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THE DIRICHLET PROBLEM FOR
QUASIMONOTONE SYSTEMS OF

SECOND ORDER EQUATIONS

GERD HERZOG

ABSTRACT. We prove the existence of a solution of the
Dirichlet problem u′′ + f(t, u) = 0, u(0) = u(1) = 0 between
upper and lower solutions, where f : [0, 1] × E → E is
quasimonotone increasing in its second variable with respect
to a general solid cone.

1. Introduction. Let E be a finite-dimensional real vector space
ordered by a cone K. A cone K is a nonempty closed convex subset
of E with λK ⊆ K (λ ≥ 0), and K ∩ (−K) = {0}. As usual,
x ≤ y :⇐⇒ y − x ∈ K. Furthermore we assume that K is solid,
that is, K0 �= ∅, and we write x � y if y−x ∈ K0. For x ≤ y let [x, y]
denote the order interval of all z with x ≤ z ≤ y. Let K∗ denote the
dual cone of K, that is, the set of all ϕ ∈ E∗ with ϕ(x) ≥ 0 (x ≥ 0).
We fix p ∈ K0 and consider E to be normed by ‖ · ‖, the Minkowski
functional of [−p, p]. Note that −‖x‖p ≤ x ≤ ‖x‖p, x ∈ E.

A function g : E → E is called quasimonotone increasing (qmi for
short), in the sense of Volkmann [16], if

x, y ∈ E, x ≤ y, ϕ ∈ K∗, ϕ(x) = ϕ(y) =⇒ ϕ(g(x)) ≤ ϕ(g(y)).

A function f : [0, 1] × E → E is called qmi if x �→ f(t, x) is qmi for
each t ∈ [0, 1].

In the sequel let f : [0, 1] × E → E be continuous and qmi. We
consider the Dirichlet boundary value problem

(1) u′′(t) = f(t, u(t)), t ∈ [0, 1], u(0) = u(1) = 0.
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2. Upper and lower solutions. As usual, functions v, w ∈
C2([0, 1], E) are called lower and upper solutions for problem (1) in
case that

(2) v′′(t) + f(t, v(t)) ≥ 0, t ∈ [0, 1], v(0) ≤ 0, v(1) ≤ 0,

(3) w′′(t) + f(t, w(t)) ≤ 0, t ∈ [0, 1], w(0) ≥ 0, w(1) ≥ 0,

respectively. We will later consider lower and upper solutions such that
v(t) ≤ w(t), t ∈ [0, 1]. If f satisfies certain invariance conditions, (2)
and (3) already imply this property, see, for example, [7, 9, 15].

The use of lower and upper solutions to obtain existence of solutions
of boundary value problems dates back to Perron’s method for the
Dirichlet problem for elliptic equations, and meanwhile hundreds of
papers use lower and upper solutions for all kinds of equations and
boundary conditions. For a survey on the history of this subject we
refer to [4], Chapter 4.3 and the references given there.

If v(t) ≤ w(t) (t ∈ [0, 1]), the question whether (1) has a solution
u ∈ C2([0, 1], E) between v and w is answered positively only in some
special cases. For E = Rn ordered by the natural cone

Knat = {x = (x1, . . . , xn) ∈ Rn : x1, . . . , xn ≥ 0}

this follows by a result of Lakshmikantham and Vatsala [8, Theorem
3.1]. Moreover, many authors proved existence of solutions between
lower and upper solutions for several kinds of boundary value problems
by the method of monotone iteration, see, for example, [1, 2, 8, 11,
13] and the references given there. Roughly speaking, for this method
it is always assumed that the function in the differential equation under
consideration is such that addition of λid leads to an increasing function
for some λ ≥ 0. As it is to our knowledge there are no answers to
the question above for quasimonotone systems which do not satisfy a
condition of this type. In an intermediate step of our considerations we
will also make use of such a condition:

There exists λ ≥ 0 such that

(4) t ∈ [0, 1], v(t) ≤ x ≤ y ≤ w(t) ⇒ f(t, x) + λx ≤ f(t, y) + λy.
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The reason why it is interesting to get rid of (4) is that getting a
monotone mapping by adding λid to a qmi mapping sometimes works
but often fails for two different reasons:

For example, if E = R is ordered by the cone [0,∞) each mapping
g : R → R is qmi, but for example t �→ √|t| + λt is never monotone,
thus f may fail to be sufficiently smooth in its second variable. The
other reason is that the cone may be such that even for linear mappings
adding λid never leads to a monotone mapping. The first example of
this type was given in [16], Beispiel 5, for R3 ordered by the ice-cream
cone Kice = {x ∈ R3 : x3 ≥

√
x2

1 + x2
2}. For a characterization of the

linear qmi mappings with respect to this cone, see [14].

For lower and upper solutions v, w we consider the following addi-
tional properties which are often satisfied in applications:

w′′(t) + f(t, w(t)) � v′′(t) + f(t, v(t)), t ∈ [0, 1],(5)
v(t) � w(t), t ∈ [0, 1].(6)

We will handle the general case under the assumption that one of these
conditions is satisfied. In particular (5) is satisfied in the case that one
of the differential inequalities in (2) or (3) is strict.

Theorem 1. Let f : [0, 1] × E → E be continuous and qmi, and
let v, w be lower and upper solutions for problem (1) with v(t) ≤ w(t)
(t ∈ [0, 1]), satisfying in addition (5) or (6). Then problem (1) has a
solution u ∈ C2([0, 1], E) such that

v(t) ≤ u(t) ≤ w(t), t ∈ [0, 1].

Remark. It would be interesting to know whether Theorem 1 is valid
without the conditions (5) and (6). For the natural cone this is true
by the result of Lakshmikantham and Vatsala mentioned above, and
it is obtained by Nagumo’s cutting off method. This method does not
work for general cones in an obvious manner. Our method to prove
Theorem 1 is an approximation method and needs strict inequalities
since perturbations are used.

For applications it is of interest to have conditions on f such that
lower or upper solutions exist. The following result is just an example
for such a condition in our case.
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Theorem 2. Let f : [0, 1] × E → E be continuous and qmi, and let
there exist p1 or p2 ∈ K0 and real numbers µ0 > 0, c < π2 such that

f(t,−µp1)
µ

≥ −cp1 or
f(t, µp2)

µ
≤ cp2, µ ≥ µ0, t ∈ [0, 1].

Then problem (1) has a lower or upper solution v or w with v(t) � 0
or w(t) � 0 (t ∈ [0, 1]), respectively.

Theorem 2 follows by considering v or w defined by

v(t) = −µ0 cos((π − ε)(t−1/2))
cos((π − ε)/2)

p1, w(t) =
µ0 cos((π − ε)(t−1/2))

cos((π − ε)/2)
p2

(t ∈ [0, 1]), with ε ∈ (0, π) such that (π − ε)2 > c. In particular, (6) is
satisfied in case that p1 and p2 exist. Then (1) is solvable according to
Theorem 1.

3. Preliminaries. For the proof of Theorem 1 we will make use of
the following theorem.

Theorem 3. Let f : [0, 1]×E → E be continuous and qmi, let v, w be
lower and upper solutions for problem (1) with v(t) ≤ w(t) (t ∈ [0, 1])
and for some λ ≥ 0, let (4) be valid. Then problem (1) has a solution
u ∈ C2([0, 1], E) satisfying v(t) ≤ u(t) ≤ w(t) (t ∈ [0, 1]).

This result follows by the method of monotone iteration, as mentioned
above, and we give a sketch of the proof for the convenience of the
reader.

Proof. Set v0 = v and define (vk)∞k=0 recursively by

(7)
{
v′′k+1(t) − λvk+1(t) = −f(t, vk(t)) − λvk(t), t ∈ [0, 1],
vk+1(0) = vk+1(1) = 0.

By means of (4) it is easy to check that vk(t) ≤ vk+1(t) ≤ w(t)
(t ∈ [0, 1]), k ∈ N0. For the details see for example [2]. In particular
(vk)∞k=0 and (v′′k )∞k=0 are bounded, hence (v′k)∞k=0 is bounded, and by
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means of (7) and Ascoli-Arzelà’s theorem {vk : k ∈ N0} is a compact
subset of C2([0, 1], E). Since (vk)∞k=0 is in addition increasing, it is
convergent in C2([0, 1], E). By (7) its limit is a solution of (1).

4. Proof of Theorem 1. Let f, v, w be as in Theorem 1. We first
consider the case that (5) is satisfied. We fix 0 < ε < 1/2. By choosing

qε(t) = −ε(v′′(t) + f(t, v(t)) + w′′(t) + f(t, w(t))), t ∈ [0, 1]

we obtain

v′′(t) + f(t, v(t)) + qε(t) � 0 � w′′(t) + f(t, w(t)) + qε(t), t ∈ [0, 1].

In particular there exists γ > 0 such that

(8) v′′(t) + f(t, v(t)) + qε(t) ≥ γp � −γp ≥ w′′(t) + f(t, w(t)) + qε(t)

(t ∈ [0, 1]), and obviously we can choose γ < ε. Set

D := {(t, x) ∈ [0, 1] × E : v(t) ≤ x ≤ w(t)}.

We first use Friedrichs’ mollifiers to approximate f by a function which
is smooth in its second variable. Let r > 0 be such that

D ⊆ [0, 1] × [−rp, rp].

Since f is uniformly continuous on compact sets there exists 0 < δ < 1
such that

‖f(t, x) − f(t, y)‖ ≤ γ

2
for (t, x), (t, y) ∈ [0, 1] × [−(r + 1)p, (r + 1)p] with ‖x − y‖ ≤ δ. Let
h ∈ C∞(E,R) be such that

h(x) ≥ 0, x ∈ E, supph ⊆ [−δp, δp],
∫

E

h(x) dx = 1,

and let fγ : [0, 1] × E → E be defined as

fγ(t, x) =
∫

E

h(ξ − x)f(t, ξ) dξ =
∫

E

h(ξ)f(t, ξ + x) dξ.
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By standard reasoning (see for example [3]) the function fγ is C∞ in
its second variable, Dxfγ : [0, 1] × E → L(E) is continuous (L(E) the
algebra of linear mappings on E), and

(9) ‖f(t, x) − fγ(t, x)‖ ≤ γ

2

(
⇔ −γ

2
p ≤ f(t, x) − fγ(t, x) ≤ γ

2
p
)

for (t, x) ∈ [0, 1] × [−rp, rp]. Moreover fγ is qmi:

Let (t, x), (t, y) ∈ [0, 1] × E and ϕ ∈ K∗ such that x ≤ y and
ϕ(x) = ϕ(y). Then ξ + x ≤ ξ + y and ϕ(ξ + x) = ϕ(ξ + y) for each
ξ ∈ E. Since h ≥ 0 we get ϕ(fγ(t, x)) ≤ ϕ(fγ(t, y)).

Next, (8) and (9) prove

(10) v′′(t)+fγ(t, v(t))+qε(t) ≥ γ

2
p �−γ

2
p ≥ w′′(t)+fγ(t, w(t))+qε(t)

for t ∈ [0, 1].

Since fγ is qmi each linear mapping y �→ (Dxfγ)(t, x)y is qmi
((t, x) ∈ [0, 1] × E). This is an immediate consequence of the Mean
Value Theorem and the definition of qmi mappings, see for example,
[5]. Since D is compact, (Dxfγ)(D) is a compact subset of L(E). Hence
there exists λ0 ∈ R such that λ0 > r(A) (r(A) the spectral radius of A)
for all A ∈ (Dxfγ)(D). Let K̃ denote the cone of all monotone linear
mappings in L(E), and let L(E) be ordered by this cone. For λ ≥ λ0

and A ∈ (Dxfγ)(D) we consider the resolvent R(λ,A) := (λI − A)−1.
Then it is known, see for example [6], that R(λ,A) ∈ K̃. In particular
we find

(11) λAR(λ,A) + λI = λ2R(λ,A) ≥ 0, A ∈ (Dxfγ)(D),

and

(12) λAR(λ,A) −→ A, λ → ∞

in L(E) uniformly on (Dxfγ)(D). Since K is a solid cone K̃ is a solid
cone too, see [12, Lemma 5]. Fix P ∈ K̃0, and let L(E) be normed by
||| · |||, denoting the Minkowski functional of the order interval [−P, P ].
We have

−|||A|||P ≤ A ≤ |||A|||P, A ∈ L(E).
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Let σ ∈ (0, ε) be such that

(13) σ max{‖Pv(t)‖, ‖Pw(t)‖} ≤ γ

4
(t ∈ [0, 1]).

Choosing λ ≥ λ0 sufficiently big, we obtain by means of (12) that

|||λ(Dxfγ)(t, x)R(λ, (Dxfγ)(t, x)) − (Dxfγ)(t, x)||| ≤ σ, (t, x) ∈ D,

and therefore

λ(Dxfγ)(t, x)R(λ, (Dxfγ)(t, x)) ≤ σP + (Dxfγ)(t, x), (t, x) ∈ D.

According to (11) we obtain

(14) 0 ≤ σP + (Dxfγ)(t, x) + λI, (t, x) ∈ D.

We define Fε,γ,σ : [0, 1] × E → E by

Fε,γ,σ(t, x) = fγ(t, x) + σPx + qε(t).

Note that Fε,γ,σ is continuous and qmi. Now by means of (14) we find

Fε,γ,σ(t, x) + λx ≤ Fε,γ,σ(t, y) + λy (t ∈ [0, 1], v(t) ≤ x ≤ y ≤ w(t)),

which is (4) for Fε,γ,σ instead of f . Moreover, by means of (10) and
(13) we have

v′′(t) + Fε,γ,σ(t, v(t)) ≥ γ

4
p � −γ

4
p ≥ w′′(t) + Fε,γ,σ(t, w(t))

for t ∈ [0, 1].

According to Theorem 3 there is a solution zε,γ,σ ∈ C2([0, 1], E)
between v and w of the boundary value problem

(15) z′′(t) = Fε,γ,σ(t, z(t)) (t ∈ [0, 1]), z(0) = z(1) = 0.

By choosing a sequence (εn)∞n=1 in (0, 1/2) with limit 0 and suitable
sequences λn, σn ∈ (0, εn), n ∈ N, we obtain a sequence of solutions
(zn)∞n=1 of the corresponding boundary value problems in (15), all
between v and w. Moreover

(16) Fεn,γn,σn
(t, x) −→ f(t, x), n → ∞
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uniformly on D. By means of (15), (16) and Ascoli-Arzelà’s theorem
(zn)∞n=1 has a convergent subsequence in C2([0, 1], E) with limit u, say.
We have v(t) ≤ u(t) ≤ w(t) (t ∈ [0, 1]), and u is a solution of problem
(1) by means of (16).

Finally we consider f, v, w under condition (6). Then, for n ∈ N, we
have

v′′(t)+f(t, v(t))+
1
n

(w(t)−v(t)) � 0 ≥ w′′(t)+f(t, w(t)),

t ∈ [0, 1], which means that the case above applies to fn : [0, 1]×E → E,

fn(t, x) = f(t, x) +
1
n

(w(t) − x).

Thus, each boundary value problem

z′′(t) = fn(t, z(t)), t ∈ [0, 1], z(0) = z(1) = 0

has a solution zn between v and w. With the same arguments as above,
the sequence (zn)∞n=1 has a subsequence converging in C2([0, 1], E) to
a solution u of problem (1), with u between v and w.

5. Examples. Consider R3 ordered by the cone Kice in Section 2.
Then

x �−→ g(x) := (2x1x2,−x2
1 + x2

2 + x2
3, 2x2x3)

is qmi, see [5]. Let q : [0, 1] → Kice be defined as q(t) = (−t/2, 0, t), and
consider f : [0, 1] × R3 → R3, f(t, x) = g(x) + q(t). Then Theorem 1
applies to f, v, w with

v(t) = 0, w(t) = (0, 0, t(1 − t)), t ∈ [0, 1],

since

w′′(t) + f(t, w(t)) = (−t/2, (t(1 − t))2,−2 + t) � 0, t ∈ [0, 1].

Hence (1) has a solution u : [0, 1] → Kice.

Next, consider the space E = Sn of all real symmetric n×n matrices
ordered by the cone K of all positive semidefinite matrices. Note that
I ∈ K0. For A,D ∈ Sn, B,C ∈ Rn×n it is known [10] that

X �−→ XAX + BTX + XB + CTXC + D
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is qmi. Hence, for A,D ∈ C([0, 1], Sn), B,C ∈ C([0, 1],Rn×n), we
obtain a continuous and qmi function f : [0, 1] × Sn → Sn,

f(t,X) = XA(t)X + BT (t)X + XB(t) + CT (t)XC(t) + D(t).

Assume that A(t) is negative semidefinite and D(t) is positive semi-
definite, t ∈ [0, 1]. Then V (t) = 0, t ∈ [0, 1], is a lower solution for (1).
In case that

(17) BT (t) + B(t) + CT (t)C(t) ≤ γI (t ∈ [0, 1])

for some γ < π2, we can choose c ∈ (γ, π2) and find µ0 > 0 such that

f(t, µI)
µ

≤ γI +
1
µ
D(t) � cI, µ ≥ µ0, t ∈ [0, 1].

Hence, according to Theorem 2, there is an upper solution W for
problem (1) with W (t) � 0 (t ∈ [0, 1]).

Then according to Theorem 1, there is a solution U ∈ C2([0, 1], Sn)
of problem (1), which is positive semi-definite on [0, 1] since U(t) ≥
V (t) = 0, t ∈ [0, 1].
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