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PERTURBATIONS OF p-ADIC LINEAR OPERATORS

TAKEMITSU KIYOSAWA

ABSTRACT. In this paper we give the perturbation theory
for p-adic continuous linear operators. In particular, we deal
with the gap between ranges of linear operators, the gap
between kernels of linear operators and the gap of the solution
sets of linear operator equations.

1. Introduction. The problems of perturbations of p-adic linear
operators have been studied by many authors. Many of them dealt
with the perturbations of the index of linear operators, cf. [1, 8, 9].
In this paper we deal with the perturbation of the gaps between the
closed convex subsets which are defined by using the continuous linear
operators with a generalized inverse.

Let E and F be non-Archimedean Banach spaces, let T and A be
continuous linear operators from E to F , and let R(T ) be closed. Let
b and b̄ be fixed elements of R(T ) and R(T + A), respectively, and
set X(T, b) = {x ∈ E : Tx = b}. If T has a generalized inverse
S, then under some conditions we show that the gap between R(T )
and R(T + A) is estimated by ‖S‖ ‖A‖, the gap between Ker (T ) and
Ker (T + A) is estimated by ‖SA‖ and the gap between X(T, b) and
X(T + A, b̄) is also estimated by ‖SA‖.

2. Preliminaries. Throughout, K is a non-Archimedean valued
field that is complete under the metric induced by the nontrivial
valuation | · | and E, F are Banach spaces over K. Let L(E, F ) denote
the set of all continuous linear operators from E to F . For B ∈ L(E, F ),
R(B) and Ker (B) are the range and the kernel of B, respectively. If
M is a linear subspace of E, B | M is the restriction of B to M .
The identity map on E is denoted by IE . A subset V of E is said
to be convex if, for every x, y, z ∈ V and for every α, β, γ ∈ K with
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α + β + γ = 1, αx + βy + γz ∈ V . The set of closed convex subsets of
E is denoted by C(E). A closed linear subspace X of E is said to be
topologically complemented in E if there exists a closed linear subspace
Y such that E = X ⊕ Y . In this case it is known that there exists a
real number t, 0 < t � 1, such that X and Y are t-orthogonal (see [9]).
For more basic facts on non-Archimedean Banach spaces, we refer to
[9].

3. Basic facts on the generalized inverse of a linear operator.
Let L(E, F ) be the set of all continuous linear operators from E to F
and put L(E) = L(E, E). Let T be a given element in L(E, F ).

Throughout this paper for all U ∈ L(E, F ), we take the following
norm:

‖U‖ = sup
{‖Ux‖

‖x‖ : x ∈ E, x �= 0
}

.

Definition. If there exists a linear operator S ∈ L(F, E) such that
TST = T , then S is said to be a pseudoinverse of T . In addition, if the
pseudoinverse S of T satisfies the condition STS = S, then S is called
a generalized inverse of T (see [6]).

In this paper we assume that R(T ) is closed. For the pseudoinverse
linear operator, the following proposition is seen in [1].

Proposition 1. The following statements are equivalent.

(1) There exist linear projections P ∈ L(E) and Q ∈ L(F ) such that

R(P ) = Ker (T ), R(Q) = R(T );

(2) There exist closed subspaces W ⊂ E and Z ⊂ F such that

E = Ker (T ) ⊕ W, F = Z ⊕ R(T );

(3) T has a pseudoinverse.

Suppose that R(T ) and Ker (T ) are complemented, and set E =
Ker (T ) ⊕ W and F = R(T ) ⊕ Z. Then T |W : W → R(T ) is a
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homeomorphism. For any y ∈ F there exist the unique elements
wy ∈ W and zy ∈ Z such that y = T (wy) + zy. Define a linear
operator T+ from F to E by T+(y) = wy. We recall that there exists
a real number t, 0 < t � 1, such that R(T ) and Z are t-orthogonal (see
[9]).

Lemma 2. Suppose that R(T ) and Z are t-orthogonal. Then it holds
that

‖(T |W )−1‖ � ‖T+‖ � 1
t
‖(T |W )−1‖.

Proof. For any y ∈ F , let wy ∈ W and zy ∈ Z be as in the above
discussion. Then it follows that

sup
w∈W\{0}

‖w‖
‖T (w)‖ = sup

w∈W\{0}

‖T+T (w)‖
‖T (w)‖

� sup
y∈F\{0}

‖T+(y)‖
‖y‖

� sup
y∈F\{0}

‖wy‖
t max(‖T (wy)‖, ‖zy‖)

� sup
y∈F\{0}

‖wy‖
t‖T (wy)‖

� 1
t

sup
w∈W\{0}

‖w‖
‖T (w)‖ .

It is easy to see that TT+T = T and T+TT+ = T+. Hence, we have
the following proposition:

Proposition 3. T+ is a generalized inverse of T .

Corollary 4. T has a pseudoinverse if and only if T has a generalized
inverse.

Definition. The operator T+ is said to be the generalized inverse of
T with respect to W and Z.
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Let S be a pseudoinverse of T and put W0 = ST (E) and
Z0 = (IF −TS)(F ). Then, W0 and Z0 are complemented of Ker (T ) =
(IE − ST )(E) and R(T ) = TS(F ), respectively.

Proposition 5. Let S be a generalized inverse of T . Then S consists
of the generalized inverse of T with respect to W0 and Z0.

Proof. Let T+ be a generalized inverse of T with respect to W0 and
Z0. For any y ∈ F ,

y = TS(y) + (IF − TS)(y) = TSTS(y) + (IF − TS)(y),

where STS(y) ∈ W0 and (IF − TS)(y) ∈ Z0. Hence, by the definition
of T+,

T+(y) = STS(y) = S(y).

4. The gaps between closed convex subsets. In order to
continue our discussion, we need the following definitions.

Definition. Let U ∈ L(E, F ). The minimum modulus of U , written
γ(U), is defined by

γ(U) = inf
{ ‖U(x)‖

dist (x, Ker (U))
: x ∈ E

}
,

where 0/0 is defined to be ∞ (see [4, p. 96]).

Definition. For any V, W ∈ C(E), we set

η(V, W ) = sup
{dist (x, W )

‖x‖ : x ∈ V, x �= 0
}
,

and
d(V, W ) = max(η(V, W ), η(W, V )),

where η({0}, W ) is defined to be 0. d(V, W ) is said to be the gap
between V and W (see [5, p. 197]).
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We now give the results on γ(U), η(V, W ) and d(V, W ). The following
lemma is shown in the same way as the proof of real or complex Banach
spaces (see [4, p. 98]).

Lemma 6. Let U ∈ L(E, F ). Then R(U) is closed if and only if
γ(U) > 0.

Proposition 7. Suppose T �= 0. Then

γ(T ) � ‖T‖.

In addition, if T has a pseudoinverse S, then

1
‖S‖ � γ(T ).

Furthermore, if S is a generalized inverse, then

1
‖S‖ � γ(T ) � min

(‖ST‖‖TS‖
‖S‖ , ‖T‖

)
.

Proof. For any x ∈ E \Ker (T ) and for any z ∈ Ker (T ) it holds that
‖T (x)‖ � ‖T‖‖x − z‖. Hence ‖T (x)‖/dist (x, Ker (T )) ≤ ‖T‖. From
this it follows that γ(T ) � ‖T‖. Next, for any x ∈ E, it holds

dist (x, Ker (T )) � ‖x − (IE − ST )(x)‖ � ‖S‖‖T (x)‖.

Hence 1/‖S‖ � γ(T ). Furthermore, for any y ∈ F , it follows that

‖TS(y)‖ � γ(T )dist (S(y), Ker (T ))

� γ(T )
‖STS(y)‖
‖ST‖ = γ(T )

‖S(y)‖
‖ST‖ .

Hence we have that ‖ST‖‖TS‖ � γ(T )‖S‖. Thus we complete the
proof.

For closed convex subsets of E, the following lemma holds:
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Lemma 8. Let V, W ∈ C(E).

(1) 0 � η(V, W ) � 1.

(2) V ⊂ W if and only if η(V, W ) = 0.

(3) If V and W are closed linear subspaces in E such that W ⊂ V ,
V �= W , then η(V, W ) = 1.

Proof. (1) and (2) are trivial. (3) For every t, 0 < t < 1, there exists
an x0 ∈ V \ W such that dist (x0, W ) � t‖x0‖ (see [9, p. 66]). Hence
η(V, W ) � dist (x0, W )/‖x0‖ � t. Since t is arbitrary, we conclude
η(V, W ) = 1.

We now show the following theorem.

Theorem 9. Let U1, U2 ∈ L(E, F ) with closed ranges. Then we have

(1) d(R(U1), R(U2)) � ‖U1 − U2‖max[(1/γ(U1)), (1/γ(U2))].

(2) d(Ker (U1), Ker (U2)) � ‖U1 − U2‖max[(1/γ(U1)), (1/γ(U2))].

Proof. (1) If either U1 = 0 or U2 = 0, the proof is trivial. So we
may assume that Ui �= 0, i = 1, 2. Recall that γ(Ui) > 0, i = 1, 2. Let
y ∈ R(U1), y �= 0, and let y = U1(x), x ∈ E. For any z ∈ Ker (U1),

dist (y, R(U2)) � ‖y − U2(x − z)‖
= ‖U1(x − z) − U2(x − z)‖
� ‖U1 − U2‖‖x − z‖.

Hence, dist (y, R(U2)) � ‖U1 − U2‖dist (x, Ker (U1)). Then it follows
that

dist (y, R(U2))
‖y‖ � ‖U1 − U2‖ dist (x, Ker (U1))

‖y‖ � ‖U1 − U2‖
γ(U1)

.

Thus we obtain

η(R(U1), R(U2)) � ‖U1 − U2‖
γ(U1)

.

Similarly,

η(R(U2), R(U1)) � ‖U1 − U2‖
γ(U2)

.
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Thus the proof of (1) is complete.

(2) If either Ker (U1) = {0} or Ker (U2) = {0}, the proof is trivial.
So we may assume that Ker (Ui) �= 0, i = 1, 2. For each x ∈ Ker (U1),
x �= 0,

γ(U2)dist (x, Ker (U2)) � ‖U2(x)‖ = ‖(U2 − U1)(x)‖ � ‖U2 − U1‖‖x‖.

Hence
dist (x, Ker (U2))

‖x‖ � ‖U2 − U1‖
γ(U2)

.

It follows that

η(Ker (U1), Ker (U2)) � ‖U2 − U1‖
γ(U2)

.

Similarly,

η(Ker (U2), Ker (U1)) � ‖U1 − U2‖
γ(U1)

.

Thus we can complete the proof of (2).

5. Perturbations of linear operators. In this section we need
the following lemma.

Lemma 10. Let B ∈ L(E) be such that ‖B‖ < 1. Then (IE + B)−1

exists and belongs to L(E). Furthermore, ‖(IE + B)−1‖ = 1.

From now on, given A ∈ L(E, F ), set T̄ = T + A.

Lemma 11. Suppose that T has a generalized inverse S such that
either ‖SA‖ < 1 or ‖AS‖ < 1 and such that either dim Ker (T̄ ) =
dim Ker (T ) < ∞ or R(T̄ ) ∩ Ker (S) = {0}. Then

(IF + AS)−1T̄ (Ker (T )) ⊂ R(T ).

Proof. At first we remark that, by the assumption
∑∞

k=0(−SA)k and∑∞
k=0(−AS)k converge, so (IE + SA)−1 and (IF + AS)−1 exist and



998 T. KIYOSAWA

belong to L(E) and L(F ), respectively. Set U = (IE +SA)−1(IE−ST ).
We now show that R(U) = Ker (T̄ ). Since U ∈ L(E) is a projection,
Ker (T̄ ) ⊂ R(U). If dim Ker (T̄ ) = dim Ker (T ) < ∞, then

dim R(U) = dim (IE − ST ) = dim Ker (T̄ ).

So Ker (T̄ ) = R(U). Further, if R(T̄ )∩Ker (S) = {0}, then it holds that
TST̄ (IE +SA)−1 = T . Hence TST̄U = T (IE −ST ) = 0. Since STS =
S, ST̄U = 0. It follows that, for any x ∈ E, T̄U(x) ∈ R(T̄ ) ∩ Ker (S).
Hence, T̄U(x) = 0. From this, R(U) ⊂ Ker (T̄ ). Thus we showed that
R(U) = Ker (T̄ ). Since it holds that S(IF + AS)−1 = (IE + SA)−1S
and (IF + AS)−1A = A(IE + SA)−1, we have

(IF − TS)(IF + AS)−1T̄ (IE − ST ) = 0.

It follows that, for any x ∈ Ker (T ),

(IF + AS)−1T̄ (x) = TS(IF + AS)−1T̄ (x) ∈ R(T ).

This completes the proof.

Theorem 12. Suppose that T has a generalized inverse S such that
either ‖SA‖ < 1 or ‖AS‖ < 1 and such that either dim Ker (T̄ ) =
dim Ker (T ) < ∞ or R(T̄ ) ∩ Ker (S) = {0}. Set S̄ = (IE + SA)−1S(=
S(IF + AS)−1). Then S̄ is a generalized inverse of T̄ such that
‖S̄‖ = ‖S‖, ‖S̄A‖ = ‖SA‖ and ‖AS̄‖ = ‖AS‖.

Proof. At first we obtain

T̄ − T̄ S̄T̄ = (T + A) − (T + A)S̄(T + A)
= {(IF + AS) − (T + A)S}(IF + AS)−1(T + A)
= (IF − TS)(IF + AS)−1(T + A)
= (IF − TS)(IF + AS)−1{(IF + AS)T + A(IE − ST )}
= (IF − TS)T + (IF − TS)(IF + AS)−1A(IE − ST )
= 0 (by Lemma 11).

Next,

S̄T̄ S̄ − S̄ = S(IF + AS)−1{(T + A)S(IF + AS)−1 − IF }
= S(IF + AS)−1[{(TS− IF ) + (IF + AS)}(IF + AS)−1− IF ]
= S(IF + AS)−1(TS − IF )(IF + AS)−1

= 0
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for Ker (S̄) = Ker (S) and (TS − IF )(IF + AS)−1(F ) ⊂ Ker (S). Thus
we showed that S̄ is a generalized inverse of T̄ . Furthermore, we have

‖S̄‖ = ‖(IE + SA)−1S‖ =
∥∥∥∥
( ∞∑

k=0

(−SA)k

)
S

∥∥∥∥ = ‖S‖,
or

‖S̄‖ = ‖S(IF + AS)−1‖ =
∥∥∥∥S

∞∑
k=0

(−AS)k

∥∥∥∥ = ‖S‖.

Similarly, we can show that ‖S̄A‖ = ‖SA‖ and ‖AS̄‖ = ‖AS‖.

Lemma 13. Suppose that T has a generalized inverse S such that
either ‖SA‖ < 1 or ‖AS‖ < 1 and such that either dim Ker (T̄ ) =
dim Ker (T ) < ∞ or R(T̄ ) ∩ Ker (S) = {0}. If A �= 0, then T̄ �= 0 and
S̄ �= 0.

Proof. Suppose that T̄ = 0. Then ‖A‖ = ‖ASA‖. Since A �= 0, it
follows that 1 � ‖SA‖ and 1 � ‖AS‖. This contradicts the assumption.

Lemma 14. (1) Suppose that T has a pseudoinverse S with ‖SA‖ <
1. If Ker (T ) = {0}, then Ker (T̄ ) = {0}.

(2) Suppose that T has a generalized inverse S such that ‖SA‖ < 1
and R(T̄ ) ∩ Ker (S) = {0}. Then Ker (T ) = {0} if and only if
Ker (T̄ ) = {0}.

Proof. (1) Suppose that Ker (T̄ ) �= {0} and let u ∈ Ker (T̄ ) with
u �= 0. Since u − ST (u) ∈ Ker (T ), by the assumption it follows that
u + SA(u) = 0. Hence we have ‖SA‖ � 1. This contradicts ‖SA‖ < 1.

(2) By Theorem 12, S̄ is a generalized inverse of T̄ . Suppose that
Ker (T̄ ) = {0}, and let v ∈ Ker (T ). Then v − S̄A(v) = 0. If v �= 0,
then 1 � ‖S̄A‖ = ‖SA‖. This contradicts ‖SA‖ < 1 and the proof is
complete.

Corollary 15. Suppose that T has a generalized inverse S such that
either dim Ker (T̄ ) = dim Ker (T ) < ∞ or R(T̄ ) ∩ Ker (S) = {0}.
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(1) If either ‖SA‖ < 1 or ‖AS‖ < 1, then d(R(T ), R(T̄ )) � ‖S‖‖A‖.
(2) If ‖SA‖ < 1, then d(Ker (T ), Ker (T̄ )) � ‖SA‖.

Proof. We may assume that A �= 0. From Theorem 12 and Lemma 13,
we note that T, S, T̄ and S̄ are not 0.

(1) Let w ∈ R(T̄ ), w �= 0, w = limwn and wn = T̄ (zn), zn ∈ E,
n = 1, 2, . . . . For all z ∈ Ker (T̄ ), it holds

dist (w, R(T )) � ‖w − T (zn− z)‖ � max(‖w− wn‖, ‖wn − T (zn− z)‖)
� max(‖w − wn‖, ‖A‖‖zn − z‖), n = 1, 2, . . . .

It follows that

dist (w, R(T )) � max(‖w − wn‖, ‖A‖dist (zn, Ker (T̄ ))), n = 1, 2, . . . .

For a sufficiently large number n, we obtain

dist (zn, Ker (T̄ )) � ‖zn − (IE − S̄T̄ )(zn)‖
= ‖S̄T̄ (zn)‖ � ‖S̄‖T̄ (zn)‖ = ‖S̄‖‖w‖

and
‖w − wn‖ � ‖A‖‖S̄‖‖w‖.

Hence we have
dist (w, R(T )) � ‖A‖‖S̄‖‖w‖.

Thus we have that

η(R(T̄ ), R(T )) � ‖A‖‖S̄‖ = ‖A‖‖S‖.

Next let y ∈ R(T ), y �= 0. For an x ∈ E with y = T (x), we have that

dist (x, Ker (T )) � ‖x − (IE − ST )(x)‖ � ‖ST (x)‖ � ‖S‖‖y‖.

Since, for all z ∈ Ker (T ),

dist (y, R(T̄ )) � ‖y − T̄ (x − z)‖ = ‖A(x − z)‖ � ‖A‖‖x − z‖.

Hence

dist (y, R(T̄ )) � ‖A‖dist (x, Ker (T )) � ‖A‖‖S‖‖y‖.
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Therefore we obtain that

η(R(T ), R(T̄ )) � ‖A‖‖S‖.

Thus we can conclude that

d(R(T ), R(T̄ )) � ‖A‖‖S‖.

(2) By Lemma 14 we may assume that Ker (T ) �= {0} and Ker (T̄ ) �=
{0}. At first, we show that η(Ker (T̄ ), Ker (T )) � ‖SA‖. Let u ∈
Ker (T̄ ), u �= 0. Then we have

dist (u, Ker (T ))� ‖u−(IE−ST )(u)‖=‖ST (u)‖=‖SA(u)‖ � ‖SA‖‖u‖.

It follows from this that

η(Ker (T̄ ), Ker (T )) � ‖SA‖.

In a similar fashion, we can obtain that

η(Ker (T ), Ker (T̄ )) � ‖S̄A‖ = ‖SA‖.

Thus we can conclude that

d(Ker (T ), Ker (T̄ )) � ‖SA‖.

From Lemma 8 and Corollary 15, we have the following corollary.

Corollary 16. Suppose that T has a generalized inverse S such that
‖S‖‖A‖ < 1 and such that either dim Ker (T̄ ) = dim Ker (T ) < ∞ or
R(T̄ )∩Ker (S) = {0}. Then T is surjective if and only if R(T̄ ) is dense
in F . In addition, if R(T̄ ) is closed, then T is bijective if and only if
T̄ is bijective.

Remark. The following example indicates that in the conclusion of
Corollary 15, ‖S‖‖A‖ cannot be replaced by ‖SA‖.

Let E = F = K2, and let α ∈ K with 0 < |α| < 1. Also,
let T (x1, x2) = (0, α(x1 + x2)), S(x1, x2) = (0, αx1 + α−1x2) and
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A(x1, x2) = (α2(x1 +x2), 0). Then T, S, A and T̄ satisfy the conditions
of Corollary 15. We also have

η(R(T ), R(T̄ )) = η(R(T̄ ), R(T )) = |α|,
so

d(R(T ), R(T̄ )) = |α|.
Further, we have ‖SA‖ � |α|3.

6. Perturbations for Tx = b. In this section let b and b̄, b �= 0,
b̄ �= 0, be fixed elements in R(T ) and R(T̄ ), respectively. We consider
the gap of the sets of solutions of operator equations T (x) = b and
T̄ (x) = b̄. Set

X(T, b) = {x ∈ E : T (x) = b},
X(T̄ , b̄) = {x ∈ E : T̄ (x) = b̄}.

It is clear that X(T, b), X(T̄ , b̄) ∈ C(E).

Proposition 17. Suppose that T has a pseudoinverse S such that
either ‖SA‖ < 1 or ‖AS‖ < 1. Then, for every x̄ ∈ X(T̄ , b̄), there
exists an x ∈ X(T, b) such that

‖x̄ − x‖
‖x‖ � ‖S‖‖T‖max

(‖b̄ − b‖
‖b‖ ,

‖A‖
‖T‖

)
.

Proof. Let W = ST (E). Since Ker (T ) = (IE − ST )(E), E =
Ker (T ) ⊕ W . Set x = S(b) + (IE − ST )(x̄ − S(b)). Then it holds
T (x) = TS(b) = b and ST (x̄ − x) = x̄ − x. Since (T + A)(x̄ − x) =
b̄ − b − A(x), it follows that (IE + SA)(x̄ − x) = S(b̄ − b − A(x)) and
x̄ − x = (IE + SA)−1S(b̄ − b − A(x)). Thus we have

‖x̄ − x‖
‖x‖ � ‖S‖‖T‖max

(‖b̄ − b‖
‖b‖ ,

‖A‖
‖T‖

)
.

Corollary 18. Suppose that T has a pseudoinverse S with
‖S‖‖A‖ < 1 and let ‖b‖ = ‖b̄‖. If ‖b̄ − b‖/‖b‖ � ‖A‖/‖T‖, then

η(X(T̄ , b̄), X(T, b)) � ‖S‖‖A‖.
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Proof. By Proposition 17, there exists an x ∈ X(T, b) such that
‖x̄ − x‖/‖x‖ � ‖S‖‖A‖ < 1. It follows from this that ‖x̄‖ = ‖x‖, and
the proof is complete.

Remark. Since T �= 0 and S is a pseudoinverse of T , we have
1 � ‖ST‖ � ‖S‖‖T‖. From the condition ‖S‖‖A‖ < 1, it follows that
‖A‖/‖T‖ < 1. Hence in Corollary 18 we need the condition ‖b‖ = ‖b̄‖.

Corollary 19. Suppose that T has a pseudoinverse S with ‖SA‖ < 1.
If b̄ − b ∈ Ker (S), then

η(X(T̄ , b̄), X(T, b)) � ‖SA‖.

Proof. Since b̄ − b ∈ Ker (S), from the proof of Proposition 17 it
follows that

‖x̄ − x‖ ≤ ‖SA(x)‖ � ‖SA‖‖x‖.
Hence ‖x̄‖ = ‖x‖, for ‖SA‖ < 1. This implies that

η(X(T̄ , b̄), X(T, b)) � ‖SA‖.

Theorem 20. Suppose that T has a generalized inverse S such that
‖S‖‖A‖ < 1 and such that either dim Ker (T̄ ) = dim Ker (T ) < ∞ or
R(T̄ ) ∩ Ker (S) = {0}. Assume that ‖b‖ = ‖b̄‖. If ‖b̄ − b‖/‖b‖ �
‖A‖/‖T‖, then d(X(T, b), X(T̄ , b̄)) � ‖S‖‖A‖.

Proof. By Theorem 12 there exists a generalized inverse S̄ of T̄
such that ‖S‖ = ‖S̄‖. Aslo, from the above remark, it follows that
‖A‖ < ‖T‖. Therefore, ‖T‖ = ‖T̄‖. Thus, from the assumption, we
have ‖b− b̄‖/‖b̄‖ � ‖A‖/‖T̄‖ and ‖S̄‖‖A‖ < 1. Hence by Corollary 18,
it holds that η(X(T, b), X(T̄ , b̄)) � ‖S̄‖‖A‖ = ‖S‖‖A‖. By combining
Corollary 18, we conclude that d(X(T, b), X(T̄ , b̄)) � ‖S‖‖A‖.

Theorem 21. Suppose that T has a generalized inverse S such that
‖SA‖ < 1 and such that either dim Ker (T̄ ) = dim Ker (T ) < ∞ or
R(T̄ ) ∩ Ker (S) = {0}. If b̄ − b ∈ Ker (S), then

d(X(T, b), X(T̄ , b̄)) � ‖SA‖.
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Proof. By Theorem 12, there exists a generalized inverse S̄ of T̄ such
that ‖S‖ = ‖S̄‖, ‖SA‖ = ‖S̄A‖ and Ker (S) = Ker (S̄). Hence, by
Corollary 19, it holds that η(X(T, b), X(T̄ , b̄)) � ‖S̄A‖ = ‖SA‖. By
combining Corollary 19, we can complete the proof.

Example. Let α, E, F, T and A be as in the remark in Section 5.

(1) Let b = (0, α+α2), b̄ = (α2, α) and S(x1, x2) = (αx1 +α−1x2, 0).
Then b, b̄ and S satisfy the hypotheses of Theorem 20. We can also
see that d(X(T, b), X(T̄ , b̄)) = ‖S‖‖A‖ = |α|. Further, we can see that
d(X(T, b), X(T̄ , b̄)) ≥ ‖SA‖ = |α|3.

(2) Let b = (0, α + 1), b̄ = (α, 1) and S(x1, x2) = (α−1(x1 + x2), 0).
Then b, b̄ and S satisfy the hypotheses of Theorem 21. Also we see that
d(X(T, b), X(T̄ , b̄)) = ‖SA‖ = |α|.
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