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CONTINUED FRACTIONS AND
RESTRAINED SEQUENCES OF MÖBIUS MAPS

A.F. BEARDON AND L. LORENTZEN

ABSTRACT. Modified approximants of a continued frac-
tion are designed to increase the rate of convergence, and these
led to the notion of restrained sequences of Möbius transfor-
mations. Here we give some analytic and geometric charac-
terizations of restrained sequences and related topics. We also
give an expository account of the use of geometry, including
hyperbolic geometry, in discussing restrained sequences and
continued fractions.

1. Introduction. Originally a continued fraction was considered to
be an expression of the form

(1.1) K(an|bn) =
a1

b1 +
a2

b2 +
a3

b3 + · · ·

where an �= 0 for every n. This continued fraction was said to be
convergent to K if the sequence of truncated (finite) continued fractions
converges to K. It is well known that one can write continued fractions
in terms of Möbius transformations, and this is the point of view we
take here. Indeed, we define a continued fraction to be a sequence Sn

of Möbius transformations of the form

(1.2) Sn = s1 ◦ · · · ◦ sn, sn(z) =
an

bn + z
,

where an �= 0 for every n. The classical concept of convergence is then
expressed by saying that the value of the continued fraction (1.1) is the
limit (when it exists) of the sequence Sn(0). We denote the complex
plane by C, and the extended complex plane by C∞. Throughout this
paper we shall regard Möbius transformations as acting on C∞, and we
reserve the notation an, bn, sn and Sn for the maps in (1.2). Note that
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because the an are nonzero, each sn and each Sn is a (nonconstant)
Möbius transformation.

In 1957 Piranian and Thron proved the following result [9] and
expressed the hope that this might be useful in continued fraction
theory.

Theorem A. Suppose that a sequence Tn of Möbius transformations
converges to the same value, say α, at two distinct points of C∞.
Then with the possible exception of one particular value of z, if Tn(z)
converges then it converges to α.

For the general convergent continued fraction (1.1) we have Sn(∞) =
Sn−1(0) so that Theorem A implies that with possibly one exceptional
value of z, if Sn(z) converges, then it converges to limn→∞ Sn(0). At
first sight this result seems to justify the definition of convergence, but
despite this there is a very good reason why it should be modified. The
problem is that the sequence Sn(z) may converge (to a constant value)
for many z, but perhaps not when z is 0 or ∞. For example, consider
any continued fraction in which the sequence s1, s2, . . . has period 3
and in which s1 ◦ s2 ◦ s3 is a loxodromic transformation g. Let α and
β be the attracting and repelling fixed point, respectively, of g. Then
the sequence gn(z) of iterates of g converges to α on C∞ \ {β}, and
it follows from this that Sn converges locally uniformly to α on the
complement of the finite set A = {β, s−1

1 (β), (s1 ◦ s2)−1(β)}. It seems
beyond question that in this case one should assign the value α to the
continued fraction regardless of whether or not 0, or equivalently, ∞,
lies in A. For an explicit example of such a continued fraction, see
Example 1.1 in [6].

There have been several attempts to obtain a satisfactory definition of
convergence of continued fractions, and for an account of the evolution
of the definition we refer the reader to [11], where the following
definition was proposed. The continued fraction (1.1) is said to converge
strongly to a value α in C if

(i) there are two distinct points u and v in C∞ such that

lim
n→∞Sn(u) = lim

n→∞Sn(v) = α,

and
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(ii) the set {S−1
n (∞) : n = 1, 2, 3, . . . } is not dense in C∞.

Theorem A shows that in these circumstances, and possibly with one
exceptional value of z, limn Sn(z) = α whenever this limit exists. The
following result, [7, Theorem 2.6] and [11], shows exactly where this
limit does exist and also why (ii) is present in this definition.

Theorem B. Suppose that K(an|bn) converges strongly to the com-
plex number α, and let L be the set of limit points, in C∞, of the
sequence S−1

n (∞). Then Sn → α on the complement of L.

Although ∞ is given a special role here, we shall see shortly that it
can be replaced by any point other than α. As the definition of conver-
gence evolved it became clear that it is useful to consider the limiting
behavior of the so-called modified approximants Sn(wn) where the wn

are chosen to suit a given continued fraction (for example, to acceler-
ate its convergence). However, any definition involving the convergence
Sn(wn) has to overcome the fact that for any given continued fraction
the choice of wn is often not at all obvious and that a particularly bad
choice can yield any preassigned limiting behavior of Sn(wn) whatever.
This difficulty was overcome by Jacobsen (now Lorentzen) in 1986 in
[6] in the following way. First, to remove the special role of ∞ we use
the chordal metric

σ(u, v) =
2|u − v|√

1 + |u|2√1 + |v|2

on C∞. We then have the following definition.

Definition 1.1 [7, p. 480]. The continued fraction K(an|bn) in (1.1)
converges generally or is generally convergent, to a value α in C∞ if
there exist two sequences un and vn in C∞, such that

(1.3) lim
n→∞Sn(un) = lim

n→∞Sn(vn) = α and lim inf
n→∞ σ(un, vn) > 0.

Note that this definition no longer gives ∞ a special role. Jacobsen
then verified the first crucial step in any limiting process, namely that
K(an|bn) converges generally to at most one value [6, Theorem 3.3];
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this can be proved using the standard recurrence relations in continued
fraction theory, as in [6], or by using cross ratios. Later Jacobsen and
Thron extended the idea of a generally convergent continued fraction
to an arbitrary sequence of Möbius maps [7] and gave the following
natural generalization of Definition 1.1.

Definition 1.2 [7, p. 142]. A sequence Tn of Möbius maps is restrained
if there are sequences un and vn in C∞ such that

lim
n→∞ σ(Tn(un), Tn(vn)) = 0 and lim inf

n→∞ σ(un, vn) > 0.

It is known that if K(an|bn) converges in the classical sense then it
converges strongly, and if K(an|bn) converges strongly then it converges
generally (in each case, to the same value). Moreover, if the continued
fraction K(an|bn) is (generally, strongly, or classically) convergent, then
the sequence Sn is restrained so that any result on restrained sequences
is automatically applicable to convergent continued fractions. The main
reason for the interest in restrained sequences was that in this case, S−1

n

is also a restrained sequence.

In order to explore further what it means for a sequence Tn to be
restrained, Jacobsen and Thron went on to consider what they called
admissible sequences and strongly exceptional sequences. Here we use
a slightly different terminology, but our definitions agree with those in
[7]. Given two sequences zn and wn, we shall say that zn and wn are

(i) asymptotic if limn→∞ σ(zn, wn) = 0,

and

(ii) separated if lim infn→∞ σ(zn, wn) > 0.

In this terminology, Tn is restrained if and only if there are sequences
un and vn that are separated but that Tn(un) and Tn(vn) are asymp-
totic. There are two other definitions in [7] that are relevant in this
discussion, and these are as follows.

(iii) A sequence un, in C∞, is Tn-admissible if there is a sequence
vn such that un and vn are separated, and Tn(un) and Tn(vn) are
asymptotic (notice that Tn is restrained if and only if there exists a
Tn-admissible sequence).

(iv) A sequence zn is Tn-strongly exceptional if there is an admissible
sequence un such that Tn(zn) and Tn(un) are separated (it is proved
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in Theorem 2.1 [7] that this property does not depend on the choice of
the un).

Jacobsen and Thron observed that the sequence Tn is restrained if
and only if T−1

n is restrained [7, Theorem 2.6], and it follows from this
that if Tn converges generally to a value α, then the set of limit points
of T−1

n (w) is independent of w in C∞ \ {α}. These ideas provide the
following generalization of Theorem B.

Theorem C. A sequence Tn is restrained if and only if there exists
a sequence zn such that σ(Tn(un), Tn(vn)) → 0 whenever the sequences
un and vn are separated from the sequence zn.

Our aim in this paper is to study restrained sequences of Möbius
maps, admissible sequences, and strongly exceptional sequences. The
three definitions of convergence of a continued fraction, the definition
of a restrained sequence, and the definitions of admissible and strongly
exceptional sequences in [7] are all based on a comparison of the two
chordal distances σ(un, vn) and σ(Tn(un), Tn(vn)) for certain sequences
un and vn. Here we shall obtain new, and more detailed, results by
replacing the consideration of sequences with a study of the chordal
distortion of a Möbius map. Explicitly, we shall study the maximum
and minimum values of the function

(u, v) �−→ σ(T (u), T (v))
σ(u, v)

,

where T is a Möbius transformation, on the compact product space
C∞ × C∞, where this is defined when u = v as the chordal distortion

T#(v) = lim
u→v

σ(T (u), T (v))
σ(u, v)

.

We now introduce the functions δ(T ) and ∆(T ) by

(1.4) δ(T ) = inf
u �=v

σ(T (u), T (v))
σ(u, v)

, ∆(T ) = sup
u �=v

σ(T (u), T (v))
σ(u, v)

.

It is easy to see that ∆(T ) is finite; thus, T is a Lipschitz map of (C∞, σ)
onto itself with Lipschitz constant ∆(T ). Later we shall obtain a lot
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more information about the functions δ(T ) and ∆(T ), and our proofs
will be based on this information (which controls the geometrical action
of T ).

Next, for any Möbius map

(1.5) T (z) =
az + b

cz + d
, ad − bc = 1,

we define the norm ‖T‖ of T to be the norm of an associated unimod-
ular matrix for T ; thus,

(1.6) ‖T‖ =
√
|a|2 + |b|2 + |c|2 + |d|2

(it is essential to have ad − bc = 1 here). Again there is much to be
said about how the norm ‖T‖ constrains the geometrical action of T ;
for example, the conditions (i) T is unitary, (ii) T is a chordal isometry
and (iii) ‖T‖ = 2 are equivalent to each other. Later we shall discuss
these ideas in detail.

It will be convenient for us to use µ(E) to denote the chordal area
of a subset E of C∞, so that µ(E) ≤ µ(C∞) = 4π. By a chordal disc
we mean a disc in the metric space (C∞, σ) and the set of these discs
coincides with the set of Euclidean discs and half-planes in C∞.

Finally when we speak of the convergence of Möbius maps, say
Tn → T , we always mean that Tn → T uniformly on C∞ with respect
to the chordal metric. It is well known that Tn → T in this sense if and
only if Tn converges pointwise at three distinct points to three distinct
values, and also if and only if there exists a choice of matrices, say An

for Tn and A for T such that An → A in the usual sense.

We now have all we need to state our main result (although we shall
need much more for its proof). After they introduced the notion of
restrained sequences, the authors of [7] remark, at the end of [7],
that “it is difficult to state a simple necessary condition for Tn to be
restrained.” We shall now characterize restrained sequences in a variety
of ways, and without the use of admissible or strongly exceptional
sequences.

Theorem 1.3. For any sequence Tn of Möbius maps the following
are equivalent:
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(1) Tn is restrained;

(2) δ(Tn) → 0 as n → ∞;

(3) ∆(Tn) → +∞ as n → ∞;

(4) ‖Tn‖ → +∞ as n → ∞;

(5) there is no subsequence of Tn that converges to a Möbius map on
C∞;

(6) there exist unitary Möbius transformations Ai and Bj, i, j =
1, 2, . . . , and a sequence λn where λn → 0 such that for all n,
AnTnBn(z) = λnz;

(7) there exists a sequence Dn of chordal discs such that µ(Dn) → 4π
and µ(Tn(Dn)) → 0;

(8) there exists a sequence D′
n of chordal discs such that µ(D′

n) → 0
and µ(Tn(D′

n)) → 4π;

(9) there exists a sequence D′′
n of chordal discs that µ(D′′

n) → 4π and

sup{T#
n (z) : z ∈ D′′

n} −→ 0.

Theorem 1.3 gives us many ways of looking at restrained sequences
of Möbius maps without any reference to admissible or strongly excep-
tional sequences, although we shall return to the relationship between
these ideas in Sections 5 and 6. Theorem 1.3 gives us a clear, infor-
mal description of the behavior of a restrained sequence Tn. As ‖Tn‖
increases, an increasingly large proportion Dn of the Riemann sphere
C∞ is mapped, and ‘collapsed,’ by the Tn into a decreasingly small
proportion of the sphere and, by taking complements, an increasingly
small part is expanded onto an increasingly large part. This behav-
ior characterizes restrained sequences of Möbius maps; indeed, up to
rotations of the Riemann sphere (before and after applying Tn), a re-
strained sequence is nothing more than a sequence of maps z �→ λnz,
where λn → 0. We also note that the fact that Tn is restrained if and
only if T−1

n is restrained is a direct consequence of Theorem 1.3 because
‖T−1

n ‖ = ‖Tn‖. Moreover, as ‖ST‖ ≤ ‖S‖‖T‖, it is evident that the
Tn is restrained if and only if any sequence STnS−1 of conjugates of
Tn is restrained.

An important point to notice about Theorem 1.3 is that it character-
izes restrained sequences in terms of the Tn without reference to points
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where these maps act. By contrast, Definition 1.2 of a restrained se-
quence is a sequential description of the action of the Möbius maps.
This situation may be compared with the definition of a discrete group
(which is given in terms of the topology on the group) and the defi-
nition of a discontinuous action of the group (which is given in terms
of its action on some particular space). This distinction is important
because Möbius maps act on different spaces (for example, they act
on both C∞ and on hyperbolic 3-space) and any statement involving
their action is dependent on which particular space the group action is
assumed to take place.

Our principal aim in this paper is to exploit the link between geometry
(in particular, hyperbolic geometry) and Möbius transformations in
the hope that this will encourage further applications of these ideas
to the theory of continued fractions. With this in mind, this paper is
partly written in an expository manner, and we are not particularly
interested in the shortest, or the most elementary proofs, unless these
serve our primary aim of illustrating the geometry. We shall develop
the ideas about hyperbolic geometry as we need them, but in a brief,
expository manner, as they are all well known in the theory of discrete
Möbius groups. Finally we emphasize that the action of Möbius maps
on hyperbolic 3-space, which we discuss below, is crucial to a proper
understanding of Möbius maps even if one is only interested in their
action on C∞ (which is the boundary of hyperbolic 3-space).

In Section 2 we state some basic facts about the Euclidean geometry
of the action of a Möbius transformation, and we use these to give our
proof of Theorem 1.3. In Sections 3 and 4 we give proofs of these basic
facts from both an Euclidean and a hyperbolic perspective. In Sections
5 and 6 we review admissible sequences, and strongly exceptional
sequences, respectively, from this new point of view. Finally, in Section
7, we consider an example taken from [7].

2. The proof of Theorem 1.3. Theorem 1.3 is easily derived from
some basic geometric facts about Möbius maps which we now discuss.
First we define the chordal derivative T#(z) of the Möbius map T given
in (1.5) by each of the three equivalent expressions:

T#(z) = lim
w→z

σ(T (w), T (z))
σ(w, z)

(2.1)



MÖBIUS MAPS 449

=
(1 + |z|2)|T ′(z)|

1 + |T (z)|2

=
1 + |z|2

|az + b|2 + |cz + d|2 .

Using these one obtains the formula

(2.2)
σ(T (z), T (w))

σ(z, w)
=

√
T#(z)T#(w)

which follows from the definition of the chordal metric by simple
algebra, and which is the chordal analogue of the familiar Euclidean
formula |T (z) − T (w)|

|z − w| =
√
|T ′(z)||T ′(w)|.

As T#(z) is a continuous function of z with respect to the chordal
metric, the next result follows immediately from (2.2).

Lemma 2.1. For any Möbius map T ,

(2.3) ∆(T ) = max
z∈C∞

T#(z), δ(T ) = min
z∈C∞

T#(z).

Thus δ(T ) and ∆(T ) are attained and the best Lipschitz constant ∆(T )
of T coincides with the maximum infinitesimal distortion of T , namely,
maxz T#(z).

Next we recall from (1.6) the matrix norm ‖T‖ of the Möbius map T
in (1.5). It is easy to see that ‖T‖2 ≥ 2 and that ‖ST‖ ≤ ‖S‖‖T‖. In
fact, the norm of T controls a certain amount of the geometric action
of T , and we can gain some insight into this by looking at unitary maps
(which are the maps T for which ‖T‖ is minimal). A 2 × 2 complex
matrix A is unitary if and only if A−1 = A

T
, and as A is unitary if

and only if −A is, we can talk of a Möbius map being unitary. We now
quote the following result, see [3, pp. 17 18 and p. 63].

Lemma 2.2. For each Möbius map A the following are equivalent:

(1) A is unitary:
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(2) ‖A‖2 = 2;

(3) A is an isometry of C∞ with the chordal metric σ;

(4) A corresponds under stereographic projection to a rotation of the
unit sphere in R3, the Riemann sphere;

(5) if T is any Möbius map, then ‖AT‖ = ‖T‖ = ‖TA‖.

Later we shall see that the values δ(T ) and ∆(T ) are attained by T#

at unique points, say ηT and ξT , respectively (Theorem 2.5), and the
role of these fundamental points is crucial to this paper. To illustrate
this, and to bring these ideas together, we mention the following
result (which will be proved later and which shows where the chordal
distortion of T is small).

Theorem 2.3. Let T be any Möbius transformation that is not
unitary, so that ‖T‖2 �= 2. Then

T#(z) ≤ 4
(‖T‖2 − 2)σ(z, ζT )2

.

Finally we mention three more results, not all of which are needed to
prove Theorem 1.3.

Theorem 2.4. Let T be any Möbius map. Then

(1) ∆(T ) = (‖T‖2 +
√‖T‖4 − 4)/2;

(2) δ(T )∆(T ) = 1;

(3) ∆(T−1) = ∆(T ) and δ(T−1) = δ(T ).

We have already remarked that each Möbius map T is a Lipschitz map
with respect to the chordal metric, and (1) gives the best Lipschitz
constant (which is slightly less than ‖T‖2) explicitly in terms of the
coefficients of T .

We shall say that z and w in C∞ are diametrically opposite if
they correspond under stereographic projection to the endpoints of a
diameter of the Riemann sphere. It is well known that a necessary
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and sufficient condition for z and w to be diametrically opposite is that
zw̄ = −1, and this leads to a simple description of circles in the chordal
metric. First, for any z and a in C we have the identity

|z − a|2 + |āz + 1|2 = (1 + |a|2)(1 + |z|2).

This implies that

σ(z, a)2 =
4|z − a|2

(1 + |a|2)(1 + |z|2) =
4

1 + |(āz + 1)/(z − a)|2 ,

so that the chordal circle with chordal centre a and chordal radius R,
where R ≤ 2, is given by

∣∣∣∣ z − a

āz + 1

∣∣∣∣ =

√
R2

4 − R2
.

Another way to see this is to note that the circle with chordal centre
a and chordal radius R is given by either (and both) of the equivalent
equations

σ(z, a) = R, σ(z,−1/ā) =
√

4 − R2.

In particular, as each great circle has chordal radius
√

2, the stere-
ographic projection of a great circle back into the extended complex
plane is given by ∣∣∣∣ z − a

āz + 1

∣∣∣∣ = 1.

Theorem 2.5. Let T be any Möbius map. Then δ(T ) and ∆(T )
defined by (2.3) are attained at unique points ηT and ζT , respectively,
where ηT and ζT are diametrically opposite each other. Further, the
level curves of T#(z) are circles in the chordal metric whose chordal
centres are at ηT and ζT or, equivalently, the circles in C∞ which have
ηT and ζT as inverse points.

Theorem 2.6. Given any Möbius transformation T , there are
diametrically opposite points z1 and z2 such that T (z1) and T (z2)
are also diametrically opposite points. Further, {z1, z2} is uniquely
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determined by T unless T is unitary (a rotation of the Riemann sphere)
and {z1, z2} = {ηT , ζT }.

We shall temporarily assume the validity of Theorems 2.3, 2.4, 2.5
and 2.6 (all of which are known) and show how Theorem 1.3 follows
directly from these.

Proof of Theorem 1.3. The equivalence of (2), (3) and (4) in Theo-
rem 1.3 follows trivially from (1) and (2) of Theorem 2.4. Next it is
easy to see that (4) and (5) in Theorem 1.3 are equivalent. Indeed,
suppose that (4) fails. Then there is a subsequence of the Tn with
bounded norms, and hence there is a further subsequence, say Tnj

,
which converges uniformly to some Möbius map T on C∞. Thus (5)
fails. Conversely, suppose that (5) fails. Then there is a subsequence,
say Tnj

, that converges uniformly on C∞ to some Möbius map T . This
implies that we can choose matrices An representing Tn and a matrix
A representing T such that Anj

→ A and ‖Tnj
‖ → ‖T‖; thus (4)

fails. So far, we have proved the equivalence of (2), (3), (4) and (5) in
Theorem 1.3.

Now suppose that (6) holds. Then, from Lemma 2.2,

‖Tn‖ = ‖AnTnBn‖ = |λn| + 1/|λn| −→ +∞

because λn → 0 so that (4) holds. Conversely suppose that (4) holds.
Then, by Theorem 2.6, there are unitary maps An and Bn such that
AnTnBn fixes 0 and ∞ and so is of the form z �→ λnz. It is clear that
An and Bn may be chosen so that |λn| ≤ 1, and now (4) implies that
λn → 0 so that (6) holds.

It is clear from the definition of a restrained sequence and (1.4) that
(1) implies (2). Next, suppose that (6) holds and let un = Bn(1) and
vn = Bn(−1). Then σ(un, vn) = σ(1,−1) = 2 and

σ(Tn(un), Tn(vn)) = σ(AnTnBn(1), AnTnBn(−1)) = σ(λn,−λn) → 0

as n → ∞. This shows that (6) implies (1) so that now (1) (6) in
Theorem 1.4 are equivalent to each other.

By taking Dn = D′′
n, it is clear that (9) implies (7). It is also clear

that (7) and (8) are equivalent to each other, with D′
n = C∞ \ Dn.
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Next, as
µ(Tn(D′

n)) ≤ ∆(Tn)µ(D′
n),

we see that (8) implies (3).

To complete the proof it is now sufficient to show that (6) implies (9).
Suppose then that (6) holds. Let Hn = AnTnBn. Then, from (2.1),

|H#
n (z)| =

(1 + |z|2)|λn|
1 + |λnz|2 ≤ (1 + |z|2)|λn|.

Now let Σn be the disc {z : |z| < |λn|−1/3} and put D′′
n = Bn(Σn).

Then, as An and Bn are chordal isometries, it is clear that µ(D′′
n) → 4π

and
sup{|H#

n (z) : z ∈ Σn} −→ 0

as n → ∞. Finally, as T#
n (Bn(z)) = H#

n (z), (9) follows. We have
now completed our proof of Theorem 1.3 subject to proving Theorems
2.3 2.5, for we have not used Theorem 2.6 yet.

3. The Euclidean geometry of Möbius maps. The best
explanation of Theorems 2.3 2.6 comes from studying the action of
Möbius maps on hyperbolic space, but first we need to study their
action in R3. This section contains such a study and includes proofs of
Theorems 2.3 2.6. For more details on Möbius maps, in all dimensions,
we recommend [1, 2, 8] and [10].

So far, we have been considering Möbius maps of the form z �→
(az + b)/(cz + d) acting on C∞. Now it is well known that the group
of Möbius maps is a subgroup, of index two, of the group generated
by reflections in Euclidean lines and circles in C∞. We can replace
reflection in a line L by the reflection in the plane (in R3) through L
and orthogonal to C, and reflection in a circle C by the reflection in a
sphere in R3 of which C is the equator. In this way we see that the
group MC of complex Möbius maps is a subgroup of the Möbius group
M consisting of an even number of reflections in planes or spheres in
R3 ∪ {∞}.

Next we recall the stereographic projection Φ of C∞ onto the bound-
ary ∂B of the unit ball B in R3. The first important fact is that Φ is
an isometry between (C∞, σ) and ∂B with its Euclidean metric, as a
subset of R3; of course, this is nothing more than the definition of the
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chordal metric. The next crucial fact to note is that Φ is actually the
restriction to C∞ of inversion in the sphere, in R3, with centre (0, 0, 1)
and radius

√
2. This means that, instead of restricting our attention to

the action of T on C∞, we can first extend the action to obtain the map
T : R3

∞ → R3
∞, and then consider the conjugate element ΦTΦ−1 (this

is the composition of maps) which also acts on R3
∞, but which now

preserves the unit ball B and its boundary ∂B. We shall denote the
map ΦTΦ−1 by T ∗; we shall use this notation consistently throughout
the paper where, in general, a ∗ refers to the action of a map after it
has been transformed by stereographic projection.

We now recall the geometric description of the action of a Möbius
map in terms of its isometric circle. Isometric circles were introduced
by Ford in [5] for the study of discrete Möbius groups, and since their
introduction they have played a central role in that theory. However, so
far they have been used only a little in the theory of continued fractions.
Let T (z) = (az + b)/(cz + d), where ad − bc = 1 and c �= 0. Then the
isometric circle C(T ) of T is the circle given by

C(T ) = {z : |T ′(z)| = 1} = {z : |cz + d| = 1}.
It is known that the action of T is the inversion in C(T ) followed by
a Euclidean isometry; thus the Euclidean distortion that arises by an
application of T arises only by virtue of the inversion in C(T ), and this
is the real significance of isometric circles.

It is known that Ford’s theory of isometric circles is valid in all
dimensions and it is this that we turn to next. We assume that T ∗

is a Möbius map acting on R3
∞ and that T ∗ preserves the closed unit

ball B. We also assume that T ∗(∞) �= ∞ (as otherwise, T ∗ will not
have an isometric sphere). The isometric sphere Σ(T ∗) of T ∗ is the
unique sphere in R3 on which T ∗ acts as an (infinitesimal) Euclidean
isometry (this is the analogous statement to |T ′(z)| = 1 in C) and it is
known that the action of T ∗ on R3

∞ is an inversion, say IT , in Σ(T ∗)
followed by a Euclidean isometry, say ET , of R3 that fixes the origin
(and which therefore is given by an orthogonal matrix). It follows that
for any u and v in C∞,

σ(T (u), T (v)) = |Φ(T (u)) − Φ(T (v))|
= |T ∗(Φ(u)) − T ∗(Φ(v))|
= |ET IT (Φ(u)) − ET IT (Φ(v))|
= |IT (Φ(u)) − IT (Φ(v))|.
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Explicitly, this gives the chordal distortion of T in C∞ in terms of the
Euclidean distortion of the inversion IT on ∂B. Specifically, it shows
that the change of scale in the chordal metric induced by T at z is the
same as the change of scale in the Euclidean metric induced by IT at
Φ(z). We remark that the Euclidean isometry ET is known (explicitly)
but as it is irrelevant here, we shall not discuss it further.

Next it is known that Σ(T ∗) has centre (T ∗)−1(∞) and is orthogonal
to ∂B. With this available, the following lemma will tell us all we need
to know about the chordal distortion of T on C∞.

Lemma 3.1. Let Σ be a sphere in R3, with centre y∗ and radius R,
that is orthogonal to ∂B, and let I be inversion in Σ. Then for all u∗

and v∗ on ∂B,

(3.1)
|I(u∗) − I(v∗)|

|u∗ − v∗| =
R2

|u∗ − y∗||v∗ − y∗| .

In particular, if T is a Möbius map, and if RT is the radius of the
isometric sphere of T ∗, then

(3.2) T#(z) =
R2

T

|z∗ − (T ∗)−1(∞)|2 .

The proof of (3.1) is trivial because the triangle with ordered triple
of vertices y∗, u∗, v∗ is similar to the triangle with ordered triple of
vertices y∗, I(v∗), I(u∗). Moreover, (3.2) is just (3.1) written in terms
of the action of T in C∞. Although (3.2) is elementary, it is important
because it tells us that the chordal distortion T#(z) of T is a quantity
which is dependent on the action of T ∗ in three-dimensional space, for
example, (T ∗)−1(∞) lies outside the unit ball in R3. It follows from
this that if we work with T#(z) entirely within the context of C∞ we
can at best only obtain estimates of T#(z); if we want precise formulae,
then we have to discuss the action on 3-space.

It is apparent from (3.1) that the maximum distortion of I with
respect to the Euclidean metric on ∂B occurs at the point ζ∗ of ∂B
that is nearest to the centre y∗ of Σ and that the minimum distortion
of I occurs at the point η∗ of ∂B that is farthest from the centre y∗ of
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Σ. If we apply Lemma 3.1 to the case in which Σ = Σ(T ), the isometric
sphere of T ∗, then there are several important deductions that can be
made from th is observation.

First it follows that, for any complex Möbius map T , there is a unique
point, say ζT , in C∞ which maximizes the chordal derivative T# and
a unique point, say ηT , in C∞ which minimizes T# and, moreover, the
images ζ∗T and η∗

T of these points under stereographic projection lie at
the ends of the diameter of B that lies on a ray from the centre of Σ(T ).
As the description of the level curves of T# given in Theorem 2.5 also
follow from this argument, this proves Theorem 2.5.

Next the geometric description of ζ∗T and η∗
T shows that, for any T ,

the inversion IT interchanges the two points ζ∗T and η∗
T . This means

that |y∗ − ζ∗T ||y∗ − η∗
T | = R2, and as (3.1) implies that

∆(T ) =
R2

|y∗ − ζ∗T |2
, δ(T ) =

R2

|y∗ − η∗
T |2

,

we see that δ(T )∆(T ) = 1; thus, Theorem 2.4 (2) holds.

Theorem 2.4 (3) also follows easily. First in the notation above, we
have T ∗ = ET IT . Now this shows that

(T ∗)−1 = (IT )−1(ET )−1 = IT (ET )−1,

and it follows from this that ∆(T ) = ∆(T−1) because both of these
terms are given by the maximal Euclidean distortion of IT on ∂B.
Alternatively, given the Möbius map T , write u = T (z) and v = T (w).
Then

σ(T (z), T (w))
σ(z, w)

=
(

σ(T−1(u), T−1(v))
σ(u, v)

)−1

,

so that in the notation above, ∆(T )δ(T−1) = 1, or equivalently,
δ(T )∆(T−1) = 1. As δ(T )∆(T ) = 1, Theorem 2.4 (3) again follows.
We shall defer the proof of Theorem 2.4 (1) and Theorem 2.3 until
later.

Suppose now that we are given a Möbius transformation T for which
T ∗ is not a rotation of R3, and let ζ∗T and η∗

T be the images of ζT and
ηT under stereographic projection from ∂B to C∞. Then, as we have
just seen, ζ∗T and η∗

T are at the extremities of a diameter of B, they
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are the points on ∂B that are nearest to, and farthest from, the centre
of σ(T ∗), and they are interchanged by IT . As T ∗ = ET IT , and as
ET is a Euclidean isometry (which therefore maps each diameter of B
onto another diameter of B) we have now made the following important
observation.

Lemma 3.2. In the notation above, T ∗ maps the diametrically
opposite points η∗

T and ζ∗T to another pair of diametrically opposite
points.

We are now in a position to prove Theorem 2.6. If T is unitary, then
T ∗ maps every diameter of B onto another diameter of B. If T is not
unitary, then the existence of z1 and z2 follows from Lemma 3.2. To
prove the uniqueness of the zj , write h(z) = −1/z̄. Then z and w are
diametrically opposite if and only if w = h(z); thus, if z1 and z2 satisfy
the conditions of Theorem 2.6, we must have T (h(z1)) = h(T (z1)).
After a little simplification, we find that this is a quadratic equation
with roots z1 and h(z1). Of course, it may happen that all three
coefficients are zero, but in this case one can show, by using Lemma 2.2,
that T is unitary. We omit the details as we do not need them here.

In conclusion, and with the exception of (1) in Theorem 2.4, we have
now proved Theorems 2.4, 2.5 and 2.6.

4. Hyperbolic geometry and Möbius maps. The link between
restrained sequences and hyperbolic geometry has already been consid-
ered in [1], but here, with applications to continued fractions in mind,
we are more concerned with stating our results in terms of the trans-
formations Sn rather than, as in [1], in terms of hyperbolic geometry.
Further, the norm of a Möbius map, which is central to our arguments,
is not explicitly considered in [1], although it does appear implicitly.
The results in [1] hold in all dimensions. In this paper we shall restrict
our attention to maps of the extended complex plane C∞ onto itself,
and hence to three-dimensional hyperbolic geometry. In fact, the work
here is valid, without change, in all dimensions, but the main difficulty
in any exposition of this is the interpretation of the norm ‖T‖ of a
Möbius transformation T in higher dimensions. Although this inter-
pretation is known (the definition involves looking at Möbius maps as
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maps of projective space onto itself; see [4]) we shall not consider it
here. We now start our exposition of hyperbolic geometry.

We recall that each complex Möbius map T acts naturally on the
one-point compactification R3

∞ of Euclidean 3-space R3, and in doing
so it leaves the upper half-space

H = {(x1, x2, x3) ∈ R3 : x3 > 0}

invariant. We now give H the hyperbolic metric ρH derived from the
line element |dx|/x3; then (H, ρH) is a model of hyperbolic 3-space, and
we have the added information that the group MC of complex Möbius
maps is the group of all conformal isometries of (H, ρH). Of course,
C∞ is the boundary of H, and the action of the complex Möbius maps
on C∞ is simply the action of the group of hyperbolic isometries of
hyperbolic 3-space on the boundary of that space. The advantage that
stems from this approach is that the complex Möbius maps now act as
isometries of a complete metric space and the action within this space
has a far richer structure than the action on its boundary. In general,
we obtain much more information about Möbius maps by considering
their action on hyperbolic space than we do by considering their action
on C∞.

There is one basic formula which links the coefficients of the complex
Möbius map T and the action of T as a hyperbolic isometry, and this
is vital in what follows. Let j = (0, 0, 1) (this is the point in H that
corresponds to the point i in the upper half-plane); then

(4.1) ‖T‖2 = 2 cosh ρH(j, T (j)),

see [3, p. 61].

We are now ready for the final part of this geometric discussion. We
have seen that stereographic projection Φ is an isometry of (C∞, σ)
onto ∂B equipped with the Euclidean metric. However, as Φ is in the
full Möbius group acting on R3

∞, it also acts on H and it is not difficult
to see that Φ maps H onto the open unit ball B with Φ(j) = 0, and
that

Φ : (H, ρH) −→ (B, ρB)

is an isometry, where ρB is the standard hyperbolic metric on B is
derived in the usual way from the line element 2|dx|/(1 − |x|2). In
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particular, (4.1) shows that if T is any complex Möbius map, then

(4.2) ‖T‖2 = 2 cosh ρB(0, T ∗(0)),

where, as before, T ∗ represents the action of T on ∂B and, by extension,
on R3

∞. As an illustration of the use of this formula, we note that
it shows that ‖T‖2 ≥ 2 with equality if and only if T ∗(0) = 0. In
particular, the group of Möbius maps T for which T ∗ fixes 0 in B is
the group of Möbius maps T for which ‖T‖2 = 2. This is essentially
Lemma 2.2.

We shall now give two proofs of Theorem 2.4 (1), namely that

(4.3) ∆(T ) = (‖T‖2 +
√
‖T‖4 − 4 )/2.

First, this follows directly from (4.2) and the formula

(4.4) ∆(T ) = sup
z,w∈C∞

σ(T (z), T (w))
σ(z, w)

= exp ρB(0, T ∗(0))

which can be found in [3, p. 43]. However, as our intention here is
to illustrate how to use the geometry, and as we have all of the ideas
to hand, we shall give the details of the proof which is an attractive
interplay between the various geometries.

We have seen that the maximal chordal distortion of T with respect
to σ is the same as the maximal Euclidean distortion of the inversion
IT , and that this occurs at the point ζ∗T of the unit sphere ∂B that
is closest to the centre y∗ of the isometric sphere Σ(T ∗) of T ∗. This
means that

∆(T ) =
R2

(|y∗| − |ζ∗T |)2
=

R2

(|y∗| − 1)2
,

where R is the radius of Σ(T ∗). Now Σ(T ∗) is orthogonal to ∂B, so
that 1 + R2 = |y∗|2, and this shows that

∆(T ) =
|y∗| + 1
|y∗| − 1

.

We know that y∗ = (T ∗)−1(∞) and, because Möbius maps preserve
inverse points, we also have

|y∗| |(T ∗)−1(0)| = |(T ∗)−1(∞)| |(T ∗)−1(0)| = 1;
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thus,

∆(T ) =
1 + |(T ∗)−1(0)|
1 − |(T ∗)−1(0)| .

On the other hand, as T ∗ is a hyperbolic isometry,

ρB(0, T ∗(0)) = ρB(0, (T ∗)−1(0)),

so that |T ∗(0)| = |(T ∗)−1(0)|, and hence

∆(T ) =
1 + |T ∗(0)|
1 − |T ∗(0)| .

Now it is well known that

(4.5) ρB(0, T ∗(0)) = log
1 + |T ∗(0)|
1 − |T ∗(0)| = log ∆(T ),

so finally, we arrive at the formula (4.4) which, with (4.2), is all we
need to prove (4.3).

Finally, we compute the radius of the isometric sphere of T ∗ in terms
of ‖T‖, and this is given in the following lemma.

Lemma 4.1. The radius R of the isometric sphere Σ(T ∗) of T ∗ is
given by

(4.6) R2 =
4

‖T‖2 − 2
.

Proof. From (4.2) and the first part of (4.5), we see that

‖T‖2 =
1 + |T ∗(0)|
1 − |T ∗(0)| +

1 − |T ∗(0)|
1 + |T ∗(0)| = 2

(
1 + |T ∗(0)|2
1 − |T ∗(0)|2

)
.

As |y∗||T ∗(0)| = 1, because (T ∗)−1(∞) and (T ∗)−1(0) are inverse points
with respect to ∂B3, and R2 = |y∗|2 − 1, (4.6) follows easily from this.

Lemma 4.1 gives us further insight into Theorem 1.3. According to
Theorem 1.3, a sequence Tn is restrained if and only if Rn → 0 where
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Rn is the radius of the isometric sphere of T ∗
n . Bearing in mind that the

action of T ∗
n is inversion in its isometric sphere followed by an Euclidean

isometry (of R3) we now see exactly why (7) and (8) in Theorem 1.3
are equivalent to Tn being restrained, and exactly why Theorem 1.3
(9) holds. If z∗ ∈ ∂B3, then |z∗ − ζ∗T | ≤ |z∗ − y∗| so from (3.1), in its
infinitesimal form, and (4.6) we have

T#(v) ≤ 4
(‖T‖2 − 2)|z∗ − ζ∗T |2

=
4

(‖T‖2 − 2)σ(z, ηT )2
.

This proves Theorem 2.3, and it shows where T# is small. However,
as we have remarked above, we lose something by expressing this in
terms of complex numbers because, although the maximal distortion
of T relative to C occurs at ζT , its maximal distortion in R3 occurs at
a point not on the complex plane.

5. Admissible sequences. Throughout this section Tn is a
restrained sequence. By discarding a finite number of the Tn we may
assume that ‖Tn‖2 > 2 and hence that no Tn is unitary. It follows that
there are unique points ζn and ηn in C∞ such that

(5.1) inf
z

T#
n (z) = T#

n (ηn), sup
z

T#
n (z) = T (#)

n (ζn).

This notation will be used throughout this section. We recall that a
sequence un in C∞ is admissible with respect to Tn (more briefly, Tn-
admissible) if and only if there is a sequence vn such that un and vn are
separated, and Tn(un) and Tn(vn) are asymptotic. The following result
characterizes Tn-admissible sequences in terms of the two fundamental
sequences ζn and ηn. Roughly speaking, this shows that the sequence
ηn is the canonical admissible sequence, and that a sequence zn is
admissible if and only if it is sufficiently far away from the sequence ζn.

Theorem 5.1. For any sequences un in C∞, the following are
equivalent:

(1) un is Tn-admissible;

(2) σ(Tn(un), Tn(ηn)) → 0 as n → ∞;

(3) ‖Tn‖2σ(un, ζn) → +∞.
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Corollary 5.2. The sequence ζn is Tn-admissible.

Further,

Corollary 5.3. If zn and wn are any Tn-admissible sequences, then
Tn(zn) and Tn(wn) are asymptotic.

Proof of Theorem 5.1. First, by Theorem 1.3 there are unitary maps
An and Bn such that AnTnBn = Hn, where Hn(z) = λnz and λn → 0.
It is easy to see that un is Tn-admissible if and only if B−1

n (un) is
Hn-admissible. We let zn = B−1

n (un); then (1) is equivalent to

(1′) zn is Hn-admissible.

Next, a simple calculation shows that H#
n takes its minimum value

|λn| at 0, and its maximum value |λ−1
n | at ∞. Because the chordal

derivative satisfies the chain rule, and X#(z) = 1 when X is unitary,
we see that ζn = Bn(∞) and ηn = Bn(0). As Hn(0) = 0, this means
that (2) is equivalent to

(2′) σ(Hn(zn), 0) → 0 as n → ∞.

Finally, as ‖Tn‖ = ‖Hn‖, we also see that (3) is equivalent to

(3′) ‖Hn‖2σ(zn,∞) → +∞.

It therefore suffices to show that (1′), (2′) and (3′) are equivalent to
each other. We shall show that each is equivalent to

(4′) Hn(zn) → 0 (that is, λnzn → 0).

First, by a direct calculation, (2′) is seen to be equivalent to

|λnzn|2
1 + |λnzn|2 −→ 0,

and it is easy to see that this is equivalent to λnzn → 0. Another
calculation shows that (3′) is equivalent to

(
|λn| + 1

|λn|
)

2√
1 + |zn|2

−→ ∞,

and again it is easy to see, after taking reciprocals, that this is
equivalent to λnzn → 0.
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Finally, as Hn → 0 on C, it is clear that if Hn(zn) → 0 then zn

is Hn-admissible. Conversely, if zn is Hn-admissible with zn and wn

separated but Hn(zn) and Hn(wn) asymptotic, then, for sufficiently
large n, one of zn and wn is a fixed chordal distance away from ∞.
Thus, the minimum of σ(Hn(zn), 0) and σ(Hn(wn), 0) tends to zero
and we have proved that (1′) and (4′) are equivalent. The proof is
complete.

6. Strongly exceptional sequences. We continue to make the
same assumptions as in Section 5 that lead to ηn and ζn satisfying
(5.1). We recall that a sequence zn is strongly exceptional with respect
to a sequence Tn, or is Tn-strongly exceptional, if there is an admissible
sequence un such that Tn(zn) and Tn(un) are separated. We prove two
results here; roughly speaking, the first of these implies that ζn is the
canonical strongly exceptional sequence and that any sequence zn is
strongly exceptional if and only if it is sufficiently close to the sequence
ζn.

Theorem 6.1. Let Tn be a restrained sequence of Möbius transfor-
mations.

(i) The sequence ζn is Tn-strongly exceptional.

(ii) A sequence zn in C∞ is Tn-strongly exceptional if and only if
σ(zn, ζn) = O(‖Tn‖−2) as n → ∞ or, equivalently,

(6.1) lim sup
n→∞

‖Tn‖2σ(zn, ζn) < +∞.

(iii) Let zn be a Tn-strongly exceptional sequence. Then un is Tn-
admissible if and only if

(6.2) lim sup
n→∞

‖Tn‖2σ(un, zn) = +∞.

Theorem 6.2. The sequence Tn is restrained if and only if for every
Tn-strongly exceptional sequence zn and every positive δ,

(6.3) lim sup
n→∞

{T#
n (z) : σ(z, zn) ≥ δ} = 0.
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Proof of Theorem 6.1. As Tn is a restrained sequence Tn, we may
discard a finite number of terms and so assume that no Tn is unitary.
We may now write AnTnBn = Hn where An and Bn are unitary,
Hn(z) = λnz and λn → 0 as n → ∞. We recall that ηn = Bn(0),
ζn = Bn(∞) and ‖Tn‖ = ‖Hn‖. It is easy to see that zn is Tn-strongly
exceptional if and only if B−1

n (zn) is Hn-strongly exceptional.

It is sufficient to prove Theorem 6.1 in the case when Tn = Hn. Now
a sequence wn is Hn-strongly exceptional if and only if there exists an
Hn-admissible sequence un with Hn(un) and Hn(wn) separated. Thus
if we use the equivalence of (1′) and (4′) in the proof of Theorem 5.1,
we see that wn is Hn-strongly exceptional if and only if

(6.4) lim inf
n→∞ |λnwn| > 0.

As λn → 0, we see that

‖Hn‖2σ(wn,∞) =
(
|λn| + 1

|λn|
)

2√
1 + |wn|2

=
2

|λn|
√

(1 + |wn|)2
+ o(1),

and hence that (6.1) and (6.4) are equivalent. This proves (ii), and (i)
follows immediately from this.

Finally we prove (iii). As σ is a metric, we have

|σ(un, ζn) − σ(un, zn)| ≤ σ(ζn, zn),

so that

|‖Tn‖2σ(un, ζn) − ‖Tn‖2σ(un, zn) ≤ ‖Tn‖2σ(ζn, zn).

By (6.1), the upper bound here is bounded above by some constant. It
follows that if one of the two sequences

‖Tn‖2σ(un, ζn), ‖Tn‖2σ(un, zn)

converges to +∞ then so does the other, and (iii) now follows directly
from Theorem 5.1. Note that the idea in this proof is simply that a
comparison of un and zn is essentially the same as a comparison of un
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with the canonical sequence ζn providing that zn is sufficiently close to
ζn. This supports the view that we should regard a strongly exceptional
sequence as just a, sufficiently small, perturbation from the canonical
sequence ζn.

Proof of Theorem 6.2. First if we take a positive δ, and let

Ωn = {z ∈ C∞ : σ(z, ζn) ≥ δ},

then it is obvious from Theorem 2.3 that

sup{T#
n (z) : z ∈ Ωn} −→ 0

as n → ∞. It follows directly from this that the same conclusion holds
if we replace ζn by any sequence zn that is asymptotic to ζn, and this
is so for any strongly exceptional sequence. In fact, one can do better
than (6.3) as we have already indicated in Theorem 1.3 (9). Now let

Ω̃n = {z ∈ C∞ : σ(z, ζn) ≥ rn}.

Providing that rn‖Tn‖ → +∞, we obtain

sup{T#
n (z) : z ∈ Ω̃n} −→ 0

as n → ∞. The case when rn = δ is a special case of this, but of course
we could take, say, rn = ‖Tn‖−1/2 so that rn → 0. This now gives a
quantitative version of Theorem 1.3 (9) and, of course, we could replace
ζn by any strongly exceptional sequence in this result too providing that
rn → 0 sufficiently quickly.

7. An example. In (3.1) in [7] the authors consider Möbius maps
of the form

Tn(z) =
{

cn + εn/(z + hn) if hn �= ∞,
εnz + dn if hn = ∞,

and in their Theorem 3.1 they give sufficient conditions for Tn to be
restrained. After taking account of the need to normalize the matrix
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for Tn, so that its determinant is one, we see from Theorem 1.3 that
Tn is restrained if and only if the sequence

{
(1 + |cn|2 + |hn|2 + |cnhn + εn|2)/|εn| if hn �= ∞
(1 + |dn|2 + |εn|2)/|εn| if hn = ∞

converges to +∞ as n → ∞. Note that this holds if εn → 0, and this
is stronger than Theorem 3.1 in [7].
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