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COHEN-MACAULAYNESS OF
TENSOR PRODUCTS

LEILA KHATAMI AND SIAMAK YASSEMI

ABSTRACT. Let (R, m) be a commutative noetherian local
ring. Suppose that M and N are finitely generated modules
over R such that M has finite projective dimension and such
that TorR

i (M, N) = 0 for all i > 0. The main result of
this note gives a condition on M which is necessary and
sufficient for the tensor product of M and N to be a Cohen-
Macaulay module over R, provided N is itself a Cohen-
Macaulay module.

1. Introduction. Throughout this note (R, m) is a commutative
noetherian local ring with nonzero identity and the maximal ideal m.
By M and N we always mean nonzero finitely generated R-modules.
The projective dimension of an R-module M is denoted by proj.dimM .

The well-known notion “grade of M”, grade M , has been introduced
by Rees, see [8], as the least integer t ≥ 0 such that Ext t

R(M, R) �= 0.
In [10], we have defined the “grade of M and N”, grade (M, N), as the
least integer t ≥ 0 such that Ext t

R(M, N) �= 0.

One of the main results of this note is Theorem 1.8, and it states:

Let N be a Cohen-Macaulay R-module, and let M be an R-module
with finite projective dimension. If TorR

i (M, N) = 0 for all i > 0, then
M ⊗R N is Cohen-Macaulay if and only if grade (M, N) = proj.dimM .

This theorem can be considered as a generalization of the following
well-known statement, cf. [4, Theorem 2.1.5]:

(T1) Let R be a Cohen-Macaulay local ring, and let M be a finite R-
module with finite projective dimension. Then M is a Cohen-Macaulay
if and only if gradeM = proj.dimM .

On the other hand the following statement from Yoshida can be
concluded from our result:
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Yoshida [11, Proposition 2.4]. “Suppose that gradeM = proj.dimM(<
∞) and that N is a maximal Cohen-Macaulay R-module (that is
depth N = dimN = dimR). Then M ⊗R N is Cohen-Macaulay and
dimM ⊗R N = dimM .”

In another theorem of the first section we improve a theorem due to
Kawasaki:

Kawasaki [6, Theorem 3.3(i)]. “Let R be a Cohen-Macaulay local
ring, and let K be a canonical module of R. Let M be a finite R-module
of finite projective dimension. Then M ⊗R K is Cohen-Macaulay if and
only if M is Cohen-Macaulay.”

The following statement, which is our Theorem 1.11, generalizes
Kawasaki’s theorem:

Let R be a Cohen-Macaulay local ring, and let K be a canonical
module of R. If M is an R-module with finite Gorenstein dimension,
then M ⊗R K is Cohen-Macaulay if and only if M is Cohen-Macaulay.

Recall that the Gorenstein dimension is an invariant for finite modules
which was introduced by Auslander in [2]. It is a finer invariant than
projective dimension in the sense that for every finite nonzero R-module
M , G-dimM ≤ proj.dimM and equality holds when proj.dimM < ∞.
There exist modules with finite Gorenstein dimension which have
infinite projective dimension.

In the second section we consider Serre’s conditions. We say M
satisfies Serre’s condition (Sn) for a nonnegative integer n when, for
every p ∈ SuppM the following inequality holds:

depthMp ≥ min(n, dimMp).

Obviously, every Cohen-Macaulay module satisfies (Sn) for all nonneg-
ative integers n.

The main result of Section 2 is Theorem 2.4 which states:

Let M and N be R-modules such that TorR
i (M, N) = 0 for all i > 0.

If projective dimension of M is finite and M ⊗R N satisfies (Sn), then
so does N .

This result generalizes [11, Proposition 4.1].
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1. Cohen-Macaulayness.

Definition 1.1. We define

grade (M, N) = inf{i | Ext i
R(M, N) �= 0}.

Since M is finite, using [4, 1.2.10] we have that

grade (M, N) = inf{depthNp | p ∈ SuppM}
= inf{depthNp | p ∈ SuppM ∩ SuppN}.

The second equality holds because the depth of the zero module is
defined to be infinite.

Proposition 1.2 [10, Theorem 2.1]. The following inequalities hold:

(a) depthN − dimM ≤ grade (M, N);

(b) If SuppM ⊆ SuppN , then grade (M, N) ≤ dimN − dimM .

For a finite R-module M of finite projective dimension, the invariant
impM , imperfection of M , is defined to be proj.dimM − gradeM .
This is, using the Auslander-Buchsbaum equality, equal to depthR −
depthM − gradeM .

Definition 1.3. For finite R-modules M and N , which may have
infinite projective dimensions, we define imp (M, N) = depthN −
depthM − grade (M, N) (this may be negative).

It is clear that if proj.dimM < ∞, then impM = imp (M, R).

By cmdM we mean the difference dimM − depthM .

Proposition 1.4. The following inequalities hold:

(a) imp (M, N) ≤ cmdM ;

(b) If SuppM ⊆ SuppN , then cmdM ≤ imp (M, N) + cmdN .

Proof. This is clear from Proposition 1.2 and the definition.
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Corollary 1.5. Let N be a Cohen-Macaulay R-module and SuppM ⊆
SuppN . Then cmdM = imp (M, N); in particular, M is a Cohen-
Macaulay module if and only if imp (M, N) = 0.

(T1) says that over a Cohen-Macaulay local ring R, the R-module M
with finite projective dimension is Cohen-Macaulay if Ext i

R(M, R) = 0
for i �= proj.dimM . The following corollary is a generalization of (T1).

Corollary 1.6. Let N be a Cohen-Macaulay R-module with depth
N = depthR. Let M have finite projective dimension and SuppM ⊆
SuppN . Then M is Cohen-Macaulay if and only if Ext i

R(M, N) = 0
for i �= proj.dimM .

Proof. Note that proj.dimM = sup{i | Ext i
R(M, N) �= 0 for any N},

cf. [7] and so it is always greater than or equal to grade (M, N).

imp (M, N) = depthN − depthM − grade (M, N)
= depthR − depthM − grade (M, N)
== proj.dimM − grade (M, N).

Now the claim is clear from Corollary 1.5.

Recall that a finite R-module M with finite projective dimension is
called perfect if proj.dimM = gradeM .

Definition 1.7. Let M and N be R-modules with proj.dimM < ∞.
We say that M is N -perfect if proj.dimM = grade (M, N).

In the proof of the following statements we use the well-known result,
cf. [1, Theorem 1.2].

(T2) Let M and N be finite R-modules with proj.dimM < ∞. If
TorR

i (M, N) = 0 for all i > 0, then we have the equality depthM ⊗R

N = depthN − proj.dimM .

Theorem 1.8. Let N be a Cohen-Macaulay R-module, and let M
be an R-module with finite projective dimension. If TorR

i (M, N) = 0
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for all i > 0, then M ⊗R N is Cohen-Macaulay if and only if M is
N-perfect.

Proof. We claim that M is N -perfect if and only if imp (M⊗RN, N) =
0, and then the assertion will be clear from Corollary 1.5. We know
that depthM ⊗R N = depthN − proj.dimM . On the other hand,

grade (M ⊗R N, N) = inf{depthNp | p ∈ SuppM ⊗R N}
= inf{depthNp | p ∈ SuppM ∩ SuppN}
= grade (M, N).

Then we have the equality imp (M ⊗R N, N) = proj.dimM −
grade (M, N), which proves our claim.

Now [11, 2.4] can be deduced from the above theorem, for when N
is a maximal Cohen-Macaulay and proj.dimM < ∞ by [11, 2.2] we
have that TorR

i (M, N) = 0 for all i > 0. For every p ∈ SuppN ,
the Rp-module Np is maximal Cohen-Macaulay module and, then
depthNp = dimRp ≥ depthRp and hence we have inequalities

gradeM ≤ grade (M, N) ≤ proj.dimM.

This means that every perfect module is N -perfect.

Definition 1.9. A finite R-module N is said to be of Gorenstein
dimension zero and we write G-dimN = 0, if and only if

(a) Ext i
R(N, R) = 0 for i > 0.

(b) Ext i
R(HomR(N, R), R) = 0 for i > 0.

(c) The canonical map N → HomR(HomR(N, R), R) is an isomor-
phism.

For a nonnegative integer n, the R-module N is said to be of
Gorenstein dimension at most n, if and only if there exists an exact
sequence

0 −→ Gn −→ Gn−1 −→ · · · −→ G0 −→ N −→ 0

where G-dimGi = 0 for 0 ≤ i ≤ n. If such a sequence does not exist,
then G-dimN = ∞.
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Lemma 1.10 [3, 3.7, 3.14, 4.12]. If G-dimM < ∞, then the
following hold:

(a) G-dimM + depthM = depthR.

(b) G-dimM = sup{t | Ext t
R(M, R) �= 0}.

(c) TorR
i (M, P ) = 0 for all i > G-dimM and all modules P with

finite projective dimension.

The following theorem improves Kawasaki’s result [6, 3.3(i)].

Theorem 1.11. Let R be a Cohen-Macaulay local ring, and let K be
a canonical module of R. If M is an R-module with finite Gorenstein
dimension, then M⊗RN is Cohen-Macaulay if and only if M is Cohen-
Macaulay.

Proof. Proposition [5, 2.5] says that TorR
i (M, K) = 0 for i > 0 and

then, since injective dimension of K is finite, we have that depthM ⊗R

K = depthK − G-dimM , cf., [9, 2.13]. Then imp (M ⊗R K, K) = G-
dimK − grade (M ⊗R K, K). Since SuppK = SpecR, we have that

grade (M ⊗R K, K) = inf{depthKp | p ∈ SuppM ⊗ K}
= inf{depthKp | p ∈ SuppM}.

But, since depthKp = depthRp for all prime ideals p ∈ SuppK =
SpecR we have that grade (M ⊗R K, K) = gradeM . The claim of
the theorem is now clear from Corollary 1.5 and the fact that over a
Cohen-Macaulay local ring R, the R-module M with finite Gorenstein
dimension is Cohen-Macaulay if and only if gradeM = G-dimM , cf.
[10].

2. Serre conditions.

First recall that, for a nonnegative integer n, we say that a fi-
nite R-module M satisfies Serre’s condition (Sn) if depthMp ≥
min(n, dimMp) for every p ∈ SuppM or equivalently if Mp is a Cohen-
Macaulay Rp-module for every p ∈ SuppM such that depthMp < n.

We also recall a consequence of the new intersection theorem, cf., [4,
Corollary 9.4.6].
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(T3) Let M and N be finite R-modules with proj.dimM < ∞. We
have the inequality dimN ≤ proj.dimM + dim (M ⊗R N).

Theorem 2.1. Let N be a finite R-module which satisfies (Sn).
Let M be an N-perfect R-module with t = proj.dimM ≤ n, such that
TorR

i (M, N) = 0 for i > 0. Then M ⊗R N satisfies (Sn−t).

Proof. For every p ∈ Supp (M ⊗R N) it is clear that

grade (M, N) ≤ grade (Mp, Np) ≤ proj.dimMp ≤ proj.dimM = t.

Since M is N -perfect, Mp is Np-perfect with proj.dimMp = t. From
Proposition 1.2 we have that t = grade (Mp, Np) = grade ((M ⊗R

N)p, Np) ≤ dimNp − dim (M ⊗R N)p.

On the other hand, from the fact that N satisfies (Sn), we have the
following claim

depth (M ⊗R N)p = depth (Mp ⊗Rp
Np)

= depthNp − proj.dimMp

= depthNp − t

≥ min(n, dimNp)− t

= min(n − t, dimNp − t).

Now the assertion holds.

Corollary 2.2. If R satisfies (Sn), then every perfect R-module with
projective dimension t, less than or equal to n, satisfies (Sn−t).

It is well known that if a local ring admits a finite Cohen-Macaulay
module with finite projective dimension, then the ring itself is Cohen-
Macaulay.

In [11, 4.1] Yoshida has proved a more general statement, by replacing
“being Cohen-Macaulay” with “satisfying Serre’s condition (Sn).”

Our next two theorems improve those results by similar proofs.
Theorem 2.3 is a special case of Theorem 2.4, and the proof of 2.3
is only included because it is so simple.
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Theorem 2.3. Let M and N be R-modules such that TorR
i (M, N) =

0 for all i > 0. If proj.dimM < ∞ and M ⊗R N is Cohen-Macaulay,
then so is N .

Proof. The intersection theorem (T3) gives the inequality

dimN ≤ dimM ⊗R N + proj.dimM.

On the other hand (T2) gives the equality

depthN = depthM ⊗R N + proj.dimM.

Since dimN ≥ depthN , the assertion is clear.

Theorem 2.4. Let M and N be R-modules such that TorR
i (M, N) =

0 for all i > 0. If proj.dimM < ∞ and M ⊗R N satisfies (Sn), then
so does N .

Proof. Choose p ∈ SuppN . There are two cases.

The first case is when p ∈ SuppM and then p ∈ SuppM ⊗R N .

If depth (M ⊗R N)p < n, then (M ⊗R N)p is Cohen-Macaulay and,
by the Theorem 2.3 so is Np.

If depth (M ⊗R N)p ≥ n, then depthNp ≥ n because by (T2) we
have the equality depthNp = depth (M ⊗R N)p + proj.dimMp. The
second case is when p /∈ SuppM . Let q be a minimal prime over the
ideal (AnnM + p). From (T3) we have the inequality

dimRq/pRq ≤ proj.dimMq + dimMq/pMq = proj.dimMq.

Since pRq ∈ SuppRq/pRq we have that

depthNp ≥ grade (Rq/pRq, Nq)
≥ depthNq − dimRq/pRq (Proposition 1.2)
≥ depthNq − proj.dimMq

= depthMq ⊗Rq
Nq.

If depthMq ⊗Rq
Nq < n, then Mq ⊗Rq

Nq is Cohen-Macaulay and,
from Theorem 2.3, we will have that Nq is Cohen-Macaulay, then so is
Np

∼= (Nq)pRq
.
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If depthMq ⊗Rq
Nq ≥ n, then the above inequality guarantees that

depthNp ≥ n.
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