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EXTREMAL BOUNDED SLIT MAPPINGS
FOR LINEAR FUNCTIONALS

DIMITRI V. PROKHOROV

ABSTRACT. Let S(M) be the class of holomorphic uni-
valent functions f(z) = z +a222 + ..., |f(2)| < M, |z| < 1
and L(f) = 2272 Arak, (A2,...,An) € R*~1. We prove
that under some conditions among all bounded slit mappings
only the Pick functions can be extremal for RL(f) in S(M)
provided M is close to 1. In particular, if « > 0, (n — 1) and
(m — 1) are odd and relatively prime, then the Pick function
maximizes R(an + aam) in S(M) for M close to 1.

1. Introduction. Let S(M), M > 1, be the class of holomorphic
functions f in the unit disk D = {z: |z] < 1},

f(z)=z+az*+..., z€D,

which are univalent and bounded by M in D, ie., |f(z)| < M, z € D.

Denote by S'(M) the class of functions f € S(M) which map D
onto the disk Dy, of radius M centered at the origin and slit along
an analytic curve. An important member of S*(M) is the so-called

Pick function Py;(z) which maps D onto D, slit along the segment
[-M,-M©2M —1-2/M(M - 1))].

Consider a linear continuous functional L on S(M) given by
L(f) :Zj\k@m MeC, k=2,...,n
k=2

So L is determined by the vector A = (Xg,... ,\,) € C* L.
We will prove the following

Theorem 1. Let A = (Aa,...,\,) € R"™! and

jnax RL(f) = RL(fo)
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for fo € SY(M). If

n

(1) > (k= 1)Xsin(k — 1)u

k=2

has only single zeros on [0,2x], then fo is either the Pick function
Py (z) or —Pr(—2) provided (M — 1) is small enough.

Theorem 1 is applied to L(f) = a, + aa,, where a > 0, (n — 1) and
(m — 1) are odd and relatively prime.

2. Loewner theory and optimization methods.

Theorem A (Loewner equation, see, e.g., [1]). Let w = w(z,t) be
the solution of the Loewner equation

d u
(2) W WY =2, 0<t<logM,
dt e — w

with a piecewise continuous function u = u(t). Then
(3) w(z,t) =e (z+ax(t)z*+--), z€D, t>0,

is holomorphic and univalent with respect to z € D for every t > 0.
Moreover, the functions given by the formula

(4) f(z) := Mw(z,log M) € S(M),

form a dense subclass of S(M).

Remark 1. In the case u(t) = const, the functions f(z) given by
(4) are rotations of the Pick function Pys(z). In particular, u(t) = «
corresponds to Py (z) while u(t) = 0 corresponds to —Pps(—2). If u(t)
is analytic, then f € S1(M).

Remark 2. If a control function u(t) generates a function f(z) by
(2)—(4), then —u(t) generates f(Z).
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Let a;(t) be given by (3), a;(t) = x2;—1(t) + iz2;(t), j = 2,...,n,
and a(t) = (x3(t),...,22,(t)). Comparing Taylor coefficients in both
sides of the Loewner equation (2) we obtain the system of differential
equations

dzy
(5) dt
x9j—1(log M) +izgj(log M) =a;, j=2,...,n.

=gr(t,a,u), x(0)=0, k=3,...,2n

The explicit formulas for g; are given in [5]. Note that

92;-1(0,0,u) +igs;(0,0,u) = —2¢ UV > 9,

The coefficient region
VM = {a = (ay,...,a,): f € S(M)}

is the closure of the attainable set for the system (5). Let f* € S*(M)
be extremal for RL in S(M), ie., maxscg) RL(f) = RL(f*) and
correspond to a boundary point a* € 9V,*. Then f is represented by
(2)—(4) with u*(t) satisfying certain optimization conditions.

In fact, consider the Hamilton function

2n
(6) H(t>a7'¢7u) = ng(t7a7u)wk>
k=3
where ¥ = (93(t), ... ,12,(t)) is the nonzero conjugate vector which
satisfies the conjugate Hamiltonian system
dy, OH
7 —_— = 0) = k=3,...,2n.
( ) dt 8l‘k’ ¢k( ) gka ) y 410

The following theorem is a version of Pontryagin’s maximum principle
together with the corresponding transversality conditions both of which
are necessary conditions for extremal trajectories in an optimal control
problem (see, e.g., [4, pp. 254, 319] for the autonomous case).

Theorem B. Let a*(t) be a solution of the system (5) with a con-
tinuous control function u*(t). If a* = a*(log M) is a boundary point
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of VM which gives maxse gy RL(f), then there exists the solution
P* = P*(t) of the system (7) exists with the same control function
u*(t) such that

(8)
max H(t,a*(t), 9" (t),u) = H(t,a"(t), 9" (t),u"(t)), te [0,logM],

u

9) ¥*(log M) = (RAz, SAa, ..., Rhn, Shn).-

The condition (8) is called the Pontryagin mazimum principle and
(9) is called the transversality condition at a*. Evidently u*(t) is a
root of the equation

(10) H,(t,a,¢,u) =0

with a = a* and ¢ = ¥*.

Note that gs,... , g2 in (5) do not depend on x9,_1 and zs,. Hence
dw2n71 _ d’l/)Qn -0
dt dt

and taking into account the transversality conditions (9) we assume
that
Yan—1(t) + ithon(t) = Lon—1 + i€2n = An.

Denote & = (&3, ... ,&2,—2). In particular, at ¢ = 0 we have

H(0,0,€,u) = =2 (k-1 cos(k — 1)u — &y sin(k — 1)u).
k=2

Let A = (A2,...,A\,) € R"!. Since M is close to 1 and the
functions —(90H/0zy) in the righthand side of (7) are bounded for
0 <t <logM, ¢¥*(0) is close to ¥*(log M) and H(t,a*,¥* u) is
close to H(0,0,&,u) = —2> 7 _,Agcos(k — 1)u. According to (1)
H,(0,0,&,u) has only single zeros on [0,27] and this property is
preserved for H,(t,a*,¥*, u) which means that H,, (¢, a*, ¢*, u*) < 0.
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The last assertion guarantees that the control function w in the
righthand side of (5) and (7) is the analytic branch of the implicit
function u = u(t, a, ) determined by the equation (10) with the initial
value 4(0,0,£&*) = u*(0), & = ¥*(0). Indeed, this follows from the
analytical properties of the Hamilton function H and the inequality
H,.(t,a,v,u) # 0 which holds in a neighborhood of (t,a,v,u) =

(0,0,&*,u*(0)).
Vectors a and 1, being the solution of the systems (5) and (7) with
u = u(t,a, ) in their righthand sides, depend only on ¢t and &, i.e.,

a=af(t,&) and o = (1, €).
Denote

Lemma A. Letu = u(t, &) and H(t, a, 1, u) be the Hamilton function
(6). Then |Hyuu(0,0,&,u)] > & > 0 in a neighborhood of €' =
(A2,0,...,An—1,0).

Lemma A was proved in [3] for a partial case corresponding to the
nonlinear functional I(f) = R(asa,). Therefore we will give here only
a sketch of the proof which is very close to that of [3].

Since H,(0,0,&,u(0,£)) has a single zero at u(0, £9),

7(€) = Huu(0,0,€,u(0,£)) <0

in a neighborhood of ¢°. After differentiating r(¢) and the equation
(10) at t = 0, we obtain

(€)= H,,5(0,0,€,0) = H g (0,0,€,u) o (0,0,€,u) /7(£).

Due to boundedness of partial derivatives of H(0,0,&,u) in a neigh-
borhood of £°, the derivative r. (&) for any direction e satisfies

(11) Ire(€)] <

for some positive numbers A and B. Let [ be the smallest number
such that 7(€) = r(£°)/2 for a certain &, ||€ — €| = [, i.e., [r(&)] >
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[r(€9)]/2 = 8, if ||€ — €°|| < I. Integrating the differential inequality
(11) from &° to & in the direction e = & — ¢, we obtain

2A
() = (€ = In€@/2 < (o + B ).
Ir( )= 1r(&")] B
which gives a lower bound for [ and completes the proof of Lemma A.

Lemma B [3]. Let [Hyu(0,0,€,u(0,€))] =6 > 0 for all§, [|E—€°|| <
l. Then there exists M > 1 such that the inequality

| Huu(t, a(t, €), (¢, €), ult,€))| = 6/2

holds for all t € [0,log M].

Lemma C [3]. Let u = u(t,&). The partial derivatives u; and ug

are bounded if € is close to €9 and t is close to 0.
3. Proof of Theorem 1.

Proof of Theorem 1. First we show that there exists a unique point &
in a neighborhood of &° for which the solution of the systems (5) and
(7) satisfies the maximum principle (8) and the transversality condition

(9)-

Let us consider the mapping
F: S — (1/)3(10gMa g)a s 7¢2n_2(IOgM7€)), ”5 - €O|| S l.

The function F(&) maps the initial data & onto the solution of the
Cauchy problem (7) for ¢ = log M. Hence F is an analytic function
and its derivative Fg is the Jacobi matrix A(t, &) with the elements

9p;(log M, §)

. g k=3,...,2n—2.
Y, J

ajk =

Clearly, A(0,£%) is the unit matrix. Hence det A(log M, &%) > 0 if
(M — 1) is small enough. This means that the matrix A(log M, £%) =
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Fé(fo) is invertible and F maps a neighborhood U.(¢%) = {¢ :

€ — €% < e}, € > 0, of €Y one-to-one onto a neighborhood of F(£°).
Therefore there exists a unique & € U.(£°) for which the maximum
principle (8) and the transversality condition (9) are satisfied.

Second, suppose to the contrary that the extremal function f*(z) €
S1(M) for the functional L is different from Pys(z) and — Py (—z). This
means that f* maps D onto Dy, slit along an analytic curve which is
nonsymmetrical with respect to the real axis. Hence f**(z) = f*(2) is
different from f*(z). As soon as real parts of coefficients of f* and f**
are equal, both of them are extremal for L.

Let, according to Theorem A, the functions f* and f** be represented
as

f (z) = Mw*(z,log M), [ (z) = Mw**(z,log M),
where w*(z,t) and w**(z, t) are the solutions of the Loewner differential
equation (2 ) with u = w*(t) and u = w**(t) respectively.

Let w*(z,t) correspond to a = a*(t) = (z5(¢),... , x5, (1)), u=u*(t)
and ¢ = ’l,b*(t) = (@(t% 71/)571(75)) (5)a (7)a 0<t¢t<lo gM
Then w**(z,t) corresponds to a=a**(t) = (a}(t),—x;(t),... , x5, _1(t),
_xgn(t))7 u = U**(t) = —U*(t) and "b = w**(t) = (,(/);’:(t)a _wZ(t)7 cee
¥3,_1(t), =13, (t)) which implies that f* and f** correspond to the dis-
tinct data values €*=(&5,&5,. .., &5 3, E5n_0) and € = (&5, &5, ...,

&n_3, —&5,_o) respectively.

But the transversality condition (9) means that

P(log M, &™) = ¢ (log M) = 9™ (log M)
=YP(log M, &) = (A2,0,... ,As,0).

If (M —1) is small enough, then £* and £** are close to £° and belong
to a neighborhood U, (£%) of ¢° where F has an inverse mapping F~1.
This contradicts the statement that F(£€*) = F(£**) and ends the proof
of Theorem 1.

Remark 3. Requirement of Theorem 1 that the trigonometrical
polynomial Y ,_,(k — 1)\ sin(k — 1)u has only single zeros on [0, 27]
can be weakened. Indeed, we need only the singleness of zeros which
are maximum points of H(0,0,&°, u).
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4. Application to estimates for R(a,+aa,,). Schiffer and Tammi
[7] and Siewierski [6] showed that the Pick functions are not extremal
for max ¢ g(ar) Ray, if n > 2 and (M — 1) is small. More precisely, they
showed that there exists M,, > 1 such that Ra,, is maximized in S(M)
by the function

Prrn(2) = [Papnr (27 D)V D € S(M)

for all M € (1, M,,).

Given o > 0 and even m and n such that (m — 1) and (n — 1) are
relatively prime, n > m > 2, consider the linear functional

L(f) = an + aan,
and the extremal problem

(12) RL(f) — max, [feS(M).

According to the Pontryagin maximum principle (8) and the transver-
sality condition (9), the Hamilton function H(t¢,a(t, &), (t,&),u) is
close to

H(0,0,8° u) = q(u) = —2(cos(n — 1)u + acos(m — 1)u)

if £ is close to &° = (0,...,0,,0,...,0,1,0) and (M — 1) is small.

Since ¢(u) has only one absolute maximum in [0,27] at v = 7 and
q"(m) < 0, the Hamilton function also has only one absolute maximum
in [0,27] at u(¢,&). This means that an extremal function f* of the
problem (12) belongs to S*(M) and all the conditions of Theorem 1
are satisfied.

So we proved

Theorem 2. Given o > 0 and even m and n such that (m — 1)
and (n — 1) are relatively prime, there exists M(m,n,a) > 1 such
that the Pick function Py(z) is extremal for the problem (12) for all
M e (1, M(m,n,a)).
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It is proved in [2] that the Pick function —Pys(—z2) is extremal for
the nonlinear problem R(a,a,) — max in S(M) if (m—1) and (n—1)
are relatively prime and (M — 1) is small enough.
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