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EXPONENTIAL FUNCTION ANALOGUE
OF KLOOSTERMAN SUMS

IGOR E. SHPARLINSKI

ABSTRACT. We consider exponential sums of the form

Kg(a, b) =

t∑
x=1

gcd (x,t)=1

exp
(
2πi(agx + bgx−1

)/p
)
,

where g is of multiplicative order t modulo the prime p. We
obtain a nontrivial upper bound on these sums on average
over all elements g of multiplicative order t, provided that
t ≥ p3/4+δ with an arbitrary fixed δ > 0.

1. Introduction. Let p be a prime, and let Fp be a finite field of
p elements. For an integer t ≥ 1 we denote by Zt = {0, . . . , t − 1} the
residue ring modulo t and we denote by Z∗

t the subset of Zt consisting
of ϕ(t) invertible elements, where ϕ(t) is the Euler function. We also
identity Fp with the set {0, . . . , p − 1}.

Finally we define e(z) = exp(2πiz/p) and use log z for the natural
logarithm of z.

For a divisor t|p − 1 we denote by Ut the set of elements g ∈ F∗
p of

multiplicative order t, that is,

Ut = {g ∈ F∗
p | gs �= 1, 1 ≤ s < t; gt = 1}.

It is easy to see that #Ut = ϕ(t).

For g ∈ Ut, we consider exponential sums

Kg(a, b) =
∑

x∈Z∗
t

e(agx + bgx−1
),

where a, b ∈ Fp.
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These sums appear to be new and have never been studied in the
literature. On the other hand, we remark that these sums can be con-
sidered as exponential function analogues of the famous Kloosterman
sums

K(a, b) =
∑

x∈F∗
p

e(ax + bx−1).

Unfortunately it is not clear how to obtain “individual” estimates of
the sums Kg(a, b). Here we derive an upper bound on Kg(a, b) “on
average” over all g ∈ Ut. This bound is nontrivial for t ≥ p3/4+δ for
any fixed δ > 0 and sufficiently large p.

Throughout the paper the implied constants in symbols, ‘O,’ ‘�’
and ‘�’ may occasionally, where obvious, depend on the small positive
parameter ε and are absolute otherwise (we recall that A � B and
B � A are equivalent to A = O(B)).

Our results rely on the following estimate for certain double expo-
nential sums from [2]; see the proof of Theorem 8 of that paper. Let
λ ∈ F∗

p be of multiplicative order t. For any a, b ∈ F∗
p we have the

bound

(1)
∑
u∈Zt

∣∣∣∣
∑
v∈Zt

e(aλv + bλuv)
∣∣∣∣
4

� pt11/3.

2. Main results. Our main estimate is the following.

Theorem 1. The bound

max
gcd (a,b,p)=1

1
ϕ(t)

∑
g∈Ut

|Kg(a, b)| � p1/8+εt5/6

holds.

Proof. It is easy to see that Kg(a, b) = Kg(b, a). Therefore, without
loss of generality, we can assume that gcd (a, p) = 1.

Fix an arbitrary element ϑ ∈ Ut. Then

Ut = {ϑu | u ∈ Z∗
t }.
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Putting
σ =

∑
g∈Ut

|Kg(a, b)|

we obtain

σ =
∑
g∈Ut

|Kg(a, b)| =
∑

u∈Z∗
t

∣∣∣∣
∑

x∈Z∗
t

e(aϑux + bϑux−1
)
∣∣∣∣.

Remarking that, for u ∈ Z∗
t , ux runs through Z∗

t together with x, we
obtain

σ =
∑
g∈Ut

|Kg(a, b)| =
∑

u∈Z∗
t

∣∣∣∣
∑

x∈Z∗
t

e(aϑu2x + bϑx−1
)
∣∣∣∣.

Let N(v) be the number of solutions of the convergence u2 ≡ v
(mod t). Then

σ =
∑

v∈Z∗
t

N(v)
∣∣∣∣

∑
x∈Z∗

t

e(aϑvx + bϑx−1
)
∣∣∣∣.

It has been shown in Lemma 5 of [5] that

(2)
∑

v∈Z∗
t

N(v) = O(t1+ε).

Using the Cauchy inequality and the bound (2), we derive

σ2 =
∑

v∈Z∗
t

N(v)2
∑

x,y∈Z∗
t

e(b(ϑx−1 − ϑy−1
))

×
∑

v∈Z∗
t

e(a(ϑvx − ϑvy))

� t1+ε
∑

x,y∈Z∗
t

∣∣∣∣
∑

v∈Z∗
t

e(a(ϑvx − ϑvy))
∣∣∣∣.

Substituting xy instead of y, we obtain

σ2 � t1+ε
∑

x,y∈Z∗
t

∣∣∣∣
∑

v∈Z∗
t

e(a(ϑvx − ϑvxy))
∣∣∣∣.
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By the Hölder inequality we have

σ8 � t10+4ε
∑

x,y∈Z∗
t

∣∣∣∣
∑

v∈Z∗
t

e(a(ϑvx − ϑvxy))
∣∣∣∣
4

.

For each x ∈ Z∗
t we apply (1) with λ = ϑx getting

σ8 � pt44/3+4ε.

Recalling that

#Ut = ϕ(t) � t

log log(t + 2)
,

see Theorem 5.1 of [9, Chapter 1], we derive the desired result.

It is easy to see that the bound of Theorem 1 is nontrivial for
t ≥ p3/4+δ with an arbitrary fixed δ > 0. In particular, if t = p − 1,
that is, for the average value of over primitive roots, we obtain

max
gcd (a,b,p)=1

1
ϕ(p − 1)

∑
g∈Up−1

|Kg(a, b)| � p23/24+ε.

Given a set M of N points (uν , vν) ∈ [0, 1]2, ν = 1, . . . , N , of the
unit square, we define the discrepancy D(M) of this set as

D(M) = sup
B

∣∣∣∣AN (B)
N

− µ(B)
∣∣∣∣,

where the supremum is taken over all boxes B = [α, β]× [γ, δ] ∈ [0, 1]2,
µ(B) = (β − α)(δ − γ) and AN (B) is the number of points of this set
which hit B.

For g ∈ Ut, we denote by Dg the discrepancy of the following set of
pairs of fractional parts

({
gx

p

}
,

{
gx−1

p

})
, x ∈ Z∗

t .
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Theorem 2. The bound

1
ϕ(t)

∑
g∈Ut

Dg � p1/8+εt−1/6

holds.

Proof. From the Erdös-Turán-Koksm inequality, (see [4, Theorem
1.21]), we derive

Dg � 1
p

+
1

ϕ(t)

∑
0<|a|+|b|<p

1
max{1, |a|}

1
max{1, |b|} |Kg(a, b)|.

Therefore
∑
g∈Ut

Dg � 1
p

+
1

ϕ(t)

∑
0<|a|+|b|<p

1
max{1, |a|}

1
max{1, |b|}

∑
g∈Ut

|Kg(a, b)|

and from Theorem 1 we derive the desired result.

3. Remarks. Theorem 2 implies that for almost all g ∈ F∗
p of

sufficiently large multiplicative order t, gx and gx−1
behave statisti-

cally independently modulo p. This may be considered as evidence
in favor of a certain cryptographic assumption about pseudorandom
behavior modulo p of the pair (gx, gx−1

), x ∈ Z∗
t (see [8, 10]). In

particular, security of several cryptographic constructions is based on
the indistinguishability assumption, which asserts that if t is a large
prime, then it is infeasible to distinguish between a stream of pairs of
the shape (gx, gx−1

) and a stream of pairs of the shape (u, v), where
x and (u, v) are chosen uniformly and independently at random from
Z∗

t and F∗
p ×F∗

p, respectively, see [8, 10] for more details and relevant
references. We see from Theorem 2 that for almost all g ∈ F∗

p these
two streams of pairs have very similar statistical properties and thus
are unlikely to be distinguished by statistical methods. This certainly
does not imply the desired indistinguishability property but the inverse
fact (nonuniformity of distribution) would certainly be disastrous for
cryptographic applications of this assumption.

Our results can be viewed as analogues of those from [2, 3] about
the statistical distribution of triples (gx, gy, gxy), x, y ∈ Z∗

t which
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are motivated by the Diffe-Hellman indistinguishability assumption
for the streams of such triples and the triples (u, v, w), u, v, w ∈ F∗

p.
Cryptographic relevance of results of this type has also been discussed
in [1].

Using the extensions of the bound (1) given in [6, 7] to prime power
and arbitrary composite moduli, one can extend our results to such
moduli as well.

Finally we remark that obtaining a nontrivial upper bound for “in-
dividual” sums Kg(a, b) remains a challenging open question.
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