BOCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 34, Number 3, Fall 2004

SPACES OF OPERATORS, c_0 AND l^1

ELIZABETH M. BATOR AND PAUL W. LEWIS

ABSTRACT. If Y is a Banach space so that l^1 embeds isomorphically as a complemented subspace of the separable space Y^* but c_0 does not embed as a subspace of Y, then it is shown that there is an infinite dimensional Banach space Xso that l^1 embeds complementably in $X \otimes_{\gamma} Y^*$ but c_0 does not embed in L(X, Y).

In a classic paper on the structure of Banach spaces [2], Bessaga and Pelczynski established the following result.

Theorem 1. If c_0 embeds isomorphically in the dual X^* of the Banach space X, then l^{∞} embeds in X^* and l^1 embeds complementably in X.

The following complete generalization of Theorem 1 was established in [7]. In this theorem (e_n^*) denotes the canonical unit vector basis of l^1 and $X \otimes_{\gamma} Y^*$ denotes the greatest crossnorm tensor product completion of X and Y^* .

Theorem 2. If X is an infinite dimension Banach space and c_0 embeds in L(X,Y), then l^{∞} embeds in L(X,Y) and there is an isomorphism $J: l^1 \to X \otimes_{\gamma} Y^*$ so that $J(l^1)$ is complemented in $X \otimes Y^*$ and $J(e_n^*)$ is a finite rank tensor for each n.

Of course, the converse of Theorem 1 is immediate, i.e., if l^1 embeds complementably in X, then certainly l^{∞} (and thus c_0) embeds in X^* . The status of the converse of Theorem 2 is not clear at all. There is an example on page 215 of [7] which purports to show that the complementability of l^1 in the greatest crossnorm tensor product completion of X and Y^* does not imply that c_0 embeds in the space L(X,Y) of all bounded linear transformations from X to Y. However,

AMS *Mathematics Subject Classification*. 46B20, 46B25. Received by the editors on December 14, 2001.

this example is based on an erroneous statement in [3]. Specifically, it is asserted on page 249 of [3] that $l^p \otimes_{\gamma} l^p$ contains a complemented copy of l^1 if 1 . If this statement were true for <math>p > 2, then l^1 would embed as a complemented subspace in the dual of $L(l^p, l^{p'})$, where 1/p + 1/p' = 1. However, it is well documented that this space of operators is reflexive, e.g., see Kalton [5].

In this note we show that there is an isomorphism $J: l^1 \to X \otimes_{\gamma} Y^*$ so that $J(e_n^*)$ is finite rank for each n and $J(l^1)$ is complemented if and only if c_0 embeds in $L(X, Y^{**})$. Further a celebrated result of James [4] and a theorem of Bator [1] are used to construct a family of spaces $X \otimes_{\gamma} Y^*$ so that l^1 is complemented in each of these spaces but c_0 does not embed in L(X, Y). This construction depends upon Theorem 2 above.

Theorem 3. If X and Y are arbitrary Banach spaces, then c_0 embeds isomorphically in $L(X, Y^{**})$ if and only if there is an isomorphism $J: l^1 \to X \otimes_{\gamma} Y^*$ so that $J(e_n^*)$ is a finite rank tensor for every n and $J(l^1)$ is complemented in $X \otimes_{\gamma} Y^*$.

However, if Y is a Banach space so that l^1 embeds isomorphically as a complemented subspace of the separable space Y^* but c_0 does not embed as a subspace of Y, then there is an infinite dimensional Banach space X and an isomorphism $J : l^1 \to X \otimes_{\gamma} Y^*$ so that $J(l^1)$ is complemented in $X \otimes_{\gamma} Y^*$, $J(e_n^*)$ is a finite rank tensor for each n and c_0 does not embed in L(X,Y).

Proof. Since $(X \otimes_{\gamma} Y^*)^*$ is isometrically isomorphic to $L(X, Y^{**})$, it is clear from Theorem 2 (or the classical Bessaga-Pelczynski theorem) that c_0 embeds in $L(X, Y^{**})$ if and only if l^1 embeds as a complemented subspace in $X \otimes_{\gamma} Y^*$. Thus, to finish the proof of the first assertion in the theorem, it suffices to show that if $c_0 \hookrightarrow L(X, Y^{**})$, then there is an isomorphism $J: l^1 \to X \otimes_{\gamma} Y^*$ so that $J(l^1)$ is complemented and $J(e_n^*)$ is finite rank for each n.

Suppose then that $T : c_0 \to L(X, Y^{**})$ is an isomorphism, (x_n) is a bounded sequence in X and (y_n^*) is a bounded sequence in Y^* so that $\langle T(e_n)x_n, y_n^* \rangle = 1$ for each n. The proof of Theorem 1 in [**6**] and Theorem 1 in [**7**] shows that there is a sequence (u_n) of differences of the rank one tensors $(x_n \otimes y_n^*)_{n=1}^{\infty}$ so that (u_n) is equivalent to (e_n^*) and $[u_n]$ is complemented in $X \otimes_{\gamma} Y^*$.

Now suppose that Y satisfies the hypotheses of the second portion of the theorem, e.g., see [4]. Use Theorem 4 of [1] and let X be an infinite dimensional Banach space so that every member of L(X, Y) is compact, i.e., L(X, Y) = K(X, Y).

First we show that c_0 does not embed isomorphically in L(X, Y). Suppose (to the contrary) that $c_0 \hookrightarrow L(X, Y)$. By Theorem 2 above, $l^{\infty} \hookrightarrow L(X, Y)$. Since L(X, Y) = K(X, Y), a result of Kalton [5, p. 271], shows that $l^{\infty} \hookrightarrow X^*$ or $l^{\infty} \hookrightarrow Y$. The hypothesis that c_0 does not embed in Y precludes the second possibility. Therefore we assume that $l^{\infty} \hookrightarrow X^*$. An application of Theorem 1 or Theorem 2 above ensures that l^1 embeds complementably in X. Theorem 5 of [1] produces the desired contradiction. That is, if Z is any separable infinite dimensional subspace of Y, then there is a bounded linear operator S from l^1 onto Z. Projecting X onto l^1 and following this projection with S produces a noncompact member of L(X, Y).

To finish the argument, it suffices to show that l^1 embeds appropriately as a complemented subspace of $X \otimes_{\gamma} Y^*$. Suppose that W is a subspace of Y^* so that W is isomorphic to l^1 and $P: Y^* \to W$ is a projection. Let x be any norm-1 element of X, and let $Q: X \to [x]$ be a projection. Then $[x] \otimes_{\gamma} W$ is isomorphic to l^1 , e_n^* is identified with a rank one tensor with respect to this isomorphism, and $Q \otimes P$ is a projection onto $[x] \otimes_{\gamma} W$. \Box

REFERENCES

1. Elizabeth M. Bator, Unconditionally converging and compact operators on c_0 , Rocky Mountain J. Math. 22 (1992), 417–422.

2. C. Bessaga and A. Pelczynski, On bases and unconditional convergence in Banach spaces, Studia Math. 17 (1958), 151–164.

3. J. Diestel and J.J. Uhl, Jr., *Vector measures*, Math. Surveys **15**, Amer. Math. Soc., Providence, 1977.

4. R.C. James, Separable conjugate spaces, Pacific J. Math. 10 (1960), 563-571.

5. N. Kalton, Spaces of compact operators, Math. Ann. 208 (1974), 267-278.

6. P. Lewis, Mapping properties of c₀, Colloq. Math. 80 (1999), 235-244.

7. ——, Spaces of operators and c₀, Studia Math. **145** (2001), 213–218.

E.M. BATOR AND P.W. LEWIS

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF NORTH TEXAS, DENTON, TEXAS 76203 *E-mail address:* bator@unt.edu

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF NORTH TEXAS, DENTON, TEXAS 76203 *E-mail address:* lewis@unt.edu

832