(
−v2

∫ ξi

[t−τ ]
β(s) ds

) dt

=
∫ ni

ξi

β(t)
{
1− exp

[
−v2

(∫ t

[t−τ ]
β(s) ds − ∫ t

ξi
β(s) ds

)]}
1 + exp

[
−v2

(∫ t

[t−τ ]
β(s) ds − ∫ t

ξi
β(s) ds

)] dt

≤
∫ ni

ξi

β(t)
{
1− exp

[
−v2

(
3− ∫ t

ξi
β(s) ds

)]}
1 + exp

[
−v2

(
3− ∫ t

ξi
β(s) ds

)] dt

=
∫ ni

ξi

β(s) ds − 2
v2

ln
1 + exp

[
−v2

(
3− ∫ ni

ξi
β(s) ds

)]
1 + exp (−3v2)

.

Since the function x − (2/v2) ln
(
1 + e−v2(3−x)

)
is increasing on [0, 3],

we see from Lemma 2 that

lnx(ni) ≤ Γ− 2
v2

ln
(
1 + e−v2(3−Γ)

1 + e−3v2

)

= Γ +
2
v2

ln


1 +

[
2e−v2(1− v2

2 ) − 1
]
e−v2(3−Γ)

1 + e−v2(3−Γ)




≤ Γ +
2
v2

[
−v2

(
1− v2

2

)
+

v2
2(3− Γ)

2

]

= −2(1− 2v2)− 1− v2

v2
ln

(
2e−v2(1− v2

2 ) − 1
)

≤ 2v2.

In the latter case, choose pi ∈ (ξi, ni) such that

Γ =
∫ ni

pi

β(s) ds.
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Then by (3.6), (3.9) and Lemma 2, we have

lnx(ni) ≤ v2

∫ pi

ξi

β(s) ds

+
∫ ni

pi

β(t)
[
1− exp

(
−v2

∫ ξi

[t−τ ]
β(s) ds

)]
1 + exp

(
−v2

∫ ξi

[t−τ ]
β(s) ds

) dt

≤ v2

∫ pi

ξi

β(s)ds

+
∫ ni

pi

β(t)
{
1− exp

[
−v2

(
3− ∫ t

ξi
β(s) ds

)]}
1 + exp

[
−v2

(
3− ∫ t

ξi
β(s) ds

)] dt

= v2

∫ pi

ξi

β(s) ds+
∫ ni

pi

β(s) ds

− 2
v2

ln
1 + exp

[
−v2

(
3− ∫ ni

ξi
β(s) ds

)]
1 + exp

[
−v2

(
3− ∫ pi

ξi
β(s) ds

)]
= v2

∫ ni

ξi

β(s) ds + (1− v2)Γ

− 2
v2

ln
1 + exp

[
−v2

(
3− ∫ ni

ξi
β(s) ds

)]
1 + exp

[
−v2

(
3 + Γ− ∫ ni

ξi
β(s) ds

)]
≤ 3v2 + (1− v2)Γ− 2

v2
ln

2
1 + e−Γv2

= −2(1− 2v2)− 1− v2

v2
ln

(
2e−v2(1− v2

2 ) − 1
)

≤ 2v2,

where the third inequality follows from the fact that the function

q(x) = v2x − 2
v2

ln
1 + e−v2(3−x)

1 + e−v2(3+Γ−x)
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is increasing in [0, 3] :

q′(x) = v2 − 2
[

1
1 + ev2(3−x)

− 1
1 + ev2(3+Γ−x)

]
, 0 ≤ x ≤ 3,

q′′(x) = −2v2

[
ev2(3−x)(

1 + ev2(3−x)
)2 − ev2(3+Γ−x)(

1 + ev2(3+Γ−x)
)2

]
< 0, 0 ≤ x ≤ 3,

and
q′(x) ≥ q′(3) = v2 + 1− ev2(1− v2

2 ) > 0, 0 ≤ x < 3.

Both cases imply lnx(ni) ≤ 2v2 for n = 1, 2, . . . , so that in the limit,
we have

lnu ≤ 2
(
1− v1

1 + v1

)
= 2

(
1− v + ε

1 + v − ε

)

for every small positive ε. Thus,

lnu ≤ 2
(
1− v

1 + v

)
.

By almost symmetric arguments, we may also show that

(3.10) ln v ≥ 2
(
1− u

1 + u

)
.

Indeed, let {mi} be an increasing sequence of integers such that mi ≥
n0+k, xmi

≤ min {xmi−1, xmi+1, 1}, mi → ∞ and xmi
= x(mi) → v as

i → ∞. It is easy to show that xmi−k ≤ 1 and xmi−k−1 ≥ 1, and hence
there is ηi ∈ [mi − k − 1, mi − k] such that x(ηi) = 1. For ηi ≤ t ≤ mi,
integrating (3.8) from [t − k] to ηi, we have

x ([t − k]) ≤ exp
(

u1 − 1
1 + u1

∫ ηi

[t−k]

β(s) ds

)
, ηi ≤ t ≤ mi.

Substituting this into (3.4), we have

x′(t)
x(t)

≥ β(t)
1− exp

(
u1−1
1+u1

∫ ηi

[t−k]
β(s) ds

)
1 + exp

(
u1−1
1+u1

∫ ηi

[t−k]
β(s) ds

) , ηi ≤ t ≤ mi.
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Set u2 = (u1 − 1)/(1 + u1). Then u2 > 0. And we have

(3.11)
−x′(t)

x(t)
≤ min

{
β(t)u2,

β(t)
[
exp

(
u2

∫ ηi

[t−k]
β(s) ds

)
− 1

]
1 + exp

(
u2

∫ ηi

[t−k]
β(s) ds

) }
,

ηi ≤ t ≤ mi.

Since 0 < u2 < 1, we thus see that the number

Θ =
1
u2

ln
(
2eu2(1+

u2
2 ) − 1

)

satisfies 0 < Θ < 3. There are two cases to consider:

∫ mi

ηi

β(s) ds ≤ 3−Θ,

or

3−Θ <

∫ mi

ηi

β(s) ds ≤ 3.

In the former case, in view of (3.11) and Lemma 2,

− lnx(mi) ≤ u2

∫ mi

ηi

β(s)ds ≤ 3u2 − ln
(
2eu2(1+

u2
2 ) − 1

)
≤ u2.

In the latter case, choose qi ∈ (ηi, mi) such that

∫ qi

ηi

β(s) ds = 3−Θ.
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Then by (3.11) and Lemma 2,

− lnx(mi) ≤ u2

∫ qi

ηi

β(s) ds

+
∫ mi

qi

β(t)
[
exp

(
u2

∫ ηi

[t−k]
β(s) ds

)
− 1

]
1 + exp

(
u2

∫ ηi

[t−k]
β(s) ds

) dt

≤ u2

∫ qi

ηi

β(s) ds

+
∫ mi

qi

β(t)
{[

expu2

(
3− ∫ t

ηi
β(s) ds

)]
− 1

}
1 + exp

[
u2

(
3− ∫ qi

ηi
β(s) ds

)] dt

= u2

∫ qi

ηi

β(s) ds −
∫ mi

qi

β(s) ds

− 2
u2

ln
1 + exp

[
u2

(
3− ∫ mi

ηi
β(s) ds

)]
1 + exp

[
u2

(
3− ∫ qi

ηi
β(s) ds

)]
= (1 + u2)(3−Θ)−

∫ mi

ηi

β(s) ds + 2
(
1 +

u2

2

)

− 2
u2

ln
1 + exp

[
u2

(
3− ∫ mi

ηi
β(s) ds

)]
2

≤ 2(1 + 2u2)− 1 + u2

u2
ln

(
2eu2(1+

u2
2 ) − 1

)
≤ 2u2,

where the last inequality follows from the fact that

h(x) = −x − 2
u2

ln
1 + eu2(3−x)

2

is increasing in [0, 3]. Both cases imply

− lnx(mi) ≤ 2u2, i = 1, 2, . . . .

Letting i → ∞ and ε → 0, we finally see that (3.10) holds.



GLOBAL ATTRACTIVITY 1187

Therefore, by Lemma 1, u = v = 1. Our proof is complete.

4. Remarks. When βn ≡ β > 0 for n = 0, 1, 2, . . . , and τ ≥ 2,
since the condition

0 < β ≤ 3
τ + 1

implies (3.1) and (3.2), we see from Theorem 1 that every solution
{xn}∞n=−τ of (1.4) which satisfies x−τ , . . . , x0 > 0 will also tend to 1.
This in turn implies that the equilibrium 1/2 is a global attractor for all
solutions {yn}∞n=−τ of (1.1) which satisfies 0 < y−τ , y−τ+1, . . . , y0 < 1.

We remark that computer simulations suggest that the best possible
condition [3, p. 87] for 1/2 to be a global attractor for positive solutions
of (1.1) is

0 < β ≤ 4 cos
τπ

2τ + 1
.

Since

lim
τ→∞

4 cos τπ
2τ+1

3
τ+1

=
π

3
≈ 1.0472,

our condition appears to match the experimental results quite well for
large τ .
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