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A NEW INTEGRAL REPRESENTATION
OF THE RIEMANN ZETA FUNCTION

WU YUN-FEI

ABSTRACT. The series
∑∞

n=1
(1/nl+1)e−zk/nk

, k is any

positive integer, l is a positive odd number and l ≤ 2k − 1,
is studied, and for each pair (k, l), an integral representation
of the Riemann zeta function is given. For small pairs, this
provides known representations.

1. Introduction. In [2], Tennenbaum discussed the series∑∞
n=1(1/n2)e−z/n and mainly obtained a proof of the functional equa-

tion of the Riemann zeta function. In [6] Zhang studied the se-
ries

∑∞
n=1(1/n2)e−z2/n2

and gave two integral representations and
three different proofs of the functional equation of the Riemann zeta
function. In [4], Wu researched the series

∑∞
n=1(1/nk+1)e−z2k/n2k

and generalized all results in [6]. In [5], Wu discussed the series∑∞
n=1 n2t/(n2k +x2k) and deduced integral representations for the Rie-

mann zeta function which hold for Re (s) > 1. Now in this paper we
study the series

∑∞
n=1(1/nl+1)e−zk/nk

, where k is any positive integer,
l is a positive odd number and l ≤ 2k−1 and imply a new integral repre-
sentation for the Riemann zeta function which holds for −l < Re (s) < 0
or Re (s) > 0, that is, we prove the following theorem
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Theorem. For each pair (k, l) and σ > 0 or −l < σ < 0, we have

(1)

Γ(s)ζ(s) =
sin(π(s + l)/2k)

2 cos(πs/2)

×
∫ +∞

0

[ k−1∑
m=0

(−1)m vk,m,l sinh(xλk,m)−uk,m,l sin(xτk,m)
cosh(xλk,m)−cos(xτk,m)

− δ(s)
sin(πl/2k)

]
xs−1 dx,

where

ϕk,m =
(2m+1)π

2k
, θk,m,l =

(2m+1)(k−l)π
2k

, δ(s)=
{

0 −l<σ<0,
1 σ>0,

λk,m = sin ϕk,m, τk,m = cos ϕk,m,

uk,m,l = sin θk,m,l, vk,m,l = cos θk,m,l,

and k is any positive integer, l is a positive odd number and l ≤ 2k−1.

From the theorem we can see that all results in [2, 4 6] are included
as our special cases. In (1), setting (k, l) = (1, 1), we obtain the well-
known integral representation (see [7] and [3])

Γ(s)ζ(s) =
∫ +∞

0

e−xxs−1

1 − e−x
dx, σ > 1;

setting (k, l) = (2, 1) or (k, l) = (2, 3), we give all results in [6]; setting
k = 2l or 3k = 2l, we deduce all results in [4]; setting σ > 1, we achieve
the integral representations in [5].

2. Proof of theorem. For convenience, first we show four lemmas.
Finally we give the proof of the theorem.

Lemma 1. Let Re (s) = σ > 0, l a positive real number, and

(2) fk,l(z) =
∞∑

n=1

1
nl+1

e−zk/nk

,
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we have

(3) Γ
(

s+l

k

)
ζ(1 − s) = k

∫ +∞

0

[
tlfk,l(t) − 1

k
Γ
(

l

k

)]
ts−1 dt.

Proof. For σ > −l, we see that

Γ
(

s + l

k

)
=

∫ +∞

0

e−xx(s+l)/k−1 dx.

Replacing x by (t/n)k, we obtain

1
n1−s

Γ
(

s + l

k

)
= k

∫ +∞

0

1
nl+1

e−tk/nk

ts+l−1 dt.

Summing over all n ≥ 1, we get

Γ
(

s + l

k

)
ζ(1 − s) = k

∞∑
n=1

∫ +∞

0

1
nl+1

e−tk/nk

ts+l−1 dt.

Since

k

∞∑
n=1

∫ +∞

0

∣∣∣∣ 1
nl+1

e−tk/nk

ts+l−1

∣∣∣∣ dt

≤ k

∞∑
n=1

∫ +∞

0

1
nl+1

e−tk/nk

tσ+l−1 dt

= Γ
(

σ + l

k

)
ζ(1 − σ),

we can interchange the order of summation and integration and obtain

(4) Γ
(

s + l

k

)
ζ(1 − s) = k

∫ +∞

0

fk,l(t)ts+l−1 dt, −l < σ < 0.

It is clear that the series (2) converges absolutely and uniformly in
any bounded domain; therefore, fk,l(z) is an entire function.
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Now we estimate approximate property on the fk,l(t) for t → +∞.
Let gk,l(x) = 1/xl+1e−tk/xk

and, by the Euler-Maclaurin formula, we
deduce

∞∑
n=2

gk,l(n) =
∫ +∞

1

1
xl+1

e−tk/xk

dx+
q∑

m=1

(−1)mBm

m!
g
(m−1)
k,l (x)

∣∣∣+∞

1
+Rq,

where

Rq =
(−1)q+1

q!

∫ +∞

1

Bq(x − [x])g(q)
k,l (x) dx,

Bq(x) is a Bernoulli polynomial, and Bm is a Bernoulli number.
Obviously, we have

g
(m)
k,l (x) =

1
xm+l+1

Pm

(
tk

xk

)
e−tk/xk

,

where Pm is a polynomial of degree m. Because

g
(m)
k,l (x)|+∞

1 = O(tkme−tk

), t → +∞,

|Rq| ≤ c

∫ +∞

1

1
xq+l+1

∣∣∣Pq

(
tk

xk

)∣∣∣e−tk/xk

dx

≤ c1

tq+l

∫ tk

0

u(q+l)/k−1Pq(u)e−u du = O

(
1

tq+l

)

and ∫ +∞

1

1
xl+1

e−tk/xk

dx =
1

ktl

∫ tk

0

y1/k−1e−y dy

=
1

ktl

( ∫ +∞

0

−
∫ +∞

tk

)

=
1

ktl
Γ
(

l

k

)
+ O

(
1
tk

e−tk

)
,

we deduce

(5) fk,l(t) =
1

ktl
Γ
(

l

k

)
+ O

(
1

tq+l

)
, t → +∞,

where q is any positive integer.
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For −l < σ < 0, by (4) and (5) we have

(6)

Γ
(

s+l

k

)
ζ(1−s) = k

∫ 1

0

fk,l(t)ts+l−1 dt

+ k

∫ +∞

1

[
fk,l(t) − 1

ktl
Γ
(

l

k

)]
ts+l−1 dt − 1

s
Γ
(

l

k

)
.

The first integral of the right side in (6) is an analytic function of s in
the half-plane σ > −l. The second integral of right side in (6) is an
entire function of s. Therefore, (6) provides an analytic continuation,
that is, Γ((s+ l)/k)ζ(1−s) is analytic for all σ > −l except for a simple
pole at s = 0 with residue Γ(l/k). Noting that

∫ 1

0

xs−1 dx =
1
s
, σ > 0,

and by (6) we deduce (3).

Lemma 2. Let
(7)

hk,l(x) = k

∫ +∞

0

[
tk−1fk,l(t) − 1

k
Γ
(

l

k

)
tk−l−1

]
sin

(
t

x

)k

dt, x > 0,

we have

(8) hk,l(x) = xk
∞∑

n=1

n2k−l−1

n2k + x2k
− π

2k sin(πl/2k)
xk−l.

Proof. By (7), we have

hk,l(x) = k

∫ +∞

0

tk−1fk,l(t) sin
(

t

x

)k

dt

− Γ
(

l

k

) ∫ +∞

0

tk−l−1 sin
(

t

x

)k

dt
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= −xk

∫ +∞

0

fk,l(t) d cos
(

t

x

)k

− Γ
(

l

k

)
xk−l

∫ +∞

0

tk−l−1 sin tk dt

= xkfk,l(0) − kxk

∫ +∞

0

∞∑
n=1

1
nk+l+1

e−tk/nk

tk−1 cos
(

t

k

)k

dt

− 1
k

xk−lΓ
(

l

k

)
Γ
(

k − l

k

)
sin

π(k − l)
2k

= xkfk,l(0) − kxk

∫ +∞

0

∞∑
n=1

1
nk+l+1

e−tk/nk

tk−1 cos
(

t

k

)k

dt

− πxk−l

2k sin(πl/2k)
.

Since

∞∑
n=1

∫ +∞

0

∣∣∣ 1
nk+l+1

e−tk/nk

ktk−1 cos
(

t

k

)k∣∣∣ dt

≤
∞∑

n=1

1
nk+l+1

∫ +∞

0

e−tk/nk

ktk−1 dt = ζ(l + 1),

we can interchange the order of summation and integration, and obtain

hk,l(x) = xkfk,l(0)−xk
∞∑

n=1

1
nk+l+1

∫ +∞

0

e−u/nk

cos
u

xk
du − πxk−l

2k sin(πl/2k)

= xkfk,l(0) − xk
∞∑

n=1

x2k

nl+1(n2k + x2k)
− πxk−l

2k sin(πl/2k)

= xk
∞∑

n=1

n2k−l−1

n2k + x2k
− πxk−l

2k sin(πl/2k)
.

This proves Lemma 2.
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Lemma 3. Let Sk,a(x) =
∞∑

n=1

(n2a)/(n2k + x2k), 2a = 2k− l− 1, l is

a positive odd number and l ≤ 2k − 1, we have

(9)

Sk,a(x) =
π

2kxlλk,a

+
π

kxl

k−1∑
m=0

(−1)m
∞∑

n=1

e−2nπxλk,m cos(2nπxτk,m + θk,m,l),

1 ≤ a ≤ k − 1,

(10)

Sk,0(x) = − 1
2x2k

+
π

2kx2k−1λk,0

+
π

kx2k−1

k−1∑
m=0

(−1)m
∞∑

n=1

e−2nπxλk,m cos(2nπxτk,m+θk,m,2k−1)

and
(11)

Sk,a(x) =
π

2kxl

k−1∑
m=0

(−1)m vk,m,l sinh(2πxλk,m) − uk,m,l sin(2πxτk,m)
cosh(2πxλk,m) − cos(2πxτk,m)

,

1 ≤ a ≤ k − 1,

(12)

Sk,0(x) = − 1
2x2k

+
π

2kx2k−1

×
k−1∑
m=0

(−1)m vk,m,2k−1 sinh(2πxλk,m)−uk,m,2k−1 sin(2πxτk,m)
cosh(2πxλk,m)−cos(2πxτk,m)

.

Proof. Let

Fk,a(z) =
z2a

z2k + x2k
cotπz;



1184 Y.-F. WU

we consider the contour integral
∫
|z|=R

Fk,a(z) dz, where R is no integer.
By the residue theorem, and letting R → +∞, we achieve

(13)

1
π

∞∑
n=−∞

n2a

n2k+x2k
+

k−1∑
m=0

[Res (Fk,a(z), zm)+Res (Fk,a(z), z̄m)] = 0,

where zm = xe(2m+1)πi/2k, m = 0, 1, . . . , k − 1. Writing zδm
=

zmeδπi/k, 0 < |δ| < 1, noting that

k−1∏
n=0

(zδm
− zn)(zδm

− z̄n)

= 22kxkzk
δm

k−1∏
n=0

sin
(

n

2k
− m + δ

2k

)
π sin

(
n + 1
2k

+
m + δ

2k

)
π

= 22kxkzk
δm

2k−1∏
n=0

sin
(

n

2k
− m + δ

2k

)
π

= −2xkzk
δm

sin(m + δ)π,

we obtain

Res (Fk,a(z), zm) = lim
δ→0

(zδm
− zm)z2a

δm

(−1)m+12xkzk
δm

sin δπ
cot(πzδm

)

= lim
δ→0

(1 − e−δπi/k)z2a−k+1
δm

(−1)m+12xk sin δπ
cot(πzδm

)

=
(−1)mz2a−k+1

m

2kixk
cot(πzm)

and

Res (Fk,a(z), z̄m) =
(−1)m+1z̄2a−k+1

m

2kixk
cot(πz̄m).

Therefore, (13) gives us

Sk,a(x) = − π

2kxk
Re

{
1
i

k−1∑
m=0

(−1)mz2a−k+1
m cot(πzm)

}
, a �= 0.
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Recalling the formula

cotπz = i

(
1 +

2
e2πiz − 1

)
,

we have

(14) Sk,a(x) =
−π

2kxl
Re

{ k−1∑
m=0

(−1)m

× eiθk,m,l

(
1 +

2
e−2πxλk,me2πixτk,m − 1

)}
, a �= 0.

Since

Re
{ k−1∑

m=0

(−1)meiθk,m,l

}

= Re
{

e(2a−k+1)πi/2k
k−1∑
m=0

(−1)me2m(2a−k+1)πi/2k

}

=
1

sin(2a + 1)π/(2k)
=

1
λk,a

=
1

sin(πl/2k)
,

we can expand (14) into the power series

Sk,a(x)

=
π

kxl

[
1

2λk,a
+Re

{ k−1∑
m=0

(−1)meiθk,m,l

∞∑
n=0

e−2nπxλk,m+2nπixτk,m

}]
,

a �= 0.

This implies (9). On the other hand, by (14), we deduce

Sk,a(x) =
π

2kxl
Re

{ k−1∑
m=0

(−1)meiθk,m,l
sinh(2πxλk,m)+i sin(2πxτk,m)
cosh(2πxλk,m)−cos(2πxτk,m)

}
,

a �= 0,

which implies (11). Similar to (9) and (11), we achieve (10) and (12).
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Lemma 4. Let

(15) Ik,l(s) =
∫ +∞

0

hk,l(x)xs−k+l−1 dx,

and, for σ > 0 or −l < σ < 0, we have
(16)

Ik,l(s) =
π

2k

∫ +∞

0

[ k−1∑
m=0

(−1)m

× vk,m,l sinh(2πxλk,m)−uk,m,l sin(2πxτk,m)
cosh(2πxλk,m)−cos(2πxτk,m)

− δ(s)
λk,a

]
xs−1 dx

and

(17) Ik,l(s) =
π

(2π)sk
Γ(s)ζ(s)

k−1∑
m=0

(−1)m cos
[
s

(
π

2
−ϕk,m

)
+ θk,m,l

]
,

where

δ(s) =
{

0 −l < σ < 0,
1 σ > 0.

Proof. First we give that (16) and (17) hold for l < 2k−1. Combining
(15) and (8), we have

(18) Ik,l(s) =
∫ +∞

0

[
Sk,a(x) − π

2kxl sin(πl/2k)

]
xs+l−1 dx.

Obviously, (9) gives us

Sk,a(x) − π

2kxl sin(πl/2k)
= O

(
1
xl

e−2nxλ0

)
, x → +∞;

therefore, Ik,l(s) is an analytic function of s for σ > 0. For σ > 0 and
by (18), we have

(19)
Ik,l(s) =

∫ 1

0

+
∫ +∞

1

=
∫ 1

0

Sk,a(x)xs+l−1 dx − π

2skλk,a

+
∫ +∞

1

[
Sk,a(x) − π

2kλk,axl

]
xs+l−1 dx.
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Similar to (6), we can see that Ik,l(s) is analytic for all σ > −l except
for a simple pole at s = 0 with residue π/2kλk,a. Noting that

π

2kλk,a

∫ +∞

1

xs−1 dx = − π

2skλk,a
, −l < σ < 0,

we have (16). On the other hand, combining (18) and (9), we have

(20)

Ik,l(s)=
π

k

∫ +∞

0

k−1∑
m=0

(−1)m
∞∑

n=1

e−2nπxλk,m cos(2nπxτk,m+θk,m,l)xs−1 dx.

Since, for σ > 1,

∞∑
n=1

∫ +∞

0

∣∣e−2nπxλk,m cos(2nπxτk,m + θk,m,l)xs−1
∣∣ dx

≤
∞∑

n=1

∫ +∞

0

e−2nπxλk,mxσ−1 dx ≤ 1
(2πλk,m)σ

Γ(σ)ζ(σ),

we can calculate the integral in (20) term by term and obtain

Ik,l(s)

=
π

k

k−1∑
m=0

(−1)m
∞∑

n=1

∫ +∞

0

e−2nπxλk,m cos(2nπxτk,m + θk,m,l)xs−1 dx

=
π

k
ζ(s)

k−1∑
m=0

(−1)m

(2πλk,m)s

∫ +∞

0

e−u cos(u cotϕk,m + θk,m,l)us−1 du.

Recalling the formula

∫ +∞

0

ts−1e−(p+iq)t dt =
Γ(s)

(p2 + q2)s/2
e−is arctan(q/p), p, σ > 0,

we have

Ik,l(s) =
π

k(2π)s
Γ(s)ζ(s)

k−1∑
m=0

(−1)m cos
[
s

(
π

2
−ϕk,m

)
+θk,m,l

]
, σ>1.



1188 Y.-F. WU

Obviously, (17) holds for σ > 0 or −l < σ < 0 by analytic continuation.
Similarly, we obtain that (16) and (17) hold for l = 2k−1. This proves
Lemma 4.

Proof of Theorem. Combining (7) and (15), we have

(21)

Ik,l(s)

=
∫ +∞

0

xs−k+l−1 dx

∫ +∞

0

k

[
tk−1fk,l(t)− 1

k
Γ
(

l

k

)
tk−l−1

]
sin

(
t

x

)k

dt

= k

∫ +∞

0

[
tk−1fk,l(t)− 1

k
Γ
(

l

k

)
tk−l−1

]
dt

∫ +∞

0

sin
(

t

x

)k

xs−k+l−1 dx

=
∫ +∞

0

[
tk−1fk,l(t)− 1

k
Γ
(

1
k

)
tk−l−1

]
dt

∫ +∞

0

sin x

x(s+l)/k
dx

=
1
k

Γ
(

s + l

k

)
ζ(1 − s)Γ

(
k − s − l

k

)
sin

π(k − s − l)
2k

=
πζ(1 − s)

2k sin(π(s + l)/2k)
.

Recalling the functional equation

(22) ζ(1 − s) =
2

(2π)s
Γ(s)ζ(s) cos

πs

2
,

and, combining (17), (21) and (22), we have

(23) cos
πs

2
= sin

π(s + l)
2k

k−1∑
m=1

(−1)m cos
[
s

(
π

2
− ϕk,m

)
+ θk,m,l

]
.

By combining (16), (17) and (23), and replacing 2πx by x, we deduce
(1), and the theorem is complete.
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