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RELATIONS FOR IMAGINARY PARTS
OF ZEROS OF ENTIRE FUNCTIONS

M.I. GIL’

ABSTRACT. Finite order entire functions are considered.
New relations for the imaginary parts of the zeros are de-
rived. They particularly generalize the Cartwright-Levinson
theorem. By virtue of these relations, under some restriction,
the Hadamard theorem on the convergence exponent of the
zeros is improved.

1. The main result. Consider the finite order entire function

(1.1) f(λ) =
∞∑

k=0

akλ
k

(k!)γ
, λ ∈ C, a0 = 1, γ > 0,

with complex, in general, coefficients. Assume that

(1.2) w(f) ≡
∞∑

k=1

|ak|2 <∞

and put

ψf ≡
[
|Im a1|2 +

∞∑
k=2

|ak|2
]1/2

.

Everywhere below {zk(f)}m
k=1, m ≤ ∞, is the set of all the zeros of

f taken with their multiplicities. In this section it is assumed that the
zeros are numerated in the following way

∣∣∣∣Im 1
zk(f)

∣∣∣∣ ≥
∣∣∣∣Im 1

zk+1(f)

∣∣∣∣, k = 1, . . . ,m− 1.

In the sequel, if m <∞, then we take |zk(f)|−1 = 0 for k > m.
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946 M.I. GIL’

Since a0 = 1, we have zk(f) �= 0, k = 1, 2, . . . . The aim of the present
paper is to prove the following

Theorem 1.1. Under condition (1.2), the following inequalities are
valid:

(1.3)
j∑

k=1

∣∣∣∣Im 1
zk(f)

∣∣∣∣ ≤ ψf +
j∑

k=1

(k + 1)−γ , j = 1, 2, . . . .

The proof of this theorem is given in the next section. As is shown
below, under some restrictions, Theorem 1.1 with j = ∞ particularly
generalizes the Cartwright-Levinson theorem, cf. [5, p. 126]. Moreover,
by virtue of Theorem 1.1 under some restrictions we improve the
Hadamard theorem [5, p. 18].

Furthermore, put ωI(f) = ψf + 2−γ . The well-known Lemma II.3.4
[4] and Theorem 1.1 imply

Corollary 1.2. Let φ(t), 0 ≤ t <∞, be a convex continuous scalar-
valued function, such that φ(0) = 0. Then, under condition (1.2), the
inequalities

j∑
k=1

φ

(∣∣∣Im 1
zk(f)

∣∣∣
)

≤ φ(ωI(f)) +
j∑

k=2

φ((k + 1)−γ), j = 2, 3, . . . ,

are valid. In particular, for any real r ≥ 1,

(1.4)

j∑
k=1

∣∣∣∣Im 1
zk(f)

∣∣∣∣
r

≤ ωr
I (f) +

j∑
k=2

(k + 1)−γr

= (ψf + 2−γ)r +
j∑

k=2

(k + 1)−rγ ,

j = 2, 3, . . . .

Assume that

(1.5) rγ > 1 and r ≥ 1.
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Then the series

∞∑
k=2

(k + 1)−rγ = ζ(γr) − 1 − 2−γr

converges. Here ζ(.) is the Riemann zeta-function. Now relation (1.4)
yields

Corollary 1.3. Under conditions (1.2) and (1.5), the inequality

(1.6)
∞∑

k=1

∣∣∣∣Im 1
zk(f)

∣∣∣∣
r

≤ (2−γ + ψf )r + ζ(γr) − 1 − 2−γr

is valid. In particular, if γ > 1, then

(1.7)
∞∑

k=1

∣∣∣∣Im 1
zk(f)

∣∣∣∣ ≤ ψf + ζ(γ) − 1.

Consider now a positive scalar-valued function Φ(t1, t2, . . . , tj) de-
fined on the domain

−∞ < tj ≤ tj−1 ≤ t2 ≤ t1 <∞

and satisfying

(1.8)
∂Φ
∂t1

>
∂Φ
∂t2

> · · · > ∂Φ
∂tj

> 0 for t1 > t2 > · · · > tj .

Then Theorem 1.1 and the well-known Lemma II.3.5 [4] yield

Corollary 1.4. Under conditions (1.2) and (1.8), for any natural
j ≥ 1, the inequality

Φ
(∣∣∣Im 1

z1(f)

∣∣∣, ∣∣∣Im 1
z2(f)

∣∣∣, . . . , ∣∣∣Im 1
zj(f)

∣∣∣
)

≤ Φ(ωI(f), 3−γ , . . . , (1+j)−γ

)
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is valid. In particular, let {dk}∞k=1 be a decreasing sequence of positive
numbers. Then

j∑
k=1

dk

∣∣∣Im 1
zk(f)

∣∣∣ ≤ d1ψf +
j∑

k=1

dk(k + 1)−γ , j = 1, 2, . . . .

For instance, let 0 < γ < 1. Take dk = (k + 1)−(1+ε−γ) with an
arbitrary positive ε. Then

j∑
k=1

(k + 1)−(1+ε−γ)
∣∣∣Im 1

zk(f)

∣∣∣ ≤ 2−(1+ε−γ)ψf +
j∑

k=1

(k + 1)−1−ε,

j = 1, 2, . . . .

Hence,

∞∑
k=1

(k + 1)−(1+ε−γ)|Im z−1
k (f)| ≤ 2−(1+ε−γ)ψf + ζ(1 + ε) − 1.

Let f belong to the Cartwright class C, i.e., it is of exponential type
and satisfies the property

∫ ∞

−∞

log+ |f(t)|
1 + t2

dt <∞.

Recall that if f ∈ C, then the Cartwright-Levinson theorem asserts,
among other results, that the series in the lefthand part of (1.7) con-
verges. At the same time Corollary 1.3 under more general assumptions
not only asserts the convergence of that series but gives us the estimate
for the sum of imaginary parts of the zeros.

2. Proof of Theorem 1.1. To prove Theorem 1.1, for a natural
n ≥ 2, consider the polynomial

(2.1) pn(λ) =
n∑

k=0

akλ
n−k

(k!)γ
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with the zeros zk(pn) ordered in the following way

|Im zk(pn)| ≥ |Im zk+1(pn)|, k = 1, . . . , n.

Put

ψ(pn) ≡ [|Im a1| +
n∑

k=2

|ak|2]1/2.

Lemma 2.1. The zeros of pn satisfy the inequalities

j∑
k=1

|Im zk(pn)| ≤ ψ(pn) +
j∑

k=1

(k + 1)−γ , j = 1, . . . , n− 1

and
n∑

k=1

|Im zk(pn)| ≤ ψ(pn) +
n−1∑
k=1

(k + 1)−γ .

Proof. Introduce the n× n-matrix

Bn =

⎛
⎜⎜⎜⎜⎝

−a1 −a2 −a3 · · · −an−1 −an

1/2γ 0 0 · · · 0 0
0 1/3γ 0 · · · 0 0
...

...
... · · · ...

...
0 0 0 · · · 1/nγ 0

⎞
⎟⎟⎟⎟⎠ .

The direct calculations show that pn(λ) = det (Bn−λIn), λ ∈ C, where
In is the unit matrix. So

(2.2) zk(pn) = λk(Bn)

where λk(B), k = 1, . . . , n, mean the eigenvalues of an n × n matrix
B with their multiplicities. Denote Im Bn = (Bn −B∗

n)/2i. Here and
below the asterisk means the adjointness.

Due to the well-known Lemma II.6.1 [4]

(2.3)
j∑

k=1

|Im λk(Bn)| ≤
j∑

k=1

sk(Im Bn), j = 1, . . . , n
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where sk(B), k = 1, . . . , n, denote the singular numbers of an n × n-
matrix B : s2k(B) = λk(BB∗) ordered in the decreasing way. Here and
below the asterisk means the adjointness. Clearly,

Bn −B∗
n =

⎡
⎢⎢⎢⎢⎣

ā1 − a1 −a2 − 1/2γ −a3 · · · −an−1 −an

1/2γ + ā2 0 −1/3γ · · · 0 0
ā3 1/3γ 0 · · · 0 0
...

...
... · · · ...

...
ān 0 0 · · · 1/nγ 0

⎤
⎥⎥⎥⎥⎦ .

With the notation

C =

⎛
⎜⎜⎝

(−a1 + ā1)/2 −a2 −a3 · · · −an

0 0 0 · · · 0
...

...
... · · · ...

0 0 0 · · · 0

⎞
⎟⎟⎠

and

D =

⎛
⎜⎜⎜⎜⎝

0 0 0 · · · 0 0
1/2γ 0 0 · · · 0 0

0 1/3γ 0 · · · 0 0
...

...
... · · · ...

...
0 0 0 · · · 1/nγ 0

⎞
⎟⎟⎟⎟⎠

we have Bn −B∗
n = C − C∗ +D −D∗ and

CC∗ =

⎛
⎜⎜⎜⎜⎝

ψ2(pn) 0 0 · · · 0
0 0 0 · · · 0
0 0 0 · · · 0
...

...
... · · · ...

0 0 0 · · · 0

⎞
⎟⎟⎟⎟⎠

and

DD∗ =

⎛
⎜⎜⎜⎜⎝

0 0 0 · · · 0 0
0 1/22γ 0 · · · 0 0
0 0 1/32γ · · · 0 0
...

...
... · · · ...

...
0 0 0 · · · 0 1/n2γ

⎞
⎟⎟⎟⎟⎠ .
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Since the diagonal entries of diagonal matrices are the eigenvalues, we
can write out

s1(C) = ψ(pn), sk(C) = 0, k = 2, . . . , n.

In addition,

sk(D) = (k + 1)−γ , k = 1, . . . , n− 1, sn(D) = 0.

Taking into account that

j∑
k=1

sk(Bn −B∗
n) =

j∑
k=1

sk(D −D∗ + C − C∗)

≤ 2
j∑

k=1

sk(D) + 2
j∑

k=1

sk(C),

cf. [4, Lemma II.4.2]. So

j∑
k=1

sk(Im Bn) ≤ ψ(pn) +
j∑

k=1

(k + 1)−γ , j = 1, . . . , n− 1,

and
n∑

k=1

sk(Im Bn) ≤ ψ(pn) +
n−1∑
k=1

(k + 1)−γ .

Now (2.2) and (2.3) yield the required result.

Proof of Theorem 1.1. Consider the polynomial

qn(λ) = 1 + a1λ+ · · · + ann
−γλn, 2 ≤ n <∞,

with the zeros zk(qn) ordered in the following way∣∣∣∣Im 1
zk(qn)

∣∣∣∣ ≥
∣∣∣∣Im 1

zk+1(qn)

∣∣∣∣, k = 1, . . . , n− 1.

With a fixed k ≤ n and z = zk(qn), we get

qn(z) = zn
n∑

k=0

akk
−γzk−n = 0.
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Hence, z−1
k (qn) = zk(pn) where pn is defined by (2.1). Now Lemma 2.1

yields the inequalities

(2.4)

j∑
k=1

∣∣∣∣Im 1
zk(qn)

∣∣∣∣ ≤ ψ(pn) +
j∑

k=1

(k + 1)−γ

≤ ψf +
j∑

k=1

(k + 1)−γ , j = 1, . . . , n− 1.

But the zeros of entire functions continuously depend on its coefficients:

j∑
k=1

∣∣∣∣Im 1
zk(qn)

∣∣∣∣ −→
j∑

k=1

∣∣∣∣Im 1
zk(f)

∣∣∣∣

as n→ ∞. Now (2.4) implies the required result.

3. Inequalities for the real parts of the zeros. In this section
it is assumed that the zeros of the function f defined by (1.1) are
enumerated in the following way

∣∣∣∣Re 1
zk(f)

∣∣∣∣ ≥
∣∣∣∣Re 1

zk+1(f)

∣∣∣∣, k = 1, 2, . . . .

Let us suppose that (1.2) holds, and put

θf ≡
[
|Re a1|2 +

∞∑
k=2

|ak|2
]1/2

.

Substituting in (1.1) z = iw we get by virtue of Theorem 1.1,

Theorem 3.1. Under condition (1.2), the inequalities

j∑
k=1

∣∣∣∣Re 1
zk(f)

∣∣∣∣ ≤ θf +
j∑

k=1

(k + 1)−γ , j = 1, 2, . . . ,

are valid.



IMAGINARY PARTS OF ZEROS 953

Furthermore, denote ωR(f) = θf + 2−γ . The well-known Lemma
II.3.4 [4] and Theorem 3.1 imply

Corollary 3.2. Let φ(t), 0 ≤ t <∞, be a convex continuous scalar-
valued function, such that φ(0) = 0. Then, under condition (1.2), the
inequalities

j∑
k=1

φ

(∣∣∣Re 1
zk(f)

∣∣∣
)

≤ φ(ωR(f)) +
j∑

k=2

φ((k + 1)−γ), j = 2, 3, . . . ,

are valid. In particular, for any real r ≥ 1 and all real j ≥ 2,

j∑
k=1

∣∣∣∣Re 1
zk(f)

∣∣∣∣
r

≤ ωr
R(f)+

j∑
k=2

(k+1)−γr = (θf +2−rγ)r +
j∑

k=2

(k+1)−rγ .

This corollary with j = ∞ yields

Corollary 3.3. Under conditions (1.2) and (1.5), the inequality

∞∑
k=1

∣∣∣∣Re 1
zk(f)

∣∣∣∣
r

≤ (2−γ + θf )r + ζ(γr) − 1 − 2−γr

is valid. In particular, if γ > 1, then

∞∑
k=1

∣∣∣∣Re 1
zk(f)

∣∣∣∣ ≤ θf + ζ(γ) − 1.

Moreover, Theorem 3.1 and the well-known Lemma II.3.5 [4] yield

Corollary 3.4. Under conditions (1.2) and (1.8), for any natural
j ≥ 2, the inequality

Φ
(∣∣∣Re 1

z1(f)

∣∣∣,∣∣∣Re 1
z2(f)

∣∣∣, . . . , ∣∣∣Re 1
zj(f)

∣∣∣
)

≤ Φ(ωR(f), 3−γ, . . . , (1+j)−γ)
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is valid. In particular, let {dk}∞k=1 be a decreasing sequence of positive
numbers. Then

(3.1)
j∑

k=1

dk

∣∣∣∣Re 1
zk(f)

∣∣∣∣ ≤ d1θf +
j∑

k=1

dk(k + 1)−γ , j = 1, 2, . . . .

For instance, let 0 < γ < 1. Take dk = (k + 1)−(1+ε−γ) with an
arbitrary positive ε. Then

j∑
k=1

(k + 1)−(1+ε−γ)

∣∣∣∣Re 1
zk(f)

∣∣∣∣ ≤ 2−(1+ε−γ)θf +
j∑

k=1

(k + 1)−1−ε,

j = 1, 2, . . . .

Hence,

∞∑
k=1

(k + 1)−(1+ε−γ)

∣∣∣∣Re 1
zk(f)

∣∣∣∣ ≤ 2−(1+ε−γ)θf + ζ(1 + ε) − 1.

Furthermore, due to the inequality ar + br ≤ (a + b)r, r > 1, for
arbitrary positive a, b, Corollaries 1.3 and 3.3 yield

Corollary 3.5. Under conditions (1.2) and (1.5), the inequality

(3.2)
∞∑

k=1

∣∣∣∣ 1
zk(f)

∣∣∣∣
r

≤ (2−γ + θf )r + (2−γ +ψf )r + 2(ζ(γr)− 1− 2−γr)

is valid. In particular, if γ > 1, then

∞∑
k=1

∣∣∣∣ 1
zk(f)

∣∣∣∣ ≤ ψf + θf + 2(ζ(γ) − 1)

≤
[
2|a1|2 + 4

∞∑
k=2

|ak|2
]1/2

+ 2(ζ(γ) − 1).

Under conditions (1.2) and (1.5), this corollary improves the Hada-
mard theorem, since our result not only asserts the convergence of the
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series in (3.2) but gives us the estimate for the sum of absolute values
of the zeros.

4. The case γ > 1/2. In this section we are going to make relations
(1.6) and (3.2) more sharp under the conditions r = 1 and

(4.1) γ > 1/2.

Moreover, under (4.1) we will derive an estimate for the quantity

S(f) ≡ max
j �=k

∣∣∣∣ 1
zk(f)

− 1
zj(f)

∣∣∣∣.

Theorem 4.1. Under conditions (1.2) and (4.1), for the zeros of
function (1.1), the following inequalities are true:

(4.2)
∞∑

k=1

|zk(f)|−2 ≤ w(f) + ζ(2γ) − 1

and

(4.3)
∞∑

k=1

|Im zk(pn)|2 ≤ |Im a1|2+2−γRea2 +
1
2

[ ∞∑
k=2

|ak|2+ζ(2γ)−1
]
.

To prove Theorem 4.1, again consider polynomial (2.1).

Lemma 4.2. With the notation

w(pn) =
n∑

k=1

|ak|2,

the zeros of pn satisfy the inequalities

(4.4)
n∑

k=1

|zk(pn)|2 ≤ w(pn) +
n∑

k=2

k−2γ
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and

(4.5)
n∑

k=1

|Im zk(pn)|2 ≤ |Im a1|2 + 2−γRea2 +
1
2

n∑
k=2

(|ak|2 + k−2γ).

Proof. Due to the Schur inequality [6, Section III.1.4],

(4.6)
n∑

k=1

|λk(Bn)|2 ≤ N2(Bn)

where N(B) is the Frobenius (Hilbert-Schmidt) norm of a matrix
B : N2(B) = TraceBB∗. Obviously,

(4.7) N2(Bn) = w(pn) +
n∑

k=2

k−2γ .

Now (2.2) and (4.6) imply inequality (4.4).

Furthermore, let us use the inequality

(4.8)
n∑

k=1

|Im λk(Bn)|2 ≤ N2(Im Bn),

cf. [6, Section III.1]. Obviously,

2N2(Im Bn) = 2|Im a1|2 + |1/2γ + a2|2 +
n∑

k=3

(|ak|2 + k−2γ).

Simple calculations show that

|1/2γ + a2|2 = 1/4γ + |a2|2 + 21−γRe a2.

So

N2(Im Bn) = |Im a1|2 + 2−γ Rea2 +
1
2

n∑
k=2

(|ak|2 + k−2γ).

Now (2.2) and (4.8) imply the required inequality (4.5).
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Proof of Theorem 4.1. As was shown in the proof of Theorem 1.1,
z−1
k (qn) = zk(pn). Now inequality (4.4) yields

n∑
k=1

|zk(qn)|−2 ≤ θ(pn) +
n∑

k=2

k−2γ .

Hence

(4.9)
j∑

k=1

|zk(qn)|−2 ≤ w(f) +
∞∑

k=2

k−2γ = w(f) + ζ(2γ) − 1

for any j ≤ n. Letting n→ ∞ in (4.9), we get

j∑
k=1

|zk(f)|−2 ≤ w(f) + ζ(2γ) − 1

for any natural j. This implies inequality (4.2). Similarly, inequality
(4.5) yields (4.3).

Theorem 4.3. Let f be defined by (1.1) under conditions (1.2) and
(4.1). Then the following inequality is true:

(4.10) S2(f) ≤ 2(w(f) + ζ(2γ) − 1).

To prove this theorem, again consider polynomial (2.1).

Lemma 4.4. The zeros of pn satisfy the inequality

max
j �=k

|zk(pn) − zj(pn)|2 ≤ 2
(
w(pn) +

n∑
k=2

k−2γ − |a1|2
n

)
.

Proof. Due to the well-known inequality III.4.2.1 [6], the inequality

max
j �=k

|λk(Bn) − λj(Bn)| ≤
(

2N2(Bn) − 2
n
|TraceBn|2

)1/2
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is valid, whereN(.) is again the Frobenius norm. Obviously, TraceBn =
a1. So, according to (4.7),

max
j �=k

|λk(Bn) − λj(Bn)|2 ≤ 2
(
w(pn) +

n∑
k=2

k−2γ − |a1|2
n

)
.

Now (2.2) proves the statement of the lemma.

Proof of Theorem 4.3. As was shown in the proof of Theorem 1.1,
z−1
k (qn) = zk(pn). Now the previous lemma yields

max
j �=k

∣∣∣∣ 1
zk(qn)

− 1
zj(qn)

∣∣∣∣
2

≤ 2(w(pn) + ζ(2γ)− 1) ≤ 2(w(f) + ζ(2γ)− 1).

Furthermore, the zeros of entire functions continuously depend on
its coefficients. So, letting in the latter inequality n → ∞, we get
inequality (4.10).

5. Equalities for zeros of second order entire functions.
Rewrite (1.1) in the form

(5.1) f(λ) = 1 + b1λ+ b2λ
2 + b3λ

3 + · · · (λ ∈ C).

That is,

(5.2) bk = akk
−γ .

Denote by ρ(f) the order of the growth of f . In this section we are
going to establish equalities for the zeros which supplement relations
(1.6) and (3.2) in the case r = 2 and

(5.3) ρ(f) ≤ 2.

Theorem 5.1. Let the set of the zeros of function f defined by (5.1)
be non-empty and condition (5.3) hold. Then the equality

∞∑
k=1

[|zk(f)|−2 − 2(Re z−1
k (f))2] = J(f)
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is valid with the notation

J(f) ≡ Re b21 − 2Re b2 = Re a2
1 − 21−γRe a2.

To prove Theorem 5.1, we need the following

Lemma 5.2. The zeros zk(pn), k = 1, 2, . . . , n, of polynomial (2.1)
and (5.2) satisfy the equality

n∑
k=1

|zk(pn)|2 − 2(Im zk(pn))2 = J(f).

Proof. Consider the n× n-matrix

En =

⎛
⎜⎜⎜⎜⎝

−b1 −b2 −b3 · · · −bn−1 −bn
1 0 0 · · · 0 0
0 1 0 · · · 0 0
...

...
...

... · · · ...
0 0 · · 1 0

⎞
⎟⎟⎟⎟⎠ .

Clearly pn(λ) = det (En − Inλ). So zk(pn) = λk(En), k = 1, . . . , n.
Due to Corollary 1.3.7 [3, p. 19] (see also [2]), we can write out

(5.4) N2(En)−
n∑

k=1

|λk(En)|2 = N2(En−E∗
n)/2−2

n∑
k=1

|Im λk(En)|2.

Simple calculations show that N2(En) = |b1|2 + · · ·+ |bn|2 + n− 1 and

N2(En−E∗
n)/2 = 2(Im b1)2+ |b2+1|2+ |b3|2+ |b4|2+ · · ·+ |bn|2+n−2.

Now (5.4) yields

n∑
k=1

|λk(En)|2 − 2
n∑

k=1

|Im λk(En)|2 = |b1|2 + |b2|2 + 1

− 2(Im b1)2 − |b2 + 1|2 = J(f).
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This proves the required result.

Proof of Theorem 5.1. As was shown in the proof of Theorem 1.1,
z−1
k (qn) = zk(pn). Now Lemma 5.2 yields

(5.5)
n∑

k=1

|zk(qn)|−2 − 2(Im z−1
k (qn))2 = J(f).

Since the zeros of entire functions continuously depend on its coeffi-
cients, for any natural j > 2, we have

j∑
k=1

|zk(qn)|−2 − 2(Im z−1
k (qn))2 −→

j∑
k=1

|zk(f)|2 − 2(Im z−1
k (f))2

as n→ ∞. Now (5.5) implies the required result.

Since |z|2 = (Re z)2 + (Im z)2, z ∈ C, Theorem 5.1 yields

Corollary 5.3. Under condition (5.3), we have

∞∑
k=1

(Re z−1
k (f))2 − (Im z−1

k (f))2 = J(f).

Finally, note that Lemmata 2.2, 4.2, 4.4 and 5.2 supplement the well-
known results on zeros of polynomials [1].
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