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OSCILLATION CRITERIA OF KNESER-HILLE TYPE
FOR SECOND-ORDER DIFFERENTIAL EQUATIONS

WITH NONLINEAR PERTURBED TERMS

JITSURO SUGIE

ABSTRACT. This paper is concerned with the oscillation
problem for nonlinear differential equations of Euler type,
which are denoted by (En) with n = 1, 2, 3, . . . . Equation
(En) consists of a linear main term and a nonlinear perturbed
term. If the nonlinear perturbation vanishes, then all nontriv-
ial solutions of (En) are nonoscillatory. A pair of sufficient and
necessary conditions on the perturbed term for all nonlinear
solutions of (En) to be oscillatory is given. It is also proved
that all solutions of (En) tend to zero.

1. Introduction. The existence and number of the zeros of the
solutions of ordinary differential equations are an important subject in
the qualitative theory. By an oscillatory solution we mean one having
an infinite number of zeros on 0 ≤ t < ∞. Otherwise, the solution is
called nonoscillatory.

For example, we consider the Euler differential equation with positive
damping

(L1) y′′ +
2
t

y′ +
δ

t2
y = 0,

where ′ = d/dt. Then we see that all nontrivial solutions of (L1) are
nonoscillatory if and only if δ ≤ 1/4. In fact, equation (L1) has the
general solution

y(t) =

⎧⎪⎪⎨
⎪⎪⎩

1√
t
(K1t

ζ + K2t
−ζ) if δ �= 1

4
,

1√
t
(K3 + K4 log t) if δ =

1
4
,

where Ki, i = 1, 2, 3, 4, are arbitrary constants and ζ is a number
satisfying

(1.1)
1
4
− ζ2 = δ.
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1520 J. SUGIE

Hence, for equation (L1) the critical value of δ is 1/4. Such a number
is generally called the oscillation constant.

Let us add a nonlinear perturbation to equation (L1) with δ = 1/4.
Then the question arises: Do oscillatory solutions appear even when
the nonlinear perturbation is very small? If not, what is the upper
limit of the nonlinear perturbation for all nontrivial solutions to be
nonoscillatory?

Recently the author et al. [3] gave an answer to this question. They
discussed the oscillation problem for the nonlinear differential equation
of Euler type

(E2) x′′ +
2
t

x′ +
1

4t2
x +

1
t2

g(x) = 0,

where g(x) is locally Lipschitz continuous on R and satisfies

(1.2) xg(x) > 0 if x �= 0,

and established the following oscillation theorem and nonoscillation
theorem for equation (E2).

Theorem A. Assume (1.2) and suppose that there exists a λ > 1/4
such that

g(x)
x

≥ λ

(2 log |x|)2
for |x| sufficiently small. Then all nontrivial solutions of (E2) are
oscillatory.

Theorem B. Assume (1.2) and suppose that

g(x)
x

≤ 1
4(2 log |x|)2

for x > 0 or x < 0, |x| sufficiently small. Then all nontrivial solutions
of (E2) are nonoscillatory.

It is known that all nontrivial solutions of the linear differential
equation

(L2) y′′ +
2
t

y′ +
1

4t2
y +

δ

t2(log t)2
y = 0
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are (i) oscillatory if δ > 1/4, (ii) nonoscillatory if 0 ≤ δ ≤ 1/4. In [3],
the author et al. regarded the equation

(N2) x′′ +
2
t

x′ +
1

4t2
x +

λ

t2(2 log |x|)2 x = 0,

where |x| is sufficiently small, as a typical case of (E2). Using the
facts (i) and (ii), they showed that all nontrivial solutions of (N2) are
(iii) oscillatory if λ > 1/4, (iv) nonoscillatory if 0 ≤ λ ≤ 1/4, and
compared orbits of (E2) with those of (N2) in order to prove the pair
of Theorems A and B.

Now from the facts (i) and (ii) we see that the oscillation constant δ
is 1/4 for equation (L2). This will lead us further into a consideration
of a nonlinear perturbation which is added to equation (L2) with
δ = 1/4. Let us add a nonlinear perturbation to equation (L2) with
δ = 1/4. Then, judging from Theorems A and B, we can expect that all
nontrivial solutions have a tendency to be oscillatory as the nonlinear
perturbation grows larger. What is the lower limit of the nonlinear
perturbation for all nontrivial solutions to be oscillatory? Of course,
Theorems A and B cannot answer this question.

The aim of this paper is to answer the above question and to discuss
the nonlinear perturbation problem in more delicate cases. Our main
theorems are stated in Section 2. For this purpose we introduce some
notation. We also examine the asymptotic behavior of solutions of
certain linear differential equations of Euler type. In Section 3, we
show that all solutions of Euler differential equations with nonlinear
perturbed terms tend to zero as t → ∞. In Section 4, we complete
the proof of our main theorems by means of the obtained results in the
preceding section.

2. Statement of main theorems. Equations (L1) has the simplest
form in the set of second-order linear Euler differential equations with
positive damping and equation (L2) is more delicate for oscillation of
solutions than (L2). In this sense we may consider (L1) and (L2) to be
the first and the second stages, respectively. Similarly, we can regard
the equation

(E1) x′′ +
2
t

x′ +
1
t2

g(x) = 0
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as the first stage in nonlinear differential equations of Euler type. Hence
equation (E2) corresponds to the second stage.

We next go on to the nth stage of linear and nonlinear differential
equations of Euler type. To this end, we introduce the following
notation. Define

l1(w) = 1 and lk+1(w) = lk(w) logk w, k ∈ N,

where log0 w = w, log1 w = | log w| and logk w = log(logk−1 w), and let

S0(w) = 0 and Sk(w) =
k∑

i=1

1
{li(w)}2

, k ∈ N.

Then we have

logk w ≥ 1 for w ≥ ek and 0 < w ≤ 1/ek

where e0 = 1 and ek = exp(ek−1). Hence the sequences of the functions
{lk(w)} and {Sk(w)} are well-defined in these intervals. To be precise
we enumerate the sequences {lk(w)} and {Sk(w)}:

l2(w) = | log w|, l3(w) = | log w|(log | log w|),
l4(w) = | log w|(log | log w|)(log(log | log w|)), . . . ;

S1(w) = 1, S2(w) = 1 +
1

(log w)2
,

S3(w) = 1 +
1

(log w)2
+

1
(log w)2(log | log w|)2 ,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · .

Using the above notation, we can represent the nth stage of linear and
nonlinear differential equations of Euler type:

y′′ +
2
t

y′ +
1

4t2
Sn−1(t)y +

δ

t2{ln(t)}2
y = 0;(Ln)

x′′ +
2
t

x′ +
1

4t2
Sn−1(t)x +

1
t2

g(x) = 0.(En)

Before we give the statement of main results concerning the oscillation
and nonoscillation of solutions of (En), let us examine the oscillation
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constant for equation (Ln). By a straightforward calculation, we obtain
the following formula, but we omit the details.

Lemma 2.1. Equation (Ln) has the general solution

y(t) =

⎧⎪⎪⎨
⎪⎪⎩

√
ln(t)
t

{K1(logn−1 t)ζ + K2(logn−1 t)−ζ} if δ �= 1
4
,√

ln(t)
t

{K3 + K4 logn t} if δ =
1
4
,

where Ki, i = 1, 2, 3, 4, are arbitrary constants and ζ is a number
satisfying condition (1.1).

From Lemma 2.1 we see that the facts (i) and (ii) in Section 1 also
hold for equation (Ln), and therefore the oscillation constant δ is 1/4
in this case.

Let s = log t and u(s) = y(es) = y(t). Then equation (Ln) is
transferred into the system

ξ̇ = η − ξ,

η̇ = −1
4

Sn−1(es)ξ − δ

{ln(es)}2
ξ,

where · = d/ds. In polar coordinates (ξ, η) → (ρ, ϕ), where ξ = ρ cosϕ
and η = ρ sin ϕ, the above system becomes

ρ̇ = ρ

[
f1(ϕ) − 1

4
(Sn−1(es) − 1) sinϕ cosϕ − δ

{ln(es)}2
sin ϕ cos ϕ

]
,

(PLn)

ϕ̇ = f2(ϕ) − 1
4
(Sn−1(es) − 1) cos2 ϕ − δ

{ln(es)}2
cos2 ϕ,

where
f1(ϕ) = (sin ϕ − cos ϕ) cosϕ − 1

4
sin ϕ cosϕ,

f2(ϕ) = −(sin ϕ − cos ϕ) sinϕ − 1
4

cos2 ϕ.

Note that f2(ϕ) ≤ 0 for ϕ ∈ R and f2(ϕ) = 0 if and only if tanϕ = 1/2.
Let (ρ(s), ϕ(s)) be any nontrivial solution of (PLn). Since

ϕ̇(s) < f2(ϕ(s)) ≤ 0,
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ϕ(s) is decreasing. Hence, there are two possible cases: (i) ϕ(s) tends
to −∞ as s → ∞; (ii) there exists a ϕ∗ such that

ϕ(s) ↘ ϕ∗ as s → ∞.

In the latter case ϕ∗ has to satisfy tanϕ∗ = 1/2. If not, then there
exists an ε > 0 such that

f2(ϕ∗) < −ε.

Hence we have
ϕ̇(s) < f2(ϕ(s)) < −ε

for s sufficiently large, which leads to

ϕ(s) −→ −∞ as s → ∞,

a contradiction. Taking into account the facts (i) and (ii), we have the
following result on the property of ϕ(s).

Lemma 2.2. If δ > 1/4, then ϕ(s) tends to −∞ as s → ∞, and
otherwise it approaches ϕ∗ as s → ∞, where ϕ∗ is an angle satisfying
tan ϕ∗ = 1/2.

We are ready to state our main results for equation (En).

Theorem 2.1. Assume (1.2) and suppose that there exists a λ > 1/4
such that

(2.1)
g(x)
x

≥ λ

{ln(x2)}2

for |x| sufficiently small. Then all nontrivial solutions of (En) are
oscillatory.

Theorem 2.2. Assume (1.2) and suppose that

(2.2)
g(x)
x

≤ 1
4{ln(x2)}2
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for x > 0 or x < 0, |x| sufficiently small. Then equation (En) has a
nonoscillatory solution.

We can represent our results in the style of Kneser-Hille [1, 2]; see
also [4, Theorems 2.41 2.43].

Theorem 2.3. Assume (1.2). Let

ω∗
n = lim sup

x→0

g(x){ln(x2)}2

x
and ωn∗ = lim inf

x→0

g(x){ln(x2)}2

x
.

Then equation (En) has a nontrivial solution which is nonoscillatory if
ω∗

n < 1/4 and it fails to have such a solution if ωn∗ > 1/4.

Unfortunately, no conclusion can be drawn if either ω∗
n or ωn∗ equals

1/4. However, if ω∗
n = ωn∗ = 1/4 and

g(x){ln(x2)}2

x
↗ 1

4
as x → 0,

then, by Theorem 2.2 we can conclude that equation (En) has a
nontrivial solution which is nonoscillatory.

Comparing the behavior of each solution of the equation

(E1) x′′ +
2
t

x′ +
1
t2

g(x) = 0

with that of (L1), we see that all nontrivial solutions of (E1) are
oscillatory if there exists a λ > 1/4 such that

g(x)
x

≥ λ

for |x| sufficiently small; and they are nonoscillatory if

g(x)
x

≤ 1
4

for x > 0 or x < 0, |x| sufficiently small. Since

l2(x2) = | log x2| = 2| log |x‖,
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we also see that Theorems 2.1 and 2.2 coincide with Theorems A and
B, respectively. Hence, Theorems 2.1 and 2.2 hold when n = 1, 2. For
this reason we assume that n ≥ 3 from now on.

3. Global asymptotic stability. We transform equation (En) into
the equation

ü + u̇ +
1
4

Sn−1(es)u + g(u) = 0,

which is equivalent to the system

(SEn)
u̇ = v − u,

v̇ = −1
4

Sn−1(es)u − g(u),

where u(s) = x(es) = x(t). By assumption (1.2), system (SEn) has the
zero solution (u(s), v(s)) ≡ (0, 0). We call the projection of a positive
semi-trajectory of (SEn) onto the phase plane a positive orbit. Taking
the vector field (SEn) into account, we see that if a positive orbit of
(SEn) crosses the positive, respectively negative, v-axis, then it moves
from the left to the right, respectively from the right to the left.

We next transform to polar coordinates (u, v) → (r, θ) by u = r cos θ
and v = r sin θ to obtain the system

(PEn)
ṙ = r

[
f1(θ) − 1

4
(Sn−1(es) − 1) sin θ cos θ − g(r cos θ)

r
sin θ

]
,

θ̇ = f2(θ) − 1
4
(Sn−1(es) − 1) cos2 θ − g(r cos θ)

r
cos θ.

Let (u(s), v(s)) be any nontrivial solution of (SEn) and let (r(s), θ(s))
be the solution of (PEn) which corresponds to (u(s), v(s)). Then by
(1.2) we obtain

(1 + tan2 θ(s))θ̇(s) =
d

ds
tan θ(s)

=
v̇(s)u(s) − v(s)u̇(s)

u2(s)

= −1
4
(Sn−1(es) − 1) − g(u(s))

u(s)
−

(
1
2
− v(s)

u(s)

)2

=−1
4
(Sn−1(es)−1)− g(u(s))

u(s)
−

(
1
2
−tan θ(s)

)2

<0
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as long as u(s) �= 0. Hence θ(s) is decreasing. This means that the
positive orbit of (SEn) corresponding to (u(s), v(s)) rotates around
the origin clockwise. To be precise, the situation falls into two cases:
θ(s) tends to −∞ as s → ∞ or θ(s) approaches ϕ∗ as s → ∞, where
ϕ∗ is the constant given in Lemma 2.2. The former gives an account
of oscillatory solutions of (En) and the latter describes a property of
nonoscillatory solutions of (En). To sum up, we have the following
result.

Lemma 3.1. Under the assumption (1.2), positive orbits of (SEn)
corresponding to oscillatory solutions of (En) rotate around the origin
clockwise, on the other hand, positive orbits of (SEn) corresponding to
nonoscillatory solutions of (En) approach the line v = u/2.

By means of Lemma 3.1, we can guarantee the global asymptotic
stability of the zero solution of (SEn). Hence all solutions of (SEn)
tend to the origin as s → ∞.

Lemma 3.2. Assume (1.2). Then the zero solution of (SEn) is
globally asymptotically stable.

Proof. Let (u(s), v(s)) be any nontrivial solution of (SEn) initiating
at s = s0. Recall that n ≥ 3. Since Sn−1(es) is greater than 1 and
decreasing for s ≥ s0, we have

(3.1) 1 < Sn−1(es) ≤ Sn−1(es0).

The positive orbit of (SEn) corresponding to (u(s), v(s)) does not
converge to any interior point in the phase plane except the origin. In
fact, if there exists a point (α, β) such that

(u(s), v(s)) −→ (α, β) as s → ∞,

then

v(s) − u(s) = u̇(s) → 0,

−1
4

Sn−1(es)u(s) − g(u(s)) = v̇(s) → 0
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as s → ∞. Hence, by (3.1), both u(s) and v(s) tend to zero, that is,
(α, β) = (0, 0).

Let x(t) be the solution of (En) corresponding to (u(s), v(s)). We
divide the proof into two cases: (i) x(t) is oscillatory; (ii) x(t) is
nonoscillatory.

Case (i). Let

U(s, u, v) =
1
2

v2 +
1
8

Sn−1(es)u2 +
∫ u

0

g(ξ) dξ

and consider the curve defined by

U(s, u, v) = c,

where c = U(s0, u(s0), v(s0)). Then the curve is an oval surrounding
the origin and the oval expands as s increases. Since

U(s, 0,±
√

2c ) = c for s ≥ s0,

the curve passes through two points (0,
√

2c) and (0,−√
2c) for each

fixed s ≥ s0. The curve is in the rectangle

R0 = {(u, v) : |u| ≤ 2
√

2c and |v| ≤
√

2c}.

In fact, by (1.2) and (3.1),

1
8

u2 ≤ U(s, u, v) = c,

1
2

v2 ≤ U(s, u, v) = c

for s ≥ s0. By (1.2) and (3.1) again, the derivative of U along a solution
of (SEn) satisfies

(3.2) U̇(SEn)(s, u, v) =
1
8

d

ds
(Sn−1(es))u2− 1

4
Sn−1(es)u2−ug(u) ≤ 0.

This means that (u(s), v(s)) stays in R0 for s ≥ s0.
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Define U(s) = U(s, u(s), v(s)). Then from (3.2) we conclude that
U(s) is decreasing for s ≥ s0. To complete the proof it suffices to show
that U(s) tends to zero as s → ∞. If the assertion is not true, then
there exists an H0 > 0 such that

(3.3) U(s) ↘ H0 as s → ∞.

Let SH0 = {(u, v) : U(s0, u, v) < H0}. Then, by Lemma 3.1, we see
that the positive orbit of (SEn) corresponding to (u(s), v(s)) rotates
around the region SH0 clockwise but does not enter SH0 . Let ε0 be a
small constant satisfying

{(u, v) : |u| < ε0 and |v| < ε0} ⊂ SH0 .

Then there is a pair of sequences {τk} and {σk} with s0 < τk < σk <
τk+1 and τk → ∞ as k → ∞ such that

(3.4) u(τk) > ε0, v(τk) = 0; u(σk) = ε0, v(σk) < −ε0;
u(s) > ε0 and v(s) < 0 for τk < s < σk.(3.5)

Since (u(s), v(s)) stays in R0, we see that

(3.6) u(s) ≤ 2
√

2c for s ≥ s0.

Put M = max{g(u) : ε0 ≤ u ≤ 2
√

2c}. Then, by (3.1) and (3.4) (3.6),
we have

−ε0 > v(σk) − v(τk) = −
∫ σk

τk

{
1
4

Sn−1(es)u(s) + g(u(s))
}

ds

≥ −
{√

2c

2
Sn−1(es0) + M

}
(σk − τk).

Hence, together with (3.1), (3.2) and (3.5), we get

U(σk) − U(τ1) =
∫ σk

τ1

U̇(SEn)(s, u(s), v(s)) ds

≤
k∑

i=1

∫ σi

τi

U̇(SEn)(s, u(s), v(s)) ds

≤ −
k∑

i=1

∫ σi

τi

1
4

Sn−1(es)u2(s) ds < −1
4

k∑
i=1

∫ σi

τi

u2(s) ds

< −ε2
0

4

k∑
i=1

(σi − τi) < − ε3
0k

2
√

2c Sn−1(es0) + 4M
.
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We therefore conclude that U(σk) tends to −∞ as k → ∞. This is a
contradiction to (3.3).

Case (ii). Let (r(s), θ(s)) be the solution of (PEn) corresponding to
(u(s), v(s)). Then, from Lemma 3.1 we see that there exist an s1 ≥ s0

and an m ∈ N such that

mπ < ϕ∗ < θ(s) <

(
1
4

+ m

)
π

for s ≥ s1. Since tanϕ∗ = 1/2, we have

2
5

= sin ϕ∗ cos ϕ∗ < sin θ(s) cos θ(s) <
1
2
,

−1
2

= f1(ϕ∗) < f1(θ(s)) < f1(π/4) = −1
8

for s ≥ s1. Hence, by (1.2) and (3.1), we get

ṙ(s) < −1
8

r(s) for s ≥ s1.

From this inequality we see that the positive orbit of (SEn) corre-
sponding to (u(s), v(s)) passes through the region R+ = {(u, v) : u >
0 and u/2 < v < u} or R− = {(u, v) : u < 0 and u < v < u/2}, and
then approaches the origin as s → ∞.

Thus, in both cases (u(s), v(s)) tends to (0,0) as s → ∞. The proof
is now complete.

4. Proof of main theorems. We are now able to prove our main
results.

Proof of Theorem 2.1. By way of contradiction, we suppose that
equation (En) has a nonoscillatory solution ζ(t). Then, without loss of
generality, we may assume that there exists a T > 0 such that

ζ(t) > 0 for t ≥ T.

Let (u(s), v(s)) and (r(s), θ(s)) be the solutions of (SEn) and (PEn)
corresponding to ζ(t), respectively. Then it follows from Lemma 3.1
that there exist an s1 ≥ log T and an m ∈ N such that

(u(s), v(s)) ∈ R+
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and

(4.1) mπ < ϕ∗ < θ(s) ≤ θ(s1) <

(
1
4

+ m

)
π

for s ≥ s1. From Lemma 3.2 it also turns out that

(u(s), v(s)) −→ (0, 0) as s → ∞.

Hence, by (2.1), we have

(4.2)

θ̇(s) = f2(θ(s))− 1
4

(Sn−1(es) − 1) cos2 θ(s) − g(u(s))
u(s)

cos2 θ(s)

≤ f2(θ(s))− 1
4

(Sn−1(es) − 1) cos2 θ(s) − λ

{ln(u2(s))}2
cos2 θ(s).

Since λ > 1/4, we can choose an ε > 0 so small that

(4.3)
1
4

<
1
4
(1 + ε)2(n−1) < λ.

From (4.1) we see that

1
2

< tan θ(s) =
v(s)
u(s)

< 1

for s ≥ s1, which implies that

u̇(s) = v(s) − u(s) > −1
2
u(s).

Hence, there exists an s2 ≥ s1 such that

0 > log u(s) > log u(s1) − 1
2
(s − s1) > −1

2
(1 + ε)s

for s ≥ s2 and, therefore,

(4.4) log1 u2(s) = |2 log u(s)| < (1 + ε)s = (1 + ε) log0 s

for s ≥ s2.
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Let X0 be so large that

(4.5) (1 + ε)X < X1+ε for X ≥ X0.

We here estimate logk u2(s) where k = 2, 3, . . . , n. By (4.4) we obtain

log2 u2(s) = log(log1 u2(s)) < log((1 + ε)s).

Using (4.5) with X = s, we can find an s3 ≥ s2 such that

log((1 + ε)s) < (1 + ε) log s = (1 + ε) log1 s

for s ≥ s3 and, therefore,

log2 u2(s) < (1 + ε) log1 s for s ≥ s3.

From this inequality and (4.5) with X = log s, we get

log3 u2(s) = log(log2 u2(s)) < log((1 + ε) log s)
< (1 + ε) log(log s) = (1 + ε) log2 s

for s ≥ s4, where s4 is larger than s3. Repeating the same argument, we
can select a finite sequence {sk}, 2 ≤ k ≤ n, with s1 ≤ s2 ≤ · · · ≤ sn,
such that

logk−1 u2(s) < (1 + ε) logk−2 s for s ≥ sk.

From this estimation we see that

ln(u2(s)) =
n−1∏
k=1

logk u2(s) <

n−1∏
k=1

(1 + ε) logk−1 s

= (1 + ε)n−1
n−1∏
k=1

logk t = (1 + ε)n−1ln(t)

= (1 + ε)n−1ln(es)

for s ≥ sn. Hence, by (4.2) we have

(4.6)
θ̇(s) < f2(θ(s))− 1

4
(Sn−1(es) − 1) cos2 θ(s)

− λ

(1 + ε)2(n−1){ln(es)}2
cos2 θ(s)
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for s ≥ sn.

Now we consider the first order differential equation

(4.7)
ϕ̇ = f2(ϕ) − 1

4
(Sn−1(es) − 1) cos2 ϕ

− λ

(1 + ε)2(n−1){ln(es)}2
cos2 ϕ

and let ϕ(s) be the solution of (4.7) satisfying ϕ(sn) = θ(sn). Note
that (4.7) coincides with the second equation in system (PLn) when
δ = λ/(1 + ε)2(n−1). Comparing (4.6) with (4.7) and using a simple
comparison theorem, we have

θ(s) ≤ ϕ(s) for s ≥ sn.

From (4.3) we get
1
4

<
λ

(1 + ε)2(n−1)
.

Hence, by means of Lemma 2.2, we see that ϕ(s) tends to −∞ as
s → ∞, and so does θ(s). This is a contradiction to (4.1). We therefore
conclude that all nontrivial solutions of (En) are oscillatory. The proof
is complete.

Proof of Theorem 2.2. The proof is by contradiction. Suppose that
all nontrivial solutions of (En) are oscillatory. Then by Lemma 3.1
all nontrivial positive orbits of (SEn) rotate around the origin in a
clockwise direction. In particular, we consider the positive orbit of
(SEn) passing through the point

A =
(

y0,
y0

2

n∑
k=1

1
lk(es0)

)

at s = s0, where s0 is sufficiently large and

y0 =
1

e1+s0/2
.

Since the positive orbit rotates around the origin, it crosses the line
v = u/2 and the positive u-axis infinitely many times. Let s1 and s2 be
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the first intersecting points of the positive orbit with the line v = u/2
and the positive u-axis, respectively. It is clear that s0 < s1 < s2. Also,
it may safely be assumed that the point A is near the line v = u/2 and
s1 is arbitrarily close to s0, say

s1 − s0 < 1,

because s0 is sufficiently large.

Let (u(s), v(s)) and (r(s), θ(s)) be the solutions of (SEn) and (PEn)
corresponding to the positive orbit, respectively. Then from the vector
field of (SEn), we see that

u(s1) < u(s0) = y0 and 0 ≤ tan θ(s) =
v(s)
u(s)

≤ 1
2

for s1 ≤ s ≤ s2.

Hence we have
u̇(s) = v(s) − u(s) ≤ −1

2
u(s)

for s1 ≤ s ≤ s2 and, therefore,

log u(s) ≤ log u(s1) − 1
2
(s − s1) < log y0 − 1

2
(s − s1)

= −1
2

s − 1
2

+
1
2
(s1 − s0 − 1) < −1

2
s − 1

2
.

Since s1 depends on s0 and approaches s0 as s0 → ∞, we may estimate
that

log u(s) < −1
2

s for s0 ≤ s ≤ s2.

Hence we get

log1 u2(s) = |2 log u(s)| > s = log0 s,

log2 u2(s) = log(log1 u2(s)) > log s = log1 s,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
logn−1 u2(s) = log(logn−2 u2(s)) > log(logn−3 s) = logn−2 s

for s0 ≤ s ≤ s2. From these inequalities we obtain

ln(u2(s)) =
n−1∏
k=1

logk u2(s) >

n−1∏
k=1

logk−1 s = ln(es).
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Hence, together with (2.2), we have

(4.8)

θ̇(s) = f2(θ(s)) − 1
4
(Sn−1(es) − 1) cos2 θ(s) − g(u(s))

u(s)
cos2 θ(s)

≥ f2(θ(s)) − 1
4
(Sn−1(es) − 1) cos2 θ(s)

− 1
4{ln(u2(s))}2

cos2 θ(s)

> f2(θ(s)) − 1
4
(Sn−1(es) − 1) cos2 θ(s)

− 1
4{ln(es)}2

cos2 θ(s)

= f2(θ(s)) − 1
4
(Sn(es) − 1) cos2 θ(s)

for s0 ≤ s ≤ s2.

We here consider the linear differential equation

(4.9) y′′ +
2
t

y′ +
1

4t2
Sn(t)y = 0,

which coincides with equation (Ln) when δ = 1/4. From Lemma 2.1
we see that all nontrivial solutions of (4.9) are nonoscillatory. Letting
t0 = es0 and putting K3 = y0

√
t0/ln(t0) and K4 = 0 in Lemma 2.1, we

can choose the solution

y(t) = y0

√
t0

ln(t0)

√
ln(t)

t

which satisfies the initial conditions y(t0) = y0 and

y′(t0) =
y0

2t0

( n∑
k=2

1
lk(t0)

− 1
)

.

In fact, noticing that

(tln(t))′ = ln(t)
n∑

k=1

1
lk(t)

,
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we get

y′(t) = y0

√
t0

ln(t0)

√
t

ln(t)
(tln(t))′ − 2ln(t)

2t2

=
y0

2t2

√
t0

ln(t0)

√
t

ln(t)
ln(t)

( n∑
k=2

1
lk(t)

− 1
)

.

Making the change of variable t = es, we can transform equation (4.9)
into the system

(4.10)
ξ̇ = η − ξ,

η̇ = −1
4

Sn(es)ξ.

Let (ξ(s), η(s)) be the solution of (4.10) corresponding to the solution
y(t). Then we have

(ξ(s), η(s)) = (y(es), y′(es)es + y(es)).

Since

ξ(s0) = y(t0) = y0,

η(s0) = y′(t0)t0 + y0 =
y0

2

( n∑
k=2

1
lk(t0)

− 1
)

+ y0

=
y0

2

n∑
k=1

1
lk(t0)

,

we see that (ξ(s0), η(s0)) coincides with the point A. Also, we have

η(s)
ξ(s)

=
y′(t)t + y(t)

y(t)
=

1
2

n∑
k=1

1
lk(es)

↘ 1
2

as s → ∞.

Hence, we conclude that

(4.11) (ξ(s), η(s)) ∈ R+ for s ≥ s0,

where R+ is the region defined in the proof of Lemma 3.2.
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In polar coordinates system (4.10) takes the form

(4.12)
ρ̇ = ρ

[
f1(ϕ) − 1

4
(Sn(es) − 1) sinϕ cosϕ

]
,

ϕ̇ = f2(ϕ) − 1
4
(Sn(es) − 1) cos2 ϕ.

Let (ρ(s), ϕ(s)) be the solution of (4.12) which corresponds to (ξ(s), η(s)).
Then by (4.11) we see that

(4.13) ϕ∗ < ϕ(s) <
π

4
for s ≥ s0.

Let us compare ϕ(s) with θ(s). Recall that θ(s) satisfies the inequality
(4.8). On the other hand, ϕ(s) satisfies the second equation in system
(4.12). As shown above,

(ξ(s0), η(s0)) = A = (u(s0), v(s0)).
Hence by a simple comparison theorem, we obtain

ϕ(s) ≤ θ(s) for s0 ≤ s ≤ s2.

From this inequality and (4.13), we conclude that
ϕ∗ < θ(s) for s0 ≤ s ≤ s2.

However, by the definition of s1 and s2, we have
s0 < s1 and θ(s) ≤ ϕ∗ for s1 ≤ s ≤ s2.

This is a contradiction. We have completed the proof of Theorem 2.2.
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