SPACES OF OPERATORS, c_{0} AND l^{1}

ELIZABETH M. BATOR AND PAUL W. LEWIS

Abstract

If Y is a Banach space so that l^{1} embeds isomorphically as a complemented subspace of the separable space Y^{*} but c_{0} does not embed as a subspace of Y, then it is shown that there is an infinite dimensional Banach space X so that l^{1} embeds complementably in $X \otimes_{\gamma} Y^{*}$ but c_{0} does not embed in $L(X, Y)$.

In a classic paper on the structure of Banach spaces [2], Bessaga and Pelczynski established the following result.

Theorem 1. If c_{0} embeds isomorphically in the dual X^{*} of the Banach space X, then l^{∞} embeds in X^{*} and l^{1} embeds complementably in X.

The following complete generalization of Theorem 1 was established in [7]. In this theorem $\left(e_{n}^{*}\right)$ denotes the canonical unit vector basis of l^{1} and $X \otimes_{\gamma} Y^{*}$ denotes the greatest crossnorm tensor product completion of X and Y^{*}.

Theorem 2. If X is an infinite dimension Banach space and c_{0} embeds in $L(X, Y)$, then l^{∞} embeds in $L(X, Y)$ and there is an isomorphism $J: l^{1} \rightarrow X \otimes_{\gamma} Y^{*}$ so that $J\left(l^{1}\right)$ is complemented in $X \otimes Y^{*}$ and $J\left(e_{n}^{*}\right)$ is a finite rank tensor for each n.

Of course, the converse of Theorem 1 is immediate, i.e., if l^{1} embeds complementably in X, then certainly l^{∞} (and thus c_{0}) embeds in X^{*}. The status of the converse of Theorem 2 is not clear at all. There is an example on page 215 of $[\mathbf{7}]$ which purports to show that the complementability of l^{1} in the greatest crossnorm tensor product completion of X and Y^{*} does not imply that c_{0} embeds in the space $L(X, Y)$ of all bounded linear transformations from X to Y. However,

[^0]this example is based on an erroneous statement in [3]. Specifically, it is asserted on page 249 of $[\mathbf{3}]$ that $l^{p} \otimes_{\gamma} l^{p}$ contains a complemented copy of l^{1} if $1<p<\infty$. If this statement were true for $p>2$, then l^{1} would embed as a complemented subspace in the dual of $L\left(l^{p}, l^{p^{\prime}}\right)$, where $1 / p+1 / p^{\prime}=1$. However, it is well documented that this space of operators is reflexive, e.g., see Kalton [5].

In this note we show that there is an isomorphism $J: l^{1} \rightarrow X \otimes_{\gamma} Y^{*}$ so that $J\left(e_{n}^{*}\right)$ is finite rank for each n and $J\left(l^{1}\right)$ is complemented if and only if c_{0} embeds in $L\left(X, Y^{* *}\right)$. Further a celebrated result of James [4] and a theorem of Bator [1] are used to construct a family of spaces $X \otimes_{\gamma} Y^{*}$ so that l^{1} is complemented in each of these spaces but c_{0} does not embed in $L(X, Y)$. This construction depends upon Theorem 2 above.

Theorem 3. If X and Y are arbitrary Banach spaces, then c_{0} embeds isomorphically in $L\left(X, Y^{* *}\right)$ if and only if there is an isomorphism $J: l^{1} \rightarrow X \otimes_{\gamma} Y^{*}$ so that $J\left(e_{n}^{*}\right)$ is a finite rank tensor for every n and $J\left(l^{1}\right)$ is complemented in $X \otimes_{\gamma} Y^{*}$.

However, if Y is a Banach space so that l^{1} embeds isomorphically as a complemented subspace of the separable space Y^{*} but c_{0} does not embed as a subspace of Y, then there is an infinite dimensional Banach space X and an isomorphism $J: l^{1} \rightarrow X \otimes_{\gamma} Y^{*}$ so that $J\left(l^{1}\right)$ is complemented in $X \otimes_{\gamma} Y^{*}, J\left(e_{n}^{*}\right)$ is a finite rank tensor for each n and c_{0} does not embed in $L(X, Y)$.

Proof. Since $\left(X \otimes_{\gamma} Y^{*}\right)^{*}$ is isometrically isomorphic to $L\left(X, Y^{* *}\right)$, it is clear from Theorem 2 (or the classical Bessaga-Pelczynski theorem) that c_{0} embeds in $L\left(X, Y^{* *}\right)$ if and only if l^{1} embeds as a complemented subspace in $X \otimes_{\gamma} Y^{*}$. Thus, to finish the proof of the first assertion in the theorem, it suffices to show that if $c_{0} \hookrightarrow L\left(X, Y^{* *}\right)$, then there is an isomorphism $J: l^{1} \rightarrow X \otimes_{\gamma} Y^{*}$ so that $J\left(l^{1}\right)$ is complemented and $J\left(e_{n}^{*}\right)$ is finite rank for each n.

Suppose then that $T: c_{0} \rightarrow L\left(X, Y^{* *}\right)$ is an isomorphism, $\left(x_{n}\right)$ is a bounded sequence in X and $\left(y_{n}^{*}\right)$ is a bounded sequence in Y^{*} so that $\left\langle T\left(e_{n}\right) x_{n}, y_{n}^{*}\right\rangle=1$ for each n. The proof of Theorem 1 in $[\mathbf{6}]$ and Theorem 1 in $[\mathbf{7}]$ shows that there is a sequence $\left(u_{n}\right)$ of differences of the rank one tensors $\left(x_{n} \otimes y_{n}^{*}\right)_{n=1}^{\infty}$ so that $\left(u_{n}\right)$ is equivalent to $\left(e_{n}^{*}\right)$
and $\left[u_{n}\right]$ is complemented in $X \otimes_{\gamma} Y^{*}$.
Now suppose that Y satisfies the hypotheses of the second portion of the theorem, e.g., see [4]. Use Theorem 4 of [1] and let X be an infinite dimensional Banach space so that every member of $L(X, Y)$ is compact, i.e., $L(X, Y)=K(X, Y)$.

First we show that c_{0} does not embed isomorphically in $L(X, Y)$. Suppose (to the contrary) that $c_{0} \hookrightarrow L(X, Y)$. By Theorem 2 above, $l^{\infty} \hookrightarrow L(X, Y)$. Since $L(X, Y)=K(X, Y)$, a result of Kalton [5, p. 271], shows that $l^{\infty} \hookrightarrow X^{*}$ or $l^{\infty} \hookrightarrow Y$. The hypothesis that c_{0} does not embed in Y precludes the second possibility. Therefore we assume that $l^{\infty} \hookrightarrow X^{*}$. An application of Theorem 1 or Theorem 2 above ensures that l^{1} embeds complementably in X. Theorem 5 of [1] produces the desired contradiction. That is, if Z is any separable infinite dimensional subspace of Y, then there is a bounded linear operator S from l^{1} onto Z. Projecting X onto l^{1} and following this projection with S produces a noncompact member of $L(X, Y)$.

To finish the argument, it suffices to show that l^{1} embeds appropriately as a complemented subspace of $X \otimes_{\gamma} Y^{*}$. Suppose that W is a subspace of Y^{*} so that W is isomorphic to l^{1} and $P: Y^{*} \rightarrow W$ is a projection. Let x be any norm-1 element of X, and let $Q: X \rightarrow[x]$ be a projection. Then $[x] \otimes_{\gamma} W$ is isomorphic to l^{1}, e_{n}^{*} is identified with a rank one tensor with respect to this isomorphism, and $Q \otimes P$ is a projection onto $[x] \otimes_{\gamma} W$.

REFERENCES

1. Elizabeth M. Bator, Unconditionally converging and compact operators on c_{0}, Rocky Mountain J. Math. 22 (1992), 417-422.
2. C. Bessaga and A. Pelczynski, On bases and unconditional convergence in Banach spaces, Studia Math. 17 (1958), 151-164.
3. J. Diestel and J.J. Uhl, Jr., Vector measures, Math. Surveys 15, Amer. Math. Soc., Providence, 1977.
4. R.C. James, Separable conjugate spaces, Pacific J. Math. 10 (1960), 563-571.
5. N. Kalton, Spaces of compact operators, Math. Ann. 208 (1974), 267-278.
6. P. Lewis, Mapping properties of c_{0}, Colloq. Math. 80 (1999), 235-244.
7. - Spaces of operators and c_{0}, Studia Math. 145 (2001), 213-218.

Department of Mathematics, University of North Texas, Denton, Texas 76203
E-mail address: bator@unt.edu
Department of Mathematics, University of North Texas, Denton, Texas 76203
E-mail address: lewis@unt.edu

[^0]: AMS Mathematics Subject Classification. 46B20, 46B25.
 Received by the editors on December 14, 2001.

