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BOUNDARY VALUE PROBLEMS IN
OSCILLATING CUSPIDAL WEDGES

V. RABINOVICH, B.-W. SCHULZE AND N. TARKHANOV

ABSTRACT. The paper is devoted to pseudodifferential
boundary value problems in domains with cuspidal wedges.
We show a criterion for the Fredholm property of a boundary
value problem and derive estimates of solutions close to edges.

1. Introduction. Boundary value problems in domains (or on mani-
folds) with singular boundary appear in numerous models of applied sci-
ences, in particular, in mechanics, crack theory, hydrodynamics, math-
ematical physics. Many authors contributed to the corresponding the-
ory under different aspects, especially Kondrat’ev [19], Grisvard [12],
Maz’ya and Plamenevskii [23, 24], Feigin [8, 9], Bagirov and Feigin [1],
Maz’ya, Kozlov and Roßmann [22], Nazarov and Plamenevskii [28].

In recent years the interest in such problems increased enormously,
and new structure insight was obtained by applying pseudodifferential
methods, cf., in particular, Melrose and Mendoza [27], Rabinovich [31,
32], Schrohe and Schulze [35, 36], Mazzeo and Melrose [26].

Some general ideas are the same as in the classical theory for smooth
domains, cf. Boutet de Monvel [3, 4], for instance, to embed the
differential boundary value problems into an algebra of operators in
which the parametrices of elliptic elements can be expressed.

A typical feature of these theories is that a given fixed, say differen-
tial, boundary value problem generates a hierarchy of symbols whose
components are operator-valued and consist of parametrized operators
in the corresponding algebras on spaces of lower order singularity. For
the smooth case and pseudodifferential operators with the transmission
property this is the interior symbolic structure and the boundary sym-
bolic calculus on the half-axis. For operators in the sense of Vishik and
Eskin [6, 44] there appear more general singular integral operators on
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the half-axis (modulo reductions of orders), cf. Gokhberg and Krupnik
[10, 11]. This aspect was widely employed also in the book of Schulze
[38].

Parametrices associated with the inverted symbols should be available
in the corresponding algebras. This emphasizes the role of the values of
operator-valued symbols as elements in the algebras on spaces of lower
order singularity, where the inverses of those parameter-dependent
families are to be expressed. Although these general aspects are rather
clear at first glance, the investigation of boundary value problems in
concrete singular configurations is far from being straightforward, in
particular, for cuspidal singularities on the boundary. In many cases
there are in fact no results at all. The reason is not only the wealth of
new structures but also rather unexpected ambiguities in the choice of
the approach.

Let us mention in this connection the paper [40] where methods of
the noncommutative analysis are used to study operator algebras on
manifolds with power-like cusps, in case the link of the local cone is
closed. There are obtained parametrices and the Fredholm property in
the corresponding weighted Sobolev spaces.

Another approach of the authors, modeled more in the spirit of the
edge pseudodifferential calculus of Schulze [39], is presented in [42]. It
relies on strongly continuous groups acting in Sobolev spaces along the
model cuspidal cone, and “twisted” homogeneity of the edge symbols.
Notice that in such a theory additional trace and potential conditions
along the edge with an analogue of the Lopatinskii condition are quite
natural, while our results here refer to weighted Sobolev spaces where
no data of this kind are required.

As but one example of singular spaces studied in the present paper
we show the canonical wedge

W = {(ϕ(z)x, y, z) ∈ R3 : x ∈ [−1, 1], y ∈ R, z ≥ 0}
in R3, where ϕ is a positive C∞ function on the half-axis z > 0 which
satisfies ϕ(0) = 0. The behavior of ϕ(z) near z = 0 specifies the
singularity of W along the edge Ry = {(0, y, 0) ∈ R3 : y ∈ R}. If
ϕ(z) = O(z), then the singularity of W along the y-axis is conical. If
ϕ(z) = o(z) this singularity is cuspidal. In other cases W has finite
smoothness at the edge. In general the derivative ϕ′(z) need not have
any limit when z → 0, hence W may oscillate close to the edge.
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The results of the paper are based on a specific interplay between
classes of operator-valued symbols and ‘order reductions’ which are
also involved in the symbol estimates. In a simpler situation (isolated
cuspidal singularities on the boundary), ideas of this kind are developed
in [33]. There are applied weighted pseudodifferential operators which
contain the local inverses to the operators of elliptic boundary value
problems near singularities of the boundary. The property of being
slowly varying is of great importance for the symbols of pseudodiffer-
ential operators near singularities. It means that the pseudodifferential
operators may bear oscillating discontinuities in symbols which allows
one to consider boundary value problems in domains with oscillating
cuspidal singularities.

The behavior of symbols in [33] is controlled by an operator-valued
function λ(τ ) satisfying the condition

‖λ(τ + υ)λ−1(τ )‖L(H̃) ≤ c〈υ〉ε for all τ, υ ∈ R,

with some c, ε ∈ R, where H̃ is a Hilbert space and 〈υ〉 = (1+ |υ|2)1/2.

In the case of cuspidal wedges we need a calculus of pseudodifferential
operators where the behavior of symbols is controlled by an operator-
valued function λ(t, τ ) depending on two variables t, τ ∈ R. It should
satisfy

‖λ(t+ θ, τ + υ)λ−1(t, τ )‖L(H̃) ≤ c〈θ〉ε1〈υ〉ε2

for all t, τ, θ, υ ∈ R,

with some constants c, ε1, ε2 ∈ R independent of t, τ, θ, υ. Moreover, a
standing condition on the symbols under study will be that they vary
slowly close to singularities.

The typical differential operator on a manifold with cuspidal edges is
of the form

A = (δ′(r))m
∑

|α|+j≤m

aα,j(y, r)
(

1
δ′(r)

Dy

)α(
1

δ′(r)
Dr

)j

where y stands for local coordinates along the edges, r is the distance
to the edges and aα,j(y, r) are C∞ functions of y, r whose values are
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differential operators of orderm−|α|−j on some compact C∞ manifold
B. Depending on the context, the manifold B is closed or has a
boundary. Furthermore, t = δ(r) is a diffeomorphism of R+ onto
the entire real axis R such that δ(0) = +∞ and δ(+∞) = −∞. The
derivative δ′(r) is a qualitative characteristic of the cuspidal degeneracy.
For the canonical wedge in R3 described above we choose, e.g.,

δ(r) =
∫ ε

r

dz

ϕ(z)

for r > 0 small enough, ε > 0 being any fixed number.

The typical weight function in the theory with edges is

λ(t, τ ) = ((1 + (φ(t))2∆y + τ2)1/2 + ΛB)s,

where φ(t) = −1/δ′(δ−1(t)), t ∈ R and ΛB : Hs(B) → Hs−1(B) is an
order reduction.

The key property of the cuspidal degeneracy is that the function φ(t)
meets the condition

(0.1) lim
t→+∞

φ′(t)
φ(t)

= 0.

It is easy to check that the property (0.1) holds in the case of
power-like and exponential cuspidal degeneracies. Moreover, some
higher-order cuspidal degeneracies obey (0.1). On the other hand, this
property does not hold for usual conical wedges in which case we have
φ(t) = e−t.

It was Feigin [9] who first studied general boundary value problems
in domains with cuspidal wedges. However, this paper does not contain
any proofs and, as far as we know, no proof has appeared until now.
Moreover, Feigin [9] assumed merely power-like cuspidal degeneracy.

Our approach allows us to consider boundary value problems in
domains with oscillating cuspidal wedges as well as pseudodifferential
operators on closed manifolds with cuspidal edges. The boundary may
oscillate near edges and the speed of this oscillation is connected with
the degree of degeneracy.
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Part I. A Class of Pseudodifferential Operators with Operator-
Valued Symbols.

1. Weight operator-valued functions. Let H and H̃ be complex
Hilbert spaces and L(H, H̃) the space of all bounded linear operators
from H to H̃ .

Definition 1.1. We denote by Λ(H, H̃) the space of all functions
λ(t, τ ) on R × R with values in L(H, H̃) such that, for each (t, τ ) ∈
R × R there exists an inverse λ−1(t, τ ) and

(1.1) ‖λ(t+ θ, τ + υ)λ−1(t, τ )‖L(H̃) ≤ c〈θ〉ε1〈υ〉ε2

for all t, τ, θ, υ ∈ R, where c, ε1, ε2 ∈ R are constants independent of
t, τ, θ, υ.

The elements of Λ(H, H̃) will be referred to as operator-valued weight
functions on R × R.

It is easily seen that an operator-valued function λ(t, τ ) satisfies (1.1)
if and only if

(1.2)
‖λ(t+ θ, τ )λ−1(t, τ )‖L(H̃) ≤ c〈θ〉ε1 ,

‖λ(t, τ + υ)λ−1(t, τ )‖L(H̃) ≤ c〈υ〉ε2 ,

the constants ε1 and ε2 being the same. Indeed, if (1.2) is fulfilled,
then we get

‖λ(t+ θ, τ + υ)λ−1(t, τ )‖L(H̃)

≤ ‖λ(t+ θ, τ + υ)λ−1(t, τ + υ)‖L(H̃)‖λ(t, τ + υ)λ−1(t, τ )‖L(H̃)

≤ c2〈θ〉ε1〈υ〉ε2

showing (1.1). The reverse implication is obvious.

2. Symbol classes. Fix

λ1(t, τ ) ∈ Λ(H1, H̃1), λ2(t, τ ) ∈ Λ(H2, H̃2).
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Definition 2.1. By S(λ1, λ) is meant the class of C∞ functions
a(t, τ ) on R×R with values in L(H1, H2) such that, for each α, β ∈ Z+,
there is a constant cα,β(a) with the property that

(2.1)
‖λ2(t, τ )(D

β
t D

α
τ a(t, τ ))λ

−1
1 (t, τ )‖L(H̃1,H̃2)

≤ cα,β(a)

for all (t, τ ) ∈ R × R.

The best constants cα,β(a) in (2.1) define a Fréchet topology in the
space S(λ1, λ2). The elements of S(λ1, λ2) are called operator-valued
symbols on T ∗R ∼= R × R.

To any symbol a ∈ S(λ1, λ2) there corresponds a pseudodifferential
operator A = op (a) by

Au (t) =
1
2π

∫
R

dτ

∫
R

ei(t−t′)τa(t, τ )u(t′) dt′,

the operator A being first defined on functions u ∈ C∞
comp(R, H1).

Denote by OPS(λ1, λ2) the class of all operators A = op (a) with
symbols a ∈ S(λ1, λ2).

Pseudodifferential operators with scalar-valued symbols whose be-
havior is controlled by scalar-valued weight functions λ(t, τ ) were in-
troduced by Kumano-go and Taniguchi [20]. The calculus of [20] was
later generalized by Beals [2] (see also Hörmander [18]). The calculus
of Beals and Hörmander was extended to operator-valued symbols in
Levendorskii [21]. However, the calculus of [21] requires certain re-
strictions on symbols which are not fulfilled for the symbols arising in
the study of differential operators on cuspidal wedges.

We introduce an analogue of the calculus of Kumano-go and Taniguchi
[20] for operator-valued symbols, which relies on oscillatory integrals
with operator-valued amplitude functions. For weight functions λ(t, τ )
independent of t, a calculus of pseudodifferential operators with appli-
cations to boundary value problems in domains with singular boundary
points was given by the first author [29, 30, 32] and in [35].

3. A composition formula for pseudodifferential operators.
The following result gives rise to a calculus of pseudodifferential oper-
ators with symbols in S(λ1, λ2).
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Proposition 3.1. Suppose that A ∈ OPS(λ1, λ2) and B ∈
OPS(λ2, λ3). Then BA ∈ OPS(λ1, λ3), the symbol of BA is

(3.1) σBA(t, τ ) =
1
2π

∫∫
R×R

e−iθυσB(t, τ + υ)σA(t+ θ, τ ) dθ dυ

and the corresponding mapping S(λ1, λ2) × S(λ2, λ3) → S(λ1, λ3) is
continuous.

Proof. The proof is actually the same as the proof of Proposition 1.4.1
in [33].

We emphasize that the double integral in (3.1) is regarded as an os-
cillatory integral. For a definition of oscillating integrals with operator-
valued amplitude functions, we refer the reader to [33].

4. Formal adjoint. Let H be a Hilbert space. Denote by
S(R, H) = S(R)⊗̂πH the space of all rapidly decreasing C∞ functions
on R with values in H. We endow S(R, H) with a Fréchet topology
defined by the sequence of norms

‖u‖H,J = sup
t∈R

0≤j≤J

〈t〉J‖u(j)(t)‖H , J = 0, 1, . . . .

Proposition 4.1. If a ∈ S(λ1, λ2), then op (a) is a bounded operator
from S(R, H1) to S(R, H2).

Proof. Indeed (1.1) yields

‖λ(t, τ )‖L(H,H̃) ≤ ‖λ(t, τ )λ−1(0, 0)‖L(H̃)‖λ(0, 0)‖L(H,H̃)

≤ c〈t〉ε1〈τ 〉ε2

as well as a similar estimate for the inverse λ−1(t, τ ). When combined
with (2.1) these give

‖Dβ
t D

α
τ a(t, τ )‖L(H1,H2) ≤ cα,β〈t〉δ1〈τ 〉δ2



1406 V. RABINOVICH, B.-W. SCHULZE AND N. TARKHANOV

for all α, β ∈ Z+, the constants cα,β , δ1, δ2 ∈ R being independent
of t and τ . Now the desired assertion follows by differentiation and
integration by parts just in the same way as for scalar-valued functions.

Let A = op (a) where a ∈ S(λ1, λ2). Then the formal adjoint A∗ of
A is defined by the equality

(Au, v)L2(R,H2) = (u,A∗v)L2(R,H1)

for any u ∈ S(R, H1) and v ∈ S(R, H2).

Proposition 4.2. If A∈OPS(λ1, λ2), then A∗∈OPS((λ−1
2 )∗, (λ−1

1 )∗)
and

σA∗(t, τ ) =
1
2π

∫∫
R×R

e−iθυ(σA(t+ θ, τ + υ))∗ dθ dυ,

the corresponding mapping S(λ1, λ2) → S((λ−1
2 )∗, (λ−1

1 )∗) being con-
tinuous.

Proof. The proof is standard.

Applying Proposition 4.1 to the adjoint operator A∗ and using a
duality argument, we arrive at the following result.

Corollary 4.3. Each operator A ∈ OPS(λ1, λ2) extends to a
continuous mapping S ′(R, H1) → S ′(R, H2), where S ′(R, H) is the
dual space of S(R, H).

Recall that the elements of S ′(R, H) are usually referred to as
temperate distributions on R with values in H.

5. Boundedness of pseudodifferential operators in Sobolev
spaces of distributions. Unless otherwise stated we assume that
the operator-valued weight functions λ(t, τ ) under consideration are of
class C∞ on R × R and satisfy

(5.1)
‖(Dβ

t D
α
τ λ(t, τ ))λ−1(t, τ )‖L(H̃) ≤ cα,β ,

‖λ−1(t, τ )(Dβ
t D

α
τ λ(t, τ ))‖L(H) ≤ cα,β
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for all α, β ∈ Z+, the constants cα,β being independent of (t, τ ) ∈ R×R.

We denote by Λ′(H, H̃) the subspace of Λ(H, H̃) consisting of
operator-valued weight functions satisfying (5.1).

By the very definition, if λ ∈ Λ′(H, H̃), then λ belongs to both
S(λ, 1H̃) and S(1H , λ

−1), and conversely.

Our next goal is to introduce, given any λ ∈ Λ′(H, H̃), a Sobolev
space H(λ) related to this weight function. If λ(t, τ ) were independent
of t, the operator op (λ) would be invertible and we might proceed just
in the same way as in [33]. In order to adapt the definition of [33] to
general weight functions, we need an auxiliary construction.

Proposition 5.1. Suppose λ ∈ Λ′(H, H̃). Then

1) the inverse λ−1 belongs to both S(1H̃ , λ) and S(λ−1, 1H);

2) setting λε(t, τ ) = λ(t, ετ ), we get

(5.2)
op (λε)op (λ−1

ε ) = 1L2(R,H̃) + r′ε,

op (λ−1
ε )op (λε) = 1L2(R,H) + r′′ε

where

(5.3)
lim
ε→0

‖r′ε‖L(L2(R,H̃)) = 0,

lim
ε→0

‖r′′ε ‖L(L2(R,H)) = 0.

Proof. The first part follows by the rule of differentiation of the
inverse of an operator-valued function, cf. [33, Proposition 1.6.1].

Let us prove the second part. Put

Aε = op (λε), Bε = op (λ−1
ε ).

By formula (3.1), we get

(5.4) σAε,Bε
(t, τ ) =

1
2π

∫∫
R×R

e−iθυλε(t, τ + υ)λ−1
ε (t+ θ, τ ) dθ dυ.

We now make use of the Lagrange formula to see that

λε(t, τ + υ) = λε(t, τ ) + υ

∫ 1

0

∂λε

∂τ
(t, τ + ϑυ) dϑ.
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Substituting this into (5.4) and using a particular case of the Fourier
inversion formula,

1
2π

∫
R

dυ

∫
R

e−iθυλ−1
ε (t+ θ, τ ) dθ = λ−1

ε (t, τ ),

we get

σAε,Bε
(t, τ ) = 1 +

∫ 1

0

qε(t, τ, ϑ) dϑ,

where

qε(t, τ, ϑ) =
1

2πi

∫∫
R×R

e−iθυ ∂λε

∂τ
(t, τ + ϑυ)

∂λ−1
ε

∂t
(t+ θ, τ ) dθ dυ,

the double integrals on the right side being regarded as oscillatory ones.

From the first estimate (5.1) it follows that qε(t, τ, ϑ) meets an
estimate

‖Dβ
t D

α
τ qε(t, τ, ϑ)‖L(H̃) ≤ cα,βε

α+1

for all α, β ∈ Z+ with cα,β a constant independent of (t, τ ) ∈ R × R
and ϑ ∈ [0, 1]. The Calderon-Vaillancourt theorem now shows that

lim
ε→0

‖op (qε(t, τ, ϑ))‖L(L2(R,H̃)) = 0

uniformly with respect to ϑ ∈ [0, 1]. Thus we can assert that

op (λε)op (λ−1
ε ) = 1L2(R,H̃) + r′ε,

with r′ε ∈ OPS(1H̃ , 1H̃) satisfying

lim
ε→0

‖r′ε‖L(L2(R,H̃)) = 0,

as required.

The second equality of (5.2) is proved in just the same way, using the
second estimate of (5.1). This completes the proof.

The interest of the proposition is that it allows one to construct so-
called order reductions within the calculus.
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Corollary 5.2. For any λ ∈ Λ′(H, H̃) the operator Rε(λ) = op (λε)
is invertible for ε > 0 small enough, and the inverse R−1

ε (λ) is in
OPS(λ−1, 1H).

Proof. By Proposition 5.1 Rε(λ) ∈ OPS(λ, 1H̃) fulfills (5.2) with

r′ε ∈ OPS(1H̃ , 1H̃), r′′ε ∈ OPS(1H , 1H)

satisfying (5.3). Hence it follows that both 1+r′ε and 1+r′′ε are invertible
for sufficiently small ε > 0. Moreover, we can assert by a theorem of
Beals [2], that

(1 + r′ε)
−1 ∈ OPS(1H̃ , 1H̃), (1 + r′′ε )−1 ∈ OPS(1H , 1H)

for ε > 0 small enough. We deduce that

op (λ−1
ε )(1 + r′ε)

−1 ∈ OPS(1H̃ , λ),
(1 + r′′ε )−1op (λ−1

ε ) ∈ OPS(λ−1, 1H)

are the right inverse and the left inverse of Rε(λ), respectively. Hence
they coincide, thus giving an inverse R−1

ε (λ) ∈ OPS(λ−1, 1H) for
Rε(λ), as required.

We make use of the operators Rε(λ) for ε > 0 small enough to
introduce Sobolev spaces of operator-valued functions.

Definition 5.3. Let λ ∈ Λ′(H, H̃). We denote by H(λ) the space of
all distributions u ∈ S ′(R, H) with finite norm

‖u‖H(λ) = ‖Rε(λ)u‖L2(R,H̃).

Analysis similar to that in the proof of Proposition 5.1 shows that the
composition Rδ(λ)R−1

ε (λ) is a bounded operator in L2(R, H̃), provided
that δ, ε > 0 are sufficiently small. Hence the spaceH(λ) is independent
of the particular choice of 0 < ε� 1.

Proposition 5.4. Suppose λ1 ∈ Λ′(H1, H̃1) and λ2 ∈ Λ′(H2, H̃2).
Every operator A ∈ OPS(λ1, λ2) extends to a continuous mapping
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H(λ1) → H(λ2). Moreover,

(5.5) ‖Au‖H(λ2) ≤ c

( ∑
α+β≤N

cα,β(σA)
)
‖u‖H(λ1), u ∈ H(λ1),

the constants c > 0 and N ∈ Z+ being independent of A.

Proof. The boundedness of A : H(λ1) → H(λ2) is equivalent to the
boundedness of Ã : L2(R, H̃1) → L2(R, H̃2), where

Ã = Rε(λ2)AR−1
ε (λ1),

Rε(λ2) and R−1
ε (λ1) being given by Corollary 5.2.

By Proposition 3.1 we conclude that Ã ∈ OPS(1H̃1
, 1H̃1

), and so

sup
x,ξ

‖Dβ
t D

α
τ σÃ(t, τ )‖L(H̃1,H̃2)

≤ cα,β(σÃ)

for all α, β ∈ Z+. According to the Calderon-Vaillancourt theorem, Ã
extends to a bounded operator L2(R, H̃1) → L2(R, H̃2) and

‖Ã‖L(L2(R,H̃1),L2(R,H̃2))
≤ c̃

∑
α+β≤Ñ

cα,β(σÃ),

the constants c̃ > 0 and Ñ ∈ Z+ being independent of Ã. Combining
this with Proposition 3.1, we arrive at estimate (5.5), as required.

We finish this section by yet another technical assertion whose proof
is similar to the proof of Proposition 5.1.

Proposition 5.5. Let A ∈ OPS(λ1, λ2). Suppose χ ∈ C∞(R)
satisfies χ(t) = 0 for t ≤ 1 and χ(t) = 1 for t ≥ 2. Then

lim
R→∞

‖[A,χ(·/R)]‖L(H(λ1),H(λ2)) = 0.

6. Pseudodifferential operators with symbols slowly varying
at infinity. In studying pseudodifferential operators A = op (a(x, ξ))
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on Rn it is usually assumed that the symbol a(x, ξ) stabilizes in some
sense as x → ∞. There are, however, a great number of problems
which lead to differential or pseudodifferential operators without the
condition of stabilization of the symbol at the point of infinity. A class
of such operators was studied by Grushin [13] who extended a joint
work with Vishik [16]. The following definition introduces this class in
the case of operator-valued symbols on the real axis.

Definition 6.1. A symbol a(t, τ ) ∈ S(λ1, λ2) is called slowly varying
as t→ +∞ if

(6.1) lim
t→+∞ sup

τ∈R
‖λ2(t, τ )(D

β
t D

α
τ a(t, τ ))λ

−1
1 (t, τ )‖L(H̃1,H̃2)

= 0,

for each α ≥ 0 and β ≥ 1. We write Ssv(λ1, λ2) for the class of symbols
slowly varying as t→ +∞.

We also distinguish the subclass S0(λ1, λ2) of Ssv(λ1, λ2) consisting
of the symbols a(t, τ ) which obey (6.1) for all α, β ∈ Z+.

Proposition 6.2. 1) If A ∈ OPSsv(λ1, λ2) and B ∈ OPSsv(λ2, λ3),
then BA ∈ OPSsv(λ1, λ3) and the symbol of BA is given by

σBA(t, τ ) = σB(t, τ )σA(t, τ ) + r(t, τ ),

where r(t, τ ) ∈ S0(λ1, λ3).

2) If A ∈ OPSsv(λ1, λ2), then A∗ ∈ OPSsv((λ−1
2 )∗, (λ−1

1 )∗) and the
symbol of A∗ is given by

σA∗(t, τ ) = (σA(t, τ ))∗ + r(t, τ ),

where r(t, τ ) ∈ S0((λ−1
2 )∗, (λ−1

1 )∗).

Proof. The proof is similar to the proof of Proposition 1.5.2 in [33].

7. Local invertibility of pseudodifferential operators at
infinity. Let χ ∈ C∞(R) satisfy χ(t) = 0, if t ≤ 1 and χ(t) = 1,
if t ≥ 2. Put χR(t) = χ(t/R) for R > 0.
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Definition 7.1. We say that an operator A ∈ L(H(λ1), H(λ2)) is
locally invertible from the left (right) at the point +∞ if there exist
R > 0 and an operator B ∈ L(H(λ2), H(λ1)) such that BAχR =
χR(χRAB = χR), respectively.

We call A locally invertible at the point +∞ if it is locally invertible
both from the left and from the right at this point.

Before formulating our next result, we note that the concept of being
slowly varying is also applicable to the weight functions in Λ′(H, H̃).
Namely, such a function λ(t, τ ) is said to vary slowly as t→ +∞ if

lim
t→+∞ sup

τ∈R
‖(Dβ

t D
α
τ λ(t, τ ))λ−1

1 (t, τ )‖L(H̃) = 0

for all α ∈ Z+ and β = 1, 2, . . . .

Theorem 7.2. Suppose λj ∈ Λ′(Hj , H̃j), j = 1, 2, are slowly
varying as t → +∞. Let A = op (a) where a ∈ Ssv(λ1, λ2). Then
A : H(λ1) → H(λ2) is locally invertible at the point +∞ if and only if
there exists a number R > 0 such that the symbol a(t, τ ) : H1 → H2 is
invertible for all (t, τ ) ∈ (R,+∞) × R and

(7.1) sup
(R,+∞)×R

‖λ1(t, τ )a−1(t, τ )λ−1
2 (t, τ )‖L(H̃2,H̃1)

<∞.

Proof. The proof of this theorem is actually the same as the proof of
Theorem 1.7.4 in [33].

8. Exponential weighted estimates for pseudodifferential
operators with analytic symbols. For γ ∈ R, we denote by H(λ; γ)
the completion of C∞

comp(R, H) with respect to the norm

‖u‖H(λ;γ) = ‖eγtu‖H(λ).

If a(t, τ + iγ) ∈ S(λ1, λ2), then

op (a(t, τ + iγ)) = eγtopγ(a(t, z))e−γt,
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where

opγ(a(t, z))u(t) =
1
2π

∫
R+iγ

dz

∫
R

ei(t−t′)za(t, z)u(t′) dt′, t ∈ R,

for u ∈ C∞
comp(R, H1). Hence it follows that

‖opγ(a(t, z))u‖H(λ2;γ) = ‖eγtopγ(a(t, z))u‖H(λ2)

= ‖op (a(t, τ + iγ))eγtu‖H(λ2)

≤ c‖eγtu‖H(λ1)

= c‖u‖H(λ1;γ),

c being the norm of op (a(t, τ + iγ)) in L(H(λ1), H(λ2)). Thus,
opγ(a(t, z)) extends to a continuous mapping H(λ1; γ) → H(λ2; γ)).

If a(t, z) were a polynomial in z, the operator opγ(a(t, z)) would be
differential and thus independent of the particular choice of γ ∈ R.
This still holds for those symbols a(t, z) which extend analytically in
z to some strip around R + iγ. More precisely, assume that a(t, z)
is an analytic function of z in a horizontal strip R + i(a, b) such that
a(t, τ + iγ) ∈ S(λ1, λ2) uniformly in γ in compact intervals of (a, b).
Then it is an easy consequence of the Cauchy theorem that the operator
opγ(a(t, z)), when restricted to C∞

comp(R, H1), does not depend on
γ ∈ (a, b). We will denote it simply by op (a). As described above,
op (a) extends to a continuous mapping H(λ1; γ) → H(λ2; γ) for each
γ ∈ (a, b) and this extension is given by opγ(a(t, z)).

Theorem 8.1. Let a(t, z) be an analytic function of z ∈ R + i(a, b)
such that a(t, τ + iγ) ∈ Ssv(λ1, λ2) uniformly in γ ∈ (a, b). Suppose
there is an R > 0 such that the symbol a(t, z) : H1 → H2 is invertible
for all t > R and z ∈ R + i(a, b) and

sup
t>R

z∈R+i(a,b)

‖λ1(t, τ )a−1(t, z)λ−1
2 (t, τ )‖L(H̃2,H̃1)

<∞.

Then, if a < γ′ ≤ γ′′ < b and u ∈ H(λ1; γ′) satisfies op (a)u ∈
H(λ2; γ′′) near t = +∞, then u ∈ H(λ1, γ

′′) near t = +∞.

As usual, we say that u ∈ D′(R, H) is of class H(λ; γ) near t = +∞
if ϕu ∈ H(λ; γ) for some function ϕ ∈ C∞(R) equal to 0 near t = −∞
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and 1 near t = +∞. Note that ϕH(λ; γ′′) ↪→ ϕH(λ; γ′) provided
γ′ ≤ γ′′.

The proof of Theorem 8.1 is based on the following two lemmas proved
in a more general context in [31].

Lemma 8.2. Let a(t, z) satisfy

(8.1)
sup
t∈R

z∈R+i(a,b)

‖λ2(t, τ )(D
β
t D

α
z a(t, z))λ

−1
1 (t, τ )‖L(H̃1,H̃2)

<∞,

α, β ∈ Z+,

and let w(t) = exp γ(t) with γ ∈ C∞(R) such that a < inf γ′ ≤ sup γ′ <
b. Then op (a) extends to a continuous mapping H(λ1;w(t)) →
H(λ2;w(t)).

Proof. See Theorem 3.1 (a) in [31]. In fact, Theorem 3.1 is proved
in [31] for the weight functions λ(t, τ ) that do not depend on t ∈ R.
However, the same proof still goes for arbitrary λ(t, τ ) meeting our
conditions.

The spaces H(λ;w(t)) generalize H(λ; γ) while the function w(t) =
exp(γt) is assigned to any γ ∈ R. More precisely, by H(λ;w(t))
is meant the completion of C∞

comp(R, H) with respect to the norm
‖u‖H(λ;w(t)) = ‖w(t)u‖H(λ).

Lemma 8.3. Suppose aR(t, z) = 1 + rR(t, z), R > 0, is a family of
analytic functions of z ∈ R + i(a, b) with values in L(H) such that

(8.2)
lim

R→∞
sup
t∈R

z∈R+i(a,b)

‖λ(t, τ )(Dβ
t (Dα

z rR(t, z))λ−1(t, τ )‖L(H̃) = 0,

α, β ∈ Z+.

Then the operator AR = op (aR) on H(λ; γ), γ ∈ (a, b) is invertible for
R > 0 large enough and A−1

R = op (sR) where sR(t, z) is an analytic
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operator-valued symbol satisfying

(8.3)
sup
t∈R

z∈R+i(a,b)

‖λ(t, τ )(Dβ
t D

α
z sR(t, z))λ−1(t, τ )‖L(H̃) ≤ cα,β ,

α, β ∈ Z+.

Proof. See Theorems 2.2 and 2.3 in [31].

Proof of Theorem 8.1. Let χR(t) stand for a cut-off function at t =
+∞, as above. By assumption, the symbol bR(t, z) = χR(t)a−1(t, z) is
an analytic operator-valued function satisfying an estimate of the type
(8.1), provided that R > 0 is large enough.

Set BR = op (bR). We get BRA = χR + op (rR) where rR(t, z) is an
analytic function of z ∈ R + i(a, b) with values in L(H1) satisfying

sup
t∈R

z∈R+i(a,b)

‖λ1(t, τ )(D
β
t D

α
z rR(t, z))λ−1

1 (t, τ )‖L(H̃1)
<∞

for all α, β ∈ Z+. Moreover, we have

(8.4) lim
t→+∞ sup

z∈R+i(a,b)

‖λ1(t, τ )(D
β
t D

α
z rR(t, z))λ−1

1 (t, τ )‖L(H̃1)
= 0,

for each α, β ∈ Z+ because both a(t, z) and bR(t, z) are slowly varying
at t = +∞.

Pick yet another cut-off function χ̃ at t = +∞ such that χ “covers”
χ̃, i.e., χχ̃ = χ̃. By the above, we have

χRBRAχ̃R = χ̃R + χR op (rR)χ̃R

= (1 + χR op (rR))χ̃R.

It follows from (8.4) that the symbol χR(t)rR(t, z) meets condition
(8.2). By Lemma 8.3 the operator 1+χR op (rR) onH(λ1; γ), γ ∈ (a, b),
is invertible for sufficiently large R > 0 and the inverse has an analytic
symbol sR(t, z) satisfying estimates (8.3), with λ replaced by λ1. We
thus obtain

(1 + χR op (rR))−1χRBRAχ̃R = χ̃R
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for all R > 0 large enough, where PR = (1 + χR op (rR))−1χRBR is
a pseudodifferential operator with an analytic operator-valued symbol
pR(t, z) satisfying

sup
t∈R

z∈R+i(a,b)

‖λ1(t, τ )(D
β
t D

α
z pR(t, z))λ−1

2 (t, τ )‖L(H̃2,H̃1)
≤ cα,β ,

for any α, β ∈ Z+. These estimates ensure, by Lemma 8.2, the
boundedness of the operator PR acting as H(λ2;w(t)) → H(λ1;w(t)),
where w(t) = exp γ(t) and γ ∈ C∞(R) is such that a < inft γ

′(t) ≤
supt γ

′(t) < b. In particular, we may take

γ(t) =
{
γ′t if t ≤ 1;
γ′′t if t ≥ 2,

and extend it to a smooth function on the whole axis satisfying the
above conditions.

Having disposed of this preliminary step, we are able to complete
the proof of the theorem. Indeed, suppose u ∈ H(λ1, γ

′) satisfies
op (a)u = f with f ∈ H(λ2; γ′) bearing moreover the property that
f ∈ H(λ2; γ′′) near t = +∞. Write

χ̃Ru = −PRA(1 − χ̃R)u+ PRf.

It is evident that (1 − χ̃R)u ∈ H(λ1;w(t)) and f ∈ H(λ2;w(t)).
According to Lemma 8.2, PRA extends to a continuous mapping of
H(λ1;w(t)); hence, χ̃Ru ∈ H(λ1;w(t)). This yields u ∈ H(λ1; γ′′) near
t = +∞ which is our claim.

9. Examples of weight functions. In this section we show several
examples of operator-valued weight functions λ(t, τ ) to be used in the
calculus on manifolds with edges.

Example 9.1. Let

H = Hs(Rq), H̃ = L2(Rq)

and
λ(t, τ ) = (1 + (φ(t))2∆y + τ2)s/2,
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where φ(t) > 0 is a C∞ function on the real axis satisfying an estimate

(9.1)
φ(t)
φ(θ)

≤ c(1 + |t− θ|)ε for all t, θ ∈ R,

with c and ε ≥ 0 independent of t and θ, ∆y = D2
y1

+ · · · +D2
yq

is the
nonnegative Laplace operator on Rq and s ∈ R. We have

λ(t, τ ) = op (1 + (φ(t))2|η|2 + τ2)s/2,

λ−1(t, τ ) = op (1 + (φ(t))2|η|2 + τ2)−s/2

whence

λ(t+ θ, τ + υ)λ−1(t, τ ) = op
(

1 + (φ(t+ θ))2|η|2 + (τ + υ)2

1 + (φ(t))2|η|2 + τ2

)s/2

,

for the symbols are independent of y. To verify (1.1) we need an
elementary estimate.

Lemma 9.2. If q ≥ 1, then

(q2 + τ2)s/2

(q2 + υ2)s/2
≤ 2|s|/2(1 + |τ − υ|2)|s|/2.

Proof. Indeed,

(q2 + τ2)s/2

(q2 + υ2)s/2
=

(1 + (τ/q)2)s/2

(1 + (υ/q)2)s/2

≤ 2|s|/2(1 + ((τ/q) − (υ/q))2)|s|/2

≤ 2|s|/2(1 + (τ − υ)2)|s|/2,

the first estimate being a consequence of the well-known Peetre inequal-
ity. This is our claim.

Applying Lemma 9.2 we obtain

(9.2)
(1 + (φ(t))2|η|2 + τ2)s/2

(1 + (φ(t))2|η|2 + υ2)s/2
≤ 2|s|/2(1 + |τ − υ|2)|s|/2
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for all τ, υ ∈ R. Further,

1 + (φ(t+ θ))2|η|2 + τ2 ≤ 1 + c2(1 + |θ|)2ε(φ(t))2|η|2 + τ2

≤ c2(1 + |θ|)2ε(1 + (φ(t))2|η|2 + τ2)

where c ≥ 1 is the constant of (9.1). Hence it follows that

1
c2(1 + |θ|)2ε

≤ 1 + (φ(t+ θ))2|η|2 + τ2

1 + (φ(t))2|η|2 + τ2
≤ c2(1 + |θ|)2ε,

and so

(9.3)
(1 + (φ(t+ θ))2|η|2 + τ2)s/2

(1 + (φ(t))2|η|2 + τ2)s/2
≤ c|s|(1 + |θ|)ε|s|

for all t, θ ∈ R. As

‖op (a(η))‖L(L2(Rq)) ≤ sup
η∈Rq

|a(η)|,

the estimates (9.2) and (9.3) imply the estimates (1.2) for λ(t, τ ) with
ε1 = ε|s| and ε2 = |s|. Thus, we get λ ∈ Λ(Hs(Rq), L2(Rq)), as
required.

Example 9.3. Suppose B is a C∞ compact closed manifold and
Rq ×B a cylindrical manifold over B. For s ∈ R, set

H = Hs(Rq ×B), H̃ = L2(Rq ×B)

and
λ(t, τ ) = (1 + (φ(t))2∆y + τ2 + ∆B)s/2,

where φ(t) > 0 is a C∞ function on R satisfying (9.1) and ∆B = ∇∗∇
is the Laplace operator associated with a connection ∇ on B. Let
(ei)i=1,2,... be a complete orthonormal system in L2(B) consisting of
eigenfunctions of ∆B, and let (µi)i=1,2,... be the corresponding system
of eigenvalues, each µi being nonnegative. If u(y, x) ∈ L2(Rq × B),
then

λ(t+ θ, τ + υ)λ−1(t, τ )u

=
∞∑

i=1

F−1
η �→y

λi(t+ θ, η, τ + υ)
λi(t, η, τ)

Fy �→η(u(y, ·), ei)ei
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where
λi(t, η, τ) = (1 + (φ(t))2|η|2 + τ2 + µi)s/2

and (u(y, ·), ei) is the scalar product of u(y, x) and ei(x) in L2(B).
Hence we deduce that

‖λ(t+ θ, τ + υ)λ−1(t, τ )u‖2
H̃

=
∞∑

i=1

∫
Rq

∣∣∣∣λi(t+ θ, η, τ + υ)
λi(t, η, τ)

∣∣∣∣
2

|Fy �→η(y(y, ·), ei)|2 dη

≤ sup
η∈Rq

i=1,2,...

∣∣∣∣λi(t+ θ, η, τ + υ)
λi(t, η, τ)

∣∣∣∣
2 ∞∑

i=1

∫
Rq

|Fy �→η(u(y, ·), ei)|2 dη

= sup
η∈Rq

i=1,2,...

∣∣∣∣λi(t+ θ, η, τ + υ)
λi(t, η, τ)

∣∣∣∣
2

‖u‖2
H̃
,

and so

‖λ(t+ θ, τ + υ)λ−1(t, τ )‖L(H̃) ≤ sup
η∈Rq

i=1,2,...

∣∣∣∣λi(t+ θ, η, τ + υ)
λi(t, η, τ)

∣∣∣∣

for all t, τ, θ, υ ∈ R. From what has already been proved in Exam-
ple 9.1, it follows that

∣∣∣∣λi(t+ θ, η, τ + υ)
λi(t, η, τ)

∣∣∣∣ ≤ 2(ε+1)|s|/2c|s|〈θ〉ε|s|〈υ〉|s|

with c a constant independent of t, τ, θ and υ. Thus we see that λ is of
class Λ(Hs(Rq ×B), L2(Rq ×B)).

Example 9.4. Let

Rn
± = {x = (x′, xn) ∈ Rn : ±xn > 0}

and let ξ = (ξ′, ξn) be the corresponding splitting of the covariables
ξ ∈ Rn. For s ∈ R, we denote by Hs(R

n

+) the space consisting of the
restrictions to Rn

+ of distributions in Hs(Rn). We have

Hs(R
n

+) = Hs(Rn)/
◦
Hs(R

n

−)
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where
◦
Hs(R

n

−) is the subspace of Hs(Rn) consisting of distributions
supported in R

n

−. Under the quotient norm, Hs(R
n

+) is a Hilbert

space.1 As
◦
Hs(R

n

−) coincides with the closure of C∞
comp(Rn

−) inHs(Rn),
it follows that

(9.4) (Hs(R
n

+))′
top∼=

◦
H−s(R

n

+)

under the pairing induced by the scalar product of L2(Rn). It is well
known that the operator

Λ+ = op (〈ξ′〉 + iξn)

restricts to a topological isomorphism
◦
Hs(R

n

+) →
◦
Hs−1(R

n

+) for any
s ∈ R (see [14]). The formal adjoint to this mapping is given by
r+Λ−e+, where

Λ− = op (〈ξ′〉 − iξn)

is preceded by extension e+ by zero to Rn and followed by restriction
r+ to Rn

+. From (9.4) we conclude that r+Λ−e+ induces a topological
isomorphism Hs(R

n

+) → Hs−1(R
n

+) for any s > −1/2. Put

H =
◦
Hs(Rq × R

n

+), H̃ = L2(Rq × R
n

+)

and
λ(t, τ ) = ((1 + (φ(t))2∆y + τ2)1/2 + Λ+)s,

where φ ∈ C∞
loc(R) and ∆y are as above whereas s ∈ Z. When passing

to the Fourier images with respect to y and x, we reduce λ(t, τ ) to
multiplication by the scalar-valued weight function

((1 + (φ(t))2|η|2 + τ2)1/2 + 〈ξ′〉 + iξn)s,

and so estimate (1.1) for λ(t, τ ) is verified in much the same way as in

Example 9.1. Thus, λ ∈ Λ(
◦
Hs(Rq ×R

n

+), L2(Rq ×R
n

+)). On the other
hand, if

H = Hs(Rq × R
n

+), H̃ = L2(Rq × R
n

+)

and
λ(t, τ ) = ((1 + (φ(t))2∆y + τ2)1/2 + r+Λ−e+)s,
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where s ∈ Z+, then we make use of what has already been proved and
a familiar duality argument to see that λ ∈ Λ(Hs(Rq × R

n

+), L2(Rq ×
R

n

+)). This choice of the weight function is certainly more relevant to
our theory than the preceding one.

Note that the “order-reducing” operators op (〈ξ′〉 ± iξn)s for s ∈ R
in the half-space have been used by Vishik and Eskin [44]. Their
symbols are not in Ss

1,0(T
∗Rn) since 〈ξ′〉 does not satisfy all the

estimates in terms of powers of 〈ξ〉 required for that. However, these
operators are convenient for special purposes and sometimes allow
simpler formulations. In the Boutet de Monvel calculus they are usually
replaced by other operators with almost as convenient properties (see
Grubb [15], Schrohe and Schulze [35], and so on).

Example 9.5. Finally suppose that B is a C∞ compact manifold
with boundary. Denote by 2B the “double” of B, i.e., a C∞ compact
closed manifold obtained by gluing together two copies of B along ∂B.
For s ∈ R, we defineHs(B) to be the space formed by the restrictions of
distributions in Hs(2B) to the interior of B, with the standard quotient
norm. There is an order-reducing operator

ΛB : Hs(B) −→ Hs−1(B), s > −1/2,

possessing the following properties:

• in local coordinates near the boundary, ΛB is given by r+Λ−e+
with ξ′ replaced by (ξ′, µ), µ ∈ R being a sufficiently large parameter;

• the operator 〈τ 〉+ ΛB is invertible for all τ ∈ R, the inverse being
given by (〈τ 〉 + r+Λ−e+)−1 in local coordinates near ∂B; and

• the norm of (〈τ +υ〉+ΛB)(〈τ 〉+ΛB)−1 in L(L2(B)) is dominated
by cmax(1, 〈τ + υ〉/〈τ 〉), with c a constant independent of τ, υ ∈ R,

cf. [15, Section 5]. We now set

H = Hs(Rq ×B), H̃ = L2(Rq ×B)

and

λ(t, τ ) = ((1 + (φ(t))2∆y + τ2)1/2 + ΛB)s,
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for s ∈ Z+. We claim that λ ∈ Λ(Hs(Rq ×B), L2(Rq ×B)). To prove
this fix u ∈ L2(Rq ×B). We have

‖λ(t+ θ, τ + υ)λ−1(t, τ )u‖2
H̃

=
∫
Rq

‖Fy �→ηλ(t+ θ, τ + υ)λ−1(t, τ )u‖2
L2(B) dη

≤
∫
Rq

‖b(t+ θ, η, τ + υ)b−1(t, η, τ)‖2s
L(L2(B))‖Fy �→ηu‖2

L2(B) dη

≤ ( sup
η∈Rq

‖b(t+ θ, η, τ + υ)b−1(t, η, τ)‖2s
L(L2(B)))‖u‖2

H̃

for all t, τ, θ, υ ∈ R, where

b(t, η, τ) = (1 + (φ(t))2|η|2 + τ2)1/2 + ΛB.

This yields

(9.5)
‖λ(t+ θ, τ + υ)λ−1(t, τ )‖L(H̃)

≤ sup
η∈Rq

‖b(t+ θ, η, τ + υ)b−1(t, η, τ)‖s
L(L2(B)),

and so we are reduced to estimating the norm of b(t + θ, η, τ +
υ)b−1(t, η, τ) in L(L2(B)). On the other hand, we get

‖b(t+ θ, η, τ)b−1(t, η, τ)‖L(L2(B))

≤ cmax
(

1,
(1 + (φ(t+ θ))2|η|2 + τ2)1/2

(1 + (φ(t))2|η|2 + τ2)1/2

)

≤ cmax
(

1,
φ(t+ θ)
φ(t)

)

hence, by (9.1),

(9.6) ‖b(t+ θ, η, τ)b−1(t, η, τ)‖L(L2(B)) ≤ C〈θ〉ε

where the constant C does not depend on t, τ, θ and η. On the other
hand, we have

(9.7)

‖b(t, η, τ + υ)b−1(t, η, τ)‖L(L2(B))

≤ cmax
(

1,
(1 + (φ(t))2|η|2 + (τ + υ)2)1/2

(1 + (φ(t))2|η|2 + τ2)1/2

)

≤
√

2c〈υ〉,
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the last inequality being a consequence of Lemma 9.2. Combining (9.5),
(9.6) and (9.7), we arrive at the desired estimate for λ(t, τ ).

Part II. A Class of Weighted Pseudodifferential Operators
with Operator-Valued Symbols.

10. Preliminaries. Let t = δ(r) be a diffeomorphism of R+ onto
R such that δ′(r) < 0 for all r ∈ R+.

Using this diffeomorphism we pull back the structure of an Abelian
group from R to R+. More precisely, we introduce a group operation
on the half-axis by

r ◦ θ = δ−1(δ(r) + δ(θ)),

for r, s ∈ R+. It is easily seen that under this operation R+ is a locally
compact Abelian group with an invariant measure dm = |δ′(r)| dr.

Example 10.1. Set δ(r) = − log r for r ∈ R+. Then r ◦ θ = rθ and
so R+ with this operation is a multiplicative group whose invariant
measure is dm = dr/r.

Example 10.2. For p > 0, take

δ(r) =
{

1/prp r ∈ (0, 1];
−r r ∈ [2,+∞).

Then we can extend δ to the interval (1,2) in such a way that the
extended mapping is a diffeomorphism of R+ onto R.

Example 10.3. Set

δ(r) =
{

exp(1/r) r ∈ (0, 1];
−r r ∈ [2,+∞)

and extend this to the entire half-axis to get a diffeomorphism of R+

onto R.

11. Weighted pseudodifferential operators. Denote by Λw(H, H̃)
the space formed by all functions λ(r, �) on R+ × R with values in
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L(H, H̃) such that

(11.1) ‖λ(r ◦ θ, �+ υ)λ−1(r, �)‖L(H̃) ≤ c〈δ(θ)〉ε1〈υ〉ε2

for any r, θ ∈ R+ and �, υ ∈ R, the constants ε1, ε2, c ∈ R being
independent of r, �, θ and υ.

The pull-back of the derivative Dt = −i∂/∂t under the diffeomor-
phism r = δ(t) is

(11.2) Dr =
1
i

1
δ′(r)

∂

∂r

which degenerates at r = 0 because δ′(0) = −∞. As described in [41]
and [33], this characteristic derivative is of great importance in the
analysis on manifolds with singular points.

Suppose

λ1(r, �) ∈ Λw(H1, H̃1), λ2(r, �) ∈ Λw(H2, H̃2).

Definition 11.1. Let Sw(λ1, λ2) stand for the class of C∞ functions
a(r, �) on R+×R with values in L(H1, H2) such that, for any α, β ∈ Z+,
there is a constant cα,β(a) with the property that

‖λ2(r, �)(Dβ
rD

α
� a(r, �))λ

−1
1 (r, �)‖L(H̃1,H̃2)

≤ cα,β(a)

for all (r, �) ∈ R+ × R.

To any symbol a ∈ Sw(λ1, λ2) we assign a “weighted” pseudodiffer-
ential operator A = opw(a) by

(11.3)
Au(r) =

1
2π

∫
R

d�

∫
R+

ei(δ(r)−δ(r′))�a(r, �)u(r′) dm(r′),

r ∈ R+,

for u ∈ C∞
comp(R+, H1).

Note that opw(a) is a Fourier integral operator on the half-axis with
phase function ϕ(r, r′, �) = (δ(r) − δ(r′))�.
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Set

δ∗u(t) = u(δ−1(t)), t ∈ R;
δ∗f(r) = f(δ(r)), r ∈ R+,

then

δ∗ : C∞
comp(R+, H) −→ C∞

comp(R, H),
δ∗ : C∞

comp(R, H) −→ C∞
comp(R+, H)

are the ‘push-forward’ and ‘pull-back’ operators induced by δ, respec-
tively. If a(t, τ ) ∈ S(λ1, λ2), then a straightforward computation yields

δ�op (a) = δ∗op (a)δ∗ = opw(δ∗a),

where δ∗a(r, �) = a(δ(r), �). The operator δ�op (a) is called the
operator pull-back of op (a) under δ. In fact,

δ∗ : Λ(H, H̃) −→ Λw(H, H̃),
δ∗ : S(λ1, λ2) −→ Sw(δ∗λ1, δ

∗λ2)

are easily verified to be isomorphisms, hence the calculus on R is pulled
back to R+ under t = δ(r).

From what has been proved it follows that the weighted pseudodiffer-
ential operators opw(a) behave in much the same way as the usual ones
op(a). Thus, their properties can be deduced from those of usual pseu-
dodifferential operators (cf. Chapter I). In [33], we gave an exposition
of the theory for weight functions λ(t, τ ) independent of t. The class of
weighted pseudodifferential operators thereof is adapted for studying
boundary value problems in domains with isolated singular points on
the boundary. The class of pseudodifferential operators under consid-
eration here is well adapted for treating boundary value problems in
domains with cuspidal wedges.

Recall once again that condition (11.1) for a weight function λ just
amounts to saying that δ∗λ satisfies estimate (1.1) where
δ∗λ(t, τ ) = λ(δ−1(t), τ ).

12. Function spaces related to weighted pseudodifferential
operators. We define Λ′

w(H, H̃) to consist of all weight functions
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λ(r, �) ∈ Λw(H, H̃) which are of class C∞ on R+ × R and satisfy

(12.1)
‖(Dβ

rD
α
� λ(r, �))λ−1(r, �)‖L(H̃) ≤ cα,β ,

‖λ−1(r, �)(Dβ
rD

α
� λ(r, �))‖L(H) ≤ cα,β

for all α, β ∈ Z+ where cα,β do not depend on (r, �) ∈ R+ × R.

Proposition 12.1. For any λ ∈ Λ′
w(H, H̃) there are operators

Rε(λ) ∈ OPSw(λ, 1H̃),
R−1

ε (λ) ∈ OPSw(λ−1, 1H)

such that

R−1
ε (λ)Rε(λ) = 1L2(R+,dm,H),

Rε(λ)R−1
ε (λ) = 1L2(R+,dm,H̃).

Proof. This follows from Corollary 5.2.

Here by L2(R+, dm,H) we mean the space formed by all measurable
functions u on R+ with values in H such that

∫
R+

‖u‖2
H dm <∞. The

square root of this integral provides a norm in L2(R+, dm,H).

Definition 12.2. Suppose λ ∈ Λ′
w(H, H̃). By Hw(λ) is meant the

completion of C∞
comp(R+, H) with respect to the norm

‖u‖Hw(λ) = ‖Rε(λ)u‖L2(R+,dm,H̃).

For analysis on manifolds with edges we need also two-parameter
spaces Hw(λ; γ, µ) where γ and µ vary over R. They consist of all
distributions u on R+ with values in H such that eγδ(r)(δ′(r))µu ∈
Hw(λ). We equip Hw(λ; γ, µ) with the norm

(12.2) ‖u‖Hw(λ;γ,µ) = ‖eγδ(r)(δ′(r))µu‖Hw(λ).
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If µ = 0, we omit this index in the notation, i.e., we write Hw(λ; γ, 0)
simply Hw(λ; γ) when no confusion can arise.

Proposition 12.3. Let λ1 ∈ Λ′
w(H1, H̃1) and λ2 ∈ Λ′

w(H2, H̃2).
Suppose that a(r, � + iγ) ∈ Sw(λ1, λ2) for some γ ∈ R. Then A =
opw,γ(a(r, ζ)) extends to a continuous mapping Hw(λ1; γ) → H2(λ2; γ)
and

‖Au‖Hw(λ2;γ) ≤ c

( ∑
α+β≤N

cα,β(a(r, �+ iγ))
)
‖u‖Hw(λ1;γ)

for any u ∈ Hw(λ1; γ) where c > 0 and N ∈ Z+ do not depend on A.

Proof. This assertion is an immediate consequence of Proposition 5.4
if we apply the operator pull-back δ�.

Note that the operator A = opw,γ(a(r, ζ)) is defined by

Au(r) =
1
2π

∫
R+iγ

dζ

∫
R+

ei(δ(r)−δ(r′))ζa(r, ζ)u(r′)dm(r′), r ∈ R+,

for u ∈ C∞
comp(R+, H1).

Proposition 12.4. Let λ1 ∈ Λ′
w(H1, H̃1) and λ2 ∈ Λ′

w(H2, H̃2).
Suppose that a(r, �+ iγ) ∈ Sw(λ1, λ2) for some γ ∈ R. If

(12.3)
δ′(r ◦ θ)/δ′(r) ≤ c〈δ(θ)〉ε,

|(Dβδ′(r))/δ′(r)| ≤ cβ , β ∈ Z+,

with ε, c and cβ independent of r, θ ∈ R+, then (δ′(r))mopw,γ(a(r, ζ))
extends to a continuous mapping Hw(λ1; γ, µ) → Hw(λ2; γ, µ−m) for
each µ ∈ R.

Proof. The first condition in (12.3) implies, given any weight function
λ ∈ Λw(H, H̃) that (δ′(r))µλ(r, �) ∈ Λw(H, H̃) for each µ ∈ R. Indeed,
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letting Λ(r, �) = (δ′(r))µλ(r, �), we get

‖Λ(r ◦ θ, �+ υ)Λ−1(r, �)‖L(H̃)

=
(
δ′(r ◦ θ)
δ′(r)

)µ

‖λ(r ◦ θ, �+ υ)λ−1(r, �)‖L(H̃)

≤ c〈δ(θ)〉ε1〈υ〉ε2

(
δ′(r ◦ θ)
δ′(r)

)µ

with c a constant independent of r, θ ∈ R+ and �, υ ∈ R. Replacing
r by r ◦ θ−1 in the first estimate (12.3), where θ−1 is determined from
the equality δ(θ) + δ(θ−1) = 0, we see that

δ′(r)/δ′(r ◦ θ−1) ≤ c〈δ(θ−1)〉ε

for all r, θ−1 ∈ R+. Combining this with the first estimate of (12.3),
we deduce easily that(

δ′(r ◦ θ)
δ′(r)

)µ

≤ c|µ|〈δ(θ)〉ε|µ|

for any r, θ ∈ R+ showing Λ(r, �) ∈ Λw(H, H̃), which is our claim.

On the other hand, the second condition of (12.3) means that
(δ′(r))m1H lies in Λ′

w(H,H) for each m ∈ R. We will prove more,
namely, that (δ′(r))m1H belongs to Sw((δ′(r))µλ, (δ′(r))µ−mλ) for any
weight function λ ∈ Λw(H, H̃) and µ ∈ R. To this end, consider

‖(δ′(r))µ−mλ(r, �))(Dβ(δ′(r))m1H)(δ′(r))µλ(r, �)−1‖L(H̃)

= |(Dβ(δ′(r))m)(δ′(r))−m|,
for β ∈ Z+. An easy computation shows that

Dβ(δ′(r))m

=
∑

i1+···+iβ≤β

ci1···iβ
(δ′(r))m−i1−···−iβ (Dδ′(r))i1 · · · (Dβδ′(r))iβ

where the coefficients ci1···iβ
depend only on m. We now invoke the

second condition of (12.3) to obtain

|(Dβ(δ′(r))m)(δ′(r))−m| ≤
∑

i1+···+iβ≤β

|ci1···iβ
|ci11 · · · ciβ

β

= const (β)
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for all r ∈ R. Hence the desired symbol estimates for (δ′(r))m1H follow.

We are now able to prove the boundedness ofA=(δ′(r))mopw,γ(a(r, ζ)).
For this purpose fix u ∈ Hw(λ1; γ, µ). We have

‖Au‖Hw(λ1;γ,µ−m) = ‖(δ′(r))µ−mAu‖Hw(λ1;γ)

≤ c‖(δ′(r))µ‖Hw(λ2;γ)

= c‖u‖Hw(λ2;γ,µ),

where c stands for the norm of

(12.4) (δ′(r))µopw,γ(a(r, ζ))(δ′(r))−µ

in L(Hw(λ1; γ), Hw(λ2; γ)). Thus we shall have established the propo-
sition if we prove that c is finite. However, from what has already been
proved it follows that

(δ′(r))−µ1H1 ∈ Sw(λ1, (δ′(r))µλ1),
a(r, ζ + iγ) ∈ Sw((δ′(r))µλ1, (δ′(r))µλ2),
(δ′(r))µ1H2 ∈ Sw((δ′(r))µλ2, λ2),

and so (δ′(r))µa(r, ζ + iγ)(δ′(r))−µ ∈ Sw(λ1, λ2). By Proposition 12.3
the operator (12.4) extends to a continuous mapping Hw(λ1; γ) →
Hw(λ2; γ). Hence c is finite, as required.

13. Local invertibility at the origin. A weight function λ(r, �) ∈
Λ′

w(H, H̃) is said to be slowly varying at the point r = 0 if

lim
r→0

sup
�∈R

‖(Dβ
rD

α
� λ(r, �))λ−1(r, �)‖L(H̃) = 0

for all α ∈ Z+ and β = 1, 2, . . . .

The concept of being slowly varying at r = 0 is applicable as well
to the scalar-valued function δ′(r) if we think of δ′(r) as multiplication
operator in a Hilbert space. This means simply that

(13.1) lim
r→0

(Dβδ′(r))/δ′(r) = 0,

for every β = 1, 2, . . . .
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In this section we will be concerned with the problem of local invert-
ibility at the singular point for an operator

A = (δ′(r))mopw(a(r, ζ)),

where a(r, � + iγ) ∈ Sw(λ1, λ2). We restrict our attention to those
diffeomorphisms t = δ(r) which fulfill (12.3). Then Proposition 12.4
enables us to conclude that A maps Hw(λ1; γ, µ) to Hw(λ1; γ, µ −m)
for any µ ∈ R. Moreover, we assume that the symbol a(r, � + iγ) is
slowly varying at the point r = 0, i.e.,

lim
r→0

sup
�∈R

‖λ2(r, �)(Dβ
rD

α
� a(r, �+ iγ))λ−1

1 (r, �)‖L(H̃1,H̃2)
= 0

for any α ∈ Z+ and β = 1, 2, . . . .

The definition of local invertibility of

A : Hw(λ1; γ, µ) → Hw(λ2; γ, µ−m)

at r = 0 is an evident change of Definition 7.1 with the cut-off function
χR(t) at t = +∞ replaced by the cut-off function δ∗χR(r) at r = 0.

Theorem 13.1. Suppose both λj ∈ Λ′
w(Hj , H̃j), j = 1, 2 and

δ′ are slowly varying at r = 0. Let A = (δ′(r))mopw(a(r, ζ)) with
a(r, �+ iγ) ∈ Sw,sv(λ1, λ2). Then A : Hw(λ1; γ, µ) → Hw(λ2; γ, µ−m)
is locally invertible at r = 0 if and only if there exists ε > 0 such that
the symbol a(r, �+ iγ) : H1 → H2 is invertible for all (r, �) ∈ (0, ε)×R
and

(13.2) sup
(0,ε)×R

‖λ1(r, �)a−1(r, �+ iγ)λ−1
2 (r, �)‖L(H̃2,H̃1)

<∞.

Proof. The proof of this theorem is similar to the proof of Theo-
rem 1.7.4 in [33]. Proposition 12.4 yields all the additional information
we need.

The important point to note here is the form of the invertibility
condition (13.2) which is independent of µ ∈ R. This is explained
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by the fact that under condition (13.1) the weight function exp δ(r)
dominates the weight function δ′(r) near r = 0. Thus, the case
δ(r) = − log r corresponding to conical singularities is automatically
excluded from consideration.

We finish this chapter by a weighted estimate for pseudodifferential
operators with analytic symbols.

Theorem 13.2. Let a(r, ζ) extend to an analytic function of ζ in
the strip R + i(a, b) such that a(r, �+ iγ) ∈ Sw,sv(λ1, λ2) uniformly in
γ ∈ (a, b). Suppose there is an ε > 0 such that a(r, ζ) : H1 → H2 is
invertible for all r ∈ (0, ε) and ζ ∈ R + i(a, b), and

sup
r∈(0,ε)

ζ∈R+i(a,b)

‖λ1(r, �)a−1(r, ζ)λ−1
2 (r, �)‖L(H̃2,H̃1)

<∞.

Then, if a < γ′ ≤ γ′′ < b and u ∈ Hw(λ1; γ′, µ) satisfies (δ′(r))mopw(a)
u = f with f ∈ Hw(λ2; γ′′, µ −m) near r = 0, then u ∈ Hw(λ1; γ′′, µ)
near r = 0.

Proof. This theorem is a reformulation of Theorem 8.1 in terms of
weighted pseudodifferential operators on the half-axis.

Part III. Differential Operators on Manifolds with Cuspidal
Edges.

14. Canonical cuspidal wedge. We say that (r, ω) is a polar
system of coordinates in Rn+1 with center at the origin if each point
x ∈ Rn+1 \ {0} can be written in the form

x = rS(ω), (r, ω) ∈ R+ × Rn,

where S is a smooth periodic mapping of Rn to the unit sphere Sn in
Rn+1.

Note that the periodicity of S is irrelevant as far as the oscillations
of a singular surface are concerned. They come from other elements of
the construction.
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A well-known example of polar coordinates in the space Rn+1 is given
by the mapping

(14.1) S(w) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

cosω1,

sinω1 cosω2,

sinω1 sinω2 cosω3,

· · · · · · · · · · · · · · · · · ·
sinω1 sinω2 sinω3 · · · sinωn−1 cosωn,

sinω1 sinω2 sinω3 · · · sinωn−1 sinωn,

where ω = (ω1, . . . , ωn). This mapping fails to be one-to-one on the
planes {ω ∈ Rn : ωj = πk} for j = 1, . . . , n − 1 and k ∈ Z. This in
turn results in degeneracy of the Jacobian matrix,

det
∂x

∂(r, ω)
= rn sinn−1 ω1 sinn−2 ω1 · · · sinωn−1.

To cope with this difficulty one often uses the so-called stereographic
projection of Rn onto Sn with the north pole removed, given by

SP (ω) =
(2ω, |ω|2 − 1)

|ω|2 + 1
, ω ∈ Rn,

in which case

det
∂x

∂(r, ω)
= (−1)n+1 (2r)n

(|ω|2 + 1)n

does not vanish but for r = 0.

Let f be a C∞ function on R+, with the following properties:

1) f(r) < 0 for all r ∈ R+;

2)
∫ ε

0
dr/rf(r) = −∞; and

3) |rjf (j)(r)| ≤ cj near r = 0 for each j ∈ Z+.

Modifying f away from a finite interval if necessary, we may actually
assume that

∫ ∞
R

dr/rf(r) = ∞. Thus, setting

(14.2) δ(r) =
∫ r

ε

dθ

θf(θ)
, for r ∈ R+,
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we get a monotone decreasing function δ ∈ C∞
loc(R+) such that δ′(r) =

1/rf(r) and

lim
r→0

δ(r) = +∞, lim
r→∞ δ(r) = −∞.

In the analysis on manifolds with singularities, only the germ of f(r)
at r = 0 is prescribed by the geometry of singularities. Hence we will
restrict our attention to the behavior of f(r) near r = 0, keeping in
mind the construction above.

Example 14.1. Let

f(r) =
{−rp r ∈ (0, 1];
−1/r r ∈ [2,+∞),

where p ≥ 0. When appropriately extended to the interval (1,2), this
function meets all the conditions above. In this case δ(r) differs by a
constant from the diffeomorphism of Example 10.2.

Example 14.2. Consider

f(r) =
{−(log 1/r)p r ∈ (0, 1/2];
−1/r r ∈ [2,+∞),

where p ≤ 1. If appropriately extended to the interval (1/2, 2), the
function f(r) fulfills all the above conditions. Indeed, we have

∫ ε

0

dr

rf(r)
= −

∫ ∞

log 2

t−p dt+
∫ ε

1/2

dr

rf(r)
= ∞

and
lim
r→0

rjf (j)(r) = (−1)j−1(j − 1)!p lim
r→0

(log 1/r)p−1 <∞

for all j ∈ Z+.

Note that, for p > 0, the function f(r) of Example 14.2 tends to −∞
as r → 0. This corresponds to the case where the canonical surface
Cx0 given by (14.3) is of finite smoothness at x0. Such “singularities”
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require another pseudodifferential calculus on the half-line different
from that of Chapter II. In fact, the function f(r) of Example 14.2 fails
to satisfy the first estimate of (12.3) for all p ≤ 1, hence Theorem 13.1
is not applicable.

Example 14.3. Set

f(r) =
{−r exp(−1/r) r ∈ (0, 1];
−1/r r ∈ [2,+∞),

and extend f(r) to the interval (1,2) so that the extension is negative
and smooth. Then f(r) bears all the above properties. Moreover, δ(r)
differs by a constant from the diffeomorphism of Example 10.3.

Example 14.4. For f(r) ≡ −1, we have δ(r) = − log r up to a
constant term, which vanishes if ε = 1.

We now return to the conditions on the function f to show that they
are not independent. In fact, the last condition for either of j = 0 and
j = 1 implies the second one.

Lemma 14.5. Suppose f is a C1 function of singular signs on R+

such that |rf ′(r)| ≤ c for all r ∈ (0, ε]. Then
∫ ε

0

dr

rf(r)
= ∞.

Proof. We can assume without loss of generality that f is nonnegative
everywhere in R+.

Write ∫ ε

0

dr

rf(r)
= −

∫ ε

0

1
f(r)

d(− log r) =
∫ ∞

T

1
F (t)

dt

where F (t) = f(e−t) and T = − log ε. If t varies over [T,∞), then
r = exp(−t) varies over (0, ε], hence

sup
t∈[T,∞)

|F ′(t)| = sup
r∈(0,ε]

|f ′(r)r| ≤ c
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by assumption. The Lagrange formula now yields

F (t) = F (T ) + (t− T )
∫ 1

0

F ′(T + ϑ(t− T )) dϑ

≤ F (T ) + c(t− T )

for all t ≥ T . Hence it follows that
∫ ε

0

dr

rf(r)
≥

∫ ∞

T

1
F (T ) + c(t− T )

dt = ∞,

which is our claim.

We also mention that condition 3) on f just amounts to saying that
each derivative (rDr)jf(r), j ∈ Z+, is bounded close to r = 0.

By a canonical surface with an oscillating cusp at a point x0 ∈ Rn+1

we mean

(14.3) Cx0 = {x0 + rS(φ(r)f(r)θ) : r ∈ R+, θ ∈ B},

where B is a C∞ compact closed submanifold of Rn. Here f ∈
C∞

loc(R+) is a function with properties 1) 3) above. We shall say that
f(r) specifies the degeneracy of Cx0 at the cusp x0. On the other hand,
φ ∈ C∞

loc(R+) is required to meet the following conditions:

a) infr∈R+φ(r) > 0;

b) |Dβφ(r)| ≤ cβ for every β ∈ Z+; and

c) limr→0 Dφ(r) = 0.

We say that φ(r) specifies the oscillation of the surface Cx0 at the cusp
x0. A typical example of φ(r) satisfying a) c) is as follows.

Example 14.6. For ε ∈ [0, 1), consider

φ(r) = 1 − 1
2

sin(δ(r))εω(r),

where ω is a cut-off function on R+ such that δ does not vanish on the
support of ω. Then φ meets a) c) as is easy to check.
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Applying the Hardy-Littlewood inequality (cf. [17]), we deduce that
conditions b) and c) actually imply

(14.4) lim
r→0

Djφ(r) = 0,

for each j = 1, 2, . . . . In fact, we have the following lemma.

Lemma 14.7. If φ ∈ C2
loc(R+) satisfies

|D2φ(r)| ≤ c, r ∈ (0, ε], lim
r→0

φ(r) = 0,

then limr→0 Dφ(r) = 0.

Proof. Set Φ(t) = φ(δ−1(t)), thus obtaining a C2 function on the
entire real axis. Since

Φ′(t) = Dφ(δ−1(t)), Φ′′(t) = D2φ(δ−1(t)),

we get

|Φ′′(t)| ≤ c, t ∈ [δ(ε),+∞),
lim

t→+∞ Φ(t) = 0.

Combining the Hardy-Littlewood inequality

|Φ′(t)| ≤
√

2
√

sup |Φ| sup |Φ′′|
on R with a suitable extension operator from the half-line, we arrive
at an estimate

|Φ′(t)|2 ≤ C sup
θ∈[T,∞)

|Φ(θ)| sup
θ∈[T,∞)

|Φ′′(θ)|, t ∈ [T,∞),

with C an absolute constant. For example, C = 32π fills the bill, cf.
Remark 11 in [5].2 Hence it follows that limt→+∞ Φ′(t) = 0, which is
the desired conclusion.

It is worth pointing out that the product φf fails to fulfill 1) 3) in
general for f and φ possessing the properties 1 3) and a) c) respec-
tively. To see this take f(r) = −r2 and φ(r) = 1 − 1/2 sin(δ(r))ε for



BVPs IN OSCILLATING CUSPIDAL WEDGES 1437

r > 0 small enough, where ε > 1/2. Thus, introducing φ into the defi-
nition of a canonical surface with a cusp enriches the class of surfaces
under consideration.

For f given in Example 14.1, we have a canonical surface with a
power-like cusp. If f is given in Example 14.3, we get a canonical
surface with an exponential cusp. Finally, for f of Example 14.4, we
obtain a canonical surface with a conical point.

Definition 14.8. 1) If Cx0 is given by (14.3) with B being a domain
in Rn, then we call Cx0 a canonical domain with an oscillating cusp at
the boundary point x0.

2) Let C0 be a canonical domain with an oscillating cusp at the origin.
Then W = Rq ×C0 is said to be a canonical oscillating cuspidal wedge.

Clearly, the boundary of a canonical oscillating cuspidal wedge is
of the form W = Rq × C0 where C0 is a canonical surface with an
oscillating cusp at the origin. In this way we obtain what will be
referred to as a canonical surface with an oscillating cuspidal edge Rq.

15. Differential operators. If W = Rq × C0 is a canonical
oscillating cuspidal wedge or a canonical surface with an oscillating
cuspidal edge, then one has distinguished local coordinates inW . These
are given by (y, r, θ) where y ∈ Rq, r ∈ R+ and θ stands for local
coordinates on B. Using the coordinates (y, r, θ) actually leads to
desingularization of W , for W = Rq × R+ × B bears a cylindrical
structure and one has a blow-down mapping W → W which is a
diffeomorphism away from r = 0 and restricts to a diffeomorphism
of Rq. Under this desingularization, differential operators near W in
Rq+n+1 are pulled back to W . The pull-backs give rise to typical
differential operators in the calculus on manifolds with oscillating
cuspidal edges.

To illustrate this, we confine ourselves to the case where W is a
canonical oscillating cuspidal wedge. Similar arguments apply to the
case of canonical surfaces with oscillating cuspidal edges.
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Let
A =

∑
|β|+|γ|≤m

aβ,γ(y, x)Dβ
yD

γ
x

be a differential operator with C∞ coefficients on W . We assume that
the coefficients aβ,γ(y, x) with |β| + |γ| ≤ m satisfy the conditions

(15.1)
|DB

y D
G
x aβ,γ(y, x)| ≤ cB,G(aβ,γ)(−δ′(|x|))|G|,

lim
x→0

sup
y∈Rq

(Dxj
aβ,γ(y, x))/δ′(|x|) = 0

for all multi-indices B ∈ Zq, G ∈ Zn+1 and for every j = 1, . . . , n+ 1,
the constants cB,G(aβ,γ) being independent of (y, x) ∈W .

Denote by π : W → W the mapping of passage to the “cylindrical”
coordinates (y, r, θ) via

(15.2)
{
y = y,

x = rS(φ(r)f(r)θ),

for y ∈ Rq, r ∈ R+ and θ ∈ B. Thus π : (y, r, θ) �→ (y, rS(φ(r)f(r)θ))
is a diffeomorphism provided the dilatations tB, t > 0, do not meet the
set where S(ω) fails to be a diffeomorphism.

Applying Proposition 3.2.1 of [33] yields

(15.3)

Dx = δ′(S(φfθ)Dr +((∂S/∂ω)−1(φfθ))TDθ/φ−r(φf)′S(φfθ)θDθ/φ),

where (∂S/∂ω)−1 is a left inverse for the Jacobian matrix of S, the
superscript ‘T ’ indicates the transposed matrix and θDθ =

∑n
ι=1 θιDθι

.
As

(15.4)

D(δ′)µ = iµ(δ′)µ(f + rf ′),

D(rjf (j)) = −if(jrjf (j) + rj+1f (j+1)),
Dφµ = µφµ−1Dφ,

r(φf)′ = iDφ+ φrf ′

and

(15.5)
DrS(φfθ) =

n∑
ι=1

(ωι∂S/∂ωι)|ω=φfθ(Dφ/φ+ rDf),

DθS(φfθ) = DωS|ω=φfθ(φf),
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we conclude that

Dγ
x = (δ′)|γ|

∑
j+|α|≤|γ|

φj−|γ|p(γ)
j,αDj

rD
α
θ ,

for any γ ∈ Zn+1
+ where p(γ)

j,α are polynomials with integer coefficients
of rιf (ι) and Dιφ, ι = 0, 1, . . . , |γ| − j, θ and elements of the matrices
DI

ωS and DI
ω(∂S/∂ω)−1, |I| ≤ |γ| − j − |α| with ω = φfθ substituted.

It follows that, under the change of variables (15.2), A transforms into
a differential operator

(15.6) π�A = (δ′(r))m
∑

|β|+j+|α|≤m

aβ,j,α(y, r, θ)Dβ
yD

j
rD

α
θ

on the stretched wedge W , where Dy is a new “totally characteristic”
derivative in the calculus, given by

Dy =
1
δ′
Dy = rf(r)Dy,

and

aβ,j,α(y, r, θ) =
∑

j+|α|≤|γ|≤m−|β|
(δ′)|β|+|γ|−mφj−|γ|p(γ)

j,απ
∗aβ,γ(y, r, θ).

Note that the pull-backs π∗aβ,γ(y, r, θ) behave “well” near the base
r = 0 of W . Indeed, applying (15.4), (15.5) and the chain rule yields

Dβ
y = (δ′)−|β|Dβ

y ,

Dj
r = (δ′)−j

∑
|G|≤j

p
(j)
G ((rιf (ι))ι≤j , (Dιφ)ι≤j , θ, (DI

ωS)|I|≤j)DG
x ,

Dα
θ = (δ′)−|α|φ|α| ∑

|G|≤|α|
p
(α)
G ((DI

ωS)|I|≤|α|)DG
x ,

p
(j)
G and p(α)

G being polynomials with integer coefficients of the variables
indicated in the parentheses. We now invoke the first estimate of (15.1)
and the property 3) of f to see that

|Dj
rD

B
y D

A
θ π

∗aβ,γ(y, r, θ)| ≤ cj,B,A(aβ,γ),
j ∈ Z+, B ∈ Zq

+, A ∈ Zn
+,
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uniformly in (y, r, θ) ∈ W . Combining these estimates with the explicit
formulas for the coefficients of π�A given above, we get

(15.7)
sup

r∈(0,ε]

|Dk
rD

B
y D

A
θ aβ,j,α(y, r, θ)| ≤ ck,B,A,

k ∈ Z+, B ∈ Zq
+, A ∈ Zn

+,

uniformly in (y, θ) ∈ Rq ×B.

Estimates (15.7) may be summarized by saying that (δ′)−mπ�A is a
weighted differential operator in the sense of Section 11, with δ given by
(14.2). Moreover, (δ′)−mπ�A is a singular differential operator with a
symbol slowly varying as r → 0 if, in addition to (15.7), the coefficients
aβ,j,α bear

(15.8) lim
r→0

Draβ,j,α(y, r, θ) = 0

uniformly in (y, θ) ∈ Rq × B (cf. Lemma 14.7). Our next result
highlights conditions on f under which the second condition of (15.1)
implies (15.8).

Proposition 15.1. Suppose that

(15.9) lim
r→0+

rf ′(r) = 0.

Let (15.1) hold. Then aβ,j,α satisfies (15.8) for each β ∈ Zq
+, j ∈ Z+

and α ∈ Zn
+ satisfying |β| + j + |α| ≤ m.

Proof. We first observe, by Lemma 14.7, that equality (15.9) actually
implies

lim
r→0+

rjDjf(r) = 0,

for every j = 1, 2, . . . . Moreover, the second condition of (15.1) just
amounts to the fact that

lim
r→0

Drπ
∗aβ,γ(y, r, θ) = 0

uniformly in (y, θ) ∈ Rq × B for all β and γ with |β| + |γ| ≤ m. Since
both Dr(δ′)|β|+|γ|−m and Drφ

j−|γ| vanish as r → 0 (cf. (15.4)), it
remains to evaluate the derivative Drp

(γ)
j,α when r → 0. To this end, set

vι = rιf (ι), ι = 0, 1, . . . , |γ| − j;
wι = Dιφι, ι = 0, 1, . . . , |γ| − j,
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and let zκ, κ = 1, . . . ,K be an indexing of the elements of both matrices
DI

ωS and DI
ω(∂S/∂ω)−1, |I| ≤ |γ| − j − |α| where ω = φfθ. By the

chain rule, we get

Drp
(γ)
j,α =

|γ|−j∑
ι=0

∂p
(γ)
j,α

∂vι
D(rιf (ι)) +

|γ|−j∑
ι=0

∂p
(γ)
j,α

∂wι
D(Dιφ)

+
K∑

κ=1

∂p
(γ)
j,α

∂zκ
Drzk(φfθ)

whence
lim
r→0

DrP
(γ)
j,α = 0

uniformly in θ ∈ B, which is due to (15.4), (15.5) and (15.9). This
completes the proof.

The choice of f meeting (15.9) seems to be the best adapted to our
theory. Recall that (15.9) strengthens condition 3) on the functions f
under consideration.

In case f satisfies (15.9) we can distinguish in a natural way a proper
part of π�A responsible for the local invertibility of this operator near
r = 0. To this end, denote by p̃(γ)

j,α the polynomial obtained from p
(γ)
j,α

by replacing rf ′, . . . , r|γ|−jf (|γ|−j) and Dφ, . . . ,D|γ|−j|φ via zeros. It
is easy to see that p̃(γ)

j,α is of the form p̃
(γ)
j,α = φ|γ|−j−|α|q(γ)

j,α where q(γ)
j,α is

a polynomial with integer coefficients of f and elements of the matrices
DI

ωS and DI
ω(∂S/∂ω)−1, |I| < |γ|, with ω = φfθ. Write

π�A = (δ′)m
∑

|β|+j+|α|≤m

(
φ−|α| ∑

|γ|=m−|β|
q
(γ)
j,απ

∗aβ,γ

)
Dβ

yDj
rD

α
θ

(15.10)

+ (δ′)mS.

Proposition 15.2. Under condition (15.9) if, moreover, aβ,γ fulfill
(15.1), then the coefficients of the differential operator S in (15.10) are
infinitesimal as r → 0.
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Proof. Indeed we have

S =
∑

|β|+j+|α|≤m

δβ,j,αDβ
yDj

rD
α
θ ,

with

δβ,j,α =
∑

|γ|=m−|β|
φj−|γ|(p(γ)

j,α − p̃
(γ)
j,α)π∗aβ,γ

+
∑

j+|a|≤|γ|<m−|β|
(δ′)|β|+|γ|−mp

(γ)
j,απ

∗aβ,γ .

If j = |γ|, then p
(γ)
j,α − p̃

(γ)
j,α = 0 by the very definition. For fixed j, α

and γ with j < |γ| = m−|β|, set N = |γ|−j. Using Taylor’s expansion
for the polynomial p(γ)

j,α yields

p
(γ)
j,α − p̃

(γ)
j,α =

∑
I∈Z2N

+
I 	=0

1
I!
∂I

v′,w′p
(γ)
j,α

∣∣∣v′=0
w′=0

(rf ′)i1

· · · (rNf (N))iN (Dφ)iN+1 · · · (DNφ)i2N ,

where I = (i1, . . . , i2N ) and v′ = (v1, . . . , vN ), w′ = (w1, . . . , wN ).
Combining this with (15.9) and taking into account the properties of
φ, we deduce that the first sum in the expression for δβ,j,α vanishes
when r → 0.

On the other hand, if |γ| < m− |β|, then (δ′)|β|+|γ|−m → 0 as r → 0.
This shows that the second term of δβ,j,α also vanishes when r → 0.
Hence the desired conclusion follows.

We show below that the operator (δ′)mS has a small local norm in
suitable function spaces and is thus immaterial in the problem of local
invertibility at the point r = 0.

The class of coefficients meeting (15.7) and (15.8) contains some
functions rapidly oscillating near the edges, i.e., close to r = 0.

Example 15.3. For each 0 < p < 1 and any c ∈ C∞(Rq × B) with
bounded derivatives, the function a(y, r, θ) = ei(δ(r))p

c(y, θ) satisfies
both (15.7) and (15.8).
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16. Local invertibility of differential operators on a surface
with oscillating cuspidal edges. Let A be a differential operator on
a canonical surface W = Rq ×C0 with an oscillating cuspidal edge, C0

being of the form (14.3). The cross-section of C0 close to 0 is identified
with B, a compact closed submanifold of Rn.

When written in the cylindrical coordinates (15.2), the operator A
takes the form

(16.1) A = (δ′(r))m
∑

|β|+j≤m

aβ,j(y, r)Dβ
yD

j
r, (y, r) ∈ Rq × R+,

where aβ,j is a C∞ function on Rq × R+ taking its values in
Diffm−|β|−j(B). We can thus regard aβ,j as an operator-valued func-
tion on Rq × R+ with values in L(Hs(B), Hs−(m−|β|−j)(B)) for any
s ∈ R. Moreover, from (15.7) and (15.8) it follows that

(16.2)
‖Dk

rD
b
yaj,β(y, r)‖L(Hs(B),Hs−(m−|β|−j)(B)) ≤ ck,b(aj,β),

lim
r→0

sup
y∈Rq

‖Draj,β(y, r)‖L(Hs(B),Hs−(m−|β|−j)(B)) = 0

for all k ∈ Z+ and b ∈ Zq
+, the constants ck,b(aj,β) depending on s but

not on y and r.

We next introduce appropriate function spaces to be domains of A.
Namely, given any s ∈ Z+ and γ, µ ∈ R, we define Hs,γ,µ(W ) to consist
of all distributions u on W with finite norm
(16.3)
‖u‖Hs,γ,µ(W )

=
( ∫∫

Rq×R+

e2γδ(δ′)2µ

( ∑
|β|+j≤s

‖Dβ
yDj

rπ
∗u‖2

Hs−|β|−j(B)

)
|δ′|q dy dm

)1/2

,

cf. [33]. For integer s < 0 and noninteger s ∈ R, these spaces are
defined by duality and interpolation.

Note that the factor |δ′|q is included by purely aesthetic reasoning.
In fact, under the change of coordinates

{
z = δ′(r)y,
t = δ(r),
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the norm (16.3) transforms into an equivalent norm

‖u‖Hs,γ,µ(W )

∼
( ∫∫

Rq+1
e2γt(δ′ ◦ δ−1)2µ

( ∑
|β|+j≤s

‖Dβ
zD

j
t ũ‖2

Hs−|β|−j(B)

)
dz dt

)1/2

,

where ũ(z, t, θ) = u(z/δ′, rS(φfθ)) for r = δ−1(t). To prove the
equivalence of the norms, it suffices to use the equality

(16.4) [Dy,Dr] = i(f + rf ′)Dy

and the property 3) of f .

We think of operator (16.1) as acting from Hs,γ,µ(W ) to
Hs−m,γ,µ−m(W ). By (15.4) and the property 3) of f , this is really
the case.

Note that the space Hs,γ,µ(W ) coincides, modulo equivalent norms,
with the space Hw(λs; γ, µ+ q/2) of (12.2), where

(16.5) λs(r, �) = (1 + (δ′(r))−2∆y + �2 + ∆B)s/2,

∆B being a nonnegative Laplacian on the manifold B, cf. Example 9.3.

As described in Section 9, the function

φ(t) =
−1

δ′(δ−1(t))

should satisfy (9.1). This is equivalent to the first condition of (12.3).
Moreover, we require φ(t) to be slowly varying as t→ +∞, i.e.,

(16.6) lim
t→+∞(Dβφ(t))/φ(t) = 0

for each β = 1, 2, . . . . It is a simple matter to see that (16.6) just
amounts to (13.1). Indeed, we have

Djφ(t)
φ(t)

∣∣∣
t=δ(r)

= −Djδ′(r)
δ′(r)

+ pj

(
Dδ′(r)
δ′(r)

, . . . ,
Dj−1δ′(r)
δ′(r)

)
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FIGURE 1. The domain SR, R > 0.

for any j ∈ Z+, where pj is a polynomial with integer coefficients of the
variables indicated in the parentheses, such that pj(0) = 0. Thus, under
the assumptions on δ just imposed, Proposition 12.4 is applicable.

Example 16.1. Let δ(r) = − log r be the diffeomorphism of
Example 10.1. Then

δ′(r ◦ θ)
δ′(r)

=
1
θ

for any r, θ ∈ R+; hence, the first estimate of (12.3) fails to hold. On
the other hand, we have

Dβδ′(r) = (−i)βδ′(r)

for β ∈ Z+ and so condition (16.6) is violated, too.

Example 16.2. Suppose t = δ(r) is the diffeomorphism of Exam-
ple 10.2. To show that δ fulfills the first condition (12.3), set

SR = {(r, θ) ∈ R+ × R+ : δ−1(δ(r) + δ(θ)) ≤ R},
for R > 0, cf. Figure 1. We can choose R > 0 small enough so that

SR ⊂ ((0, 1] × R+) ∪ (R+ × (0, 1]).

If (r, θ) /∈ SR, then

δ′(r ◦ θ)
δ′(r)

≤
(

sup
ρ>0

1
|δ′(ρ)|

)(
sup
ρ>R

|δ′(ρ)|
)
<∞,
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the last estimate being a consequence of the properties of δ. Thus, for
(r, θ) away from SR, the first estimate (12.3) holds with ε = 0. We are
left with the task of establishing the estimate for (r, θ) ∈ SR. To this
end it suffices to examine the following three cases:

1) (r, θ) ∈ (0, 1] × (0, 1];

2) (r, θ) ∈ (1,∞) × (0, 1]; and

3) (r, θ) ∈ (0, 1] × (1,∞).

In the case 1) we make use of the explicit formula for δ on the interval
(0, 1] to obtain

δ′(r ◦ θ)
δ′(r)

≤ (2p)p+1/p〈δ(θ)〉p+1/p.

We have used the condition p > 0. In the case 2), we have r ≥ 1 whence

|r ◦ θ| ≥ 1 ◦ θ.

As r ◦ θ ≤ 1, it follows that

δ′(r ◦ θ)
δ′(r)

≤
(

sup
ρ∈(0,1]

1
|δ′(ρ)|

)
|δ′(1 ◦ θ)|

=
(

sup
ρ∈(0,1])

1
|δ′(ρ)|

)
(1 + θp)(p+1)/p

(
1
θ

)p+1

≤
(

sup
ρ∈(0,1]

1
|δ′(ρ)|

)
(2p)(p+1)/p〈δ(θ)〉(p+1)/p.

Finally, in the case 3), we have θ ≥ 1 implying r ◦θ ≥ r ◦1. Since r ≥ 1
and r ◦ θ ≤ 1, we get

δ′(r ◦ θ)
δ′(r)

≤ δ′(r ◦ 1)
|δ′(r)| = (1 + rp)(p+1)/p ≤ (2p)(p+1)/p

independently of θ. Combining the above estimates, we arrive at the
first estimate of (12.3). Moreover,

Dβδ′(r) = const (j)rpjδ′(r)

for r ∈ (0, 1], hence δ meets (16.6).
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Example 16.3. The diffeomorphism of Example 10.3 satisfies both
(12.3) and (16.6). This is verified as in the preceding example.

The conditions (9.1) and (16.6) guarantee that λs(r, �) is a weight
function slowly varying at the point r = 0.

From what has already been proved it follows that the operator (16.1)
can be thought of as acting from Hw(λs; γ, µ) to Hw(λs−m; γ, µ−m).

In this section we indicate how the results of Section 13 highlight
the problem of local invertibility of A. To this end we first treat this
problem for A with coefficients “frozen” at any point y0 along the edge
Rq. Namely, consider the operator

Ay0 = (δ′(r))m
∑

|β|+j≤m

aβ,j(y0, r)Dβ
yD

j
r

acting from Hs,γ,µ(W ) to Hs−m,γ,µ−m(W ) for any s, γ, µ ∈ R. By
the above, Ay0 maps Hw(λs; γ, µ) to Hw(λs−m; γ, µ − m); hence, it
can be specified within the class OPSw(λs, λs−m). The symbol of this
operator is easily seen to be

σAy0 (r, �) = (δ′(r))m
∑

|β|+j≤m

aβ,j(y0, r)�jDβ
y ,

(r, �) ∈ T ∗R+. Moreover, the estimates (16.2) imply that σAy0 varies
slowly as r → 0.

In what follows, a so-called “compressed” symbol of A with respect
to action in both y and r variables proves to be of great importance.
It is given by

(16.7) σ(A)(y, r; η, �) =
∑

|β|+j≤m

aβ,j(y, r)ηβ�j ,

for (y, r; η, �) ∈ T ∗(Rq × R+). Thus η and � substitute the totally
characteristic derivatives Dy and Dr, respectively.

By the very construction σ(A) is a C∞ function on T ∗(Rq × R+)
taking its values in the space of differential operators of order m on B.
Note that σ(A) is actually C∞ up to r = 0 if also are the coefficients
of A.
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We also apply the symbol mapping σ to our weight functions λs(r, �)
by σ(λs)(η, �) = (1 + |η|2 + �2 + ∆B)s/2.

Theorem 16.4. In order that Ay0 : Hs,γ,µ(W ) → Hs−m,γ,µ−m(W )
is locally invertible at r = 0, it is necessary and sufficient that there
be an ε > 0 such that the symbol σ(A)(y0, r; η, � + iγ) : Hs(B) →
Hs−m(B) is invertible for all (r, η, �) ∈ (0, ε) × Rq+1 and

(16.8)
sup

(0,ε)×Rq+1
‖σ(λs)(η, �)σ(A)−1(y0, r; η, �+ iγ)σ(λ−s+m)(η, �)‖L(L2(B))

<∞.

Proof. Indeed, the estimate (16.8) is equivalent to the estimate

sup
(0,ε)×R

‖λs(r, �)σ−1
Ay0

(r, �+ iγ)λ−1
s−m(r, �)‖L(L2(Rq×B)) <∞,

as is easy to see by applying the Fourier transform in y ∈ Rq. Thus,
Theorem 16.4 is a direct consequence of Theorem 13.1.

The condition (16.8) implies that σ(A)(y0, r; η, � + iγ) is an elliptic
operator on the manifold B, for any (η, �) ∈ Rq+1, uniformly in
r ∈ (0, ε). Under a stronger condition on A, Theorem 16.4 can be
reformulated without any weight functions.

Corollary 16.5. Suppose σ(A)(y0, r; η, �+ iγ) is an elliptic operator
on B with parameter (η, �) ∈ Rq+1, uniformly in r > 0 small enough.
Then Ay0 : Hs,γ,µ(W ) → Hs−m,γ,µ−m(W ) is locally invertible at r = 0
if and only if there exists ε > 0 such that σ(A)(y0, r; η, � + iγ) :
Hs(B) → Hs−m(B) is invertible for all (r, η, �) ∈ (0, ε) × Rq+1 and

(16.9) sup
r∈(0,ε)

‖σ(A)−1(y0, r; η, �+ iγ)‖L(Hs−m(B),Hs(B)) <∞.

Proof. Since

‖σ(A)−1(y0, r; η, �+ iγ)‖L(Hs−m(B),Hs(B))

≤ c1c2‖σ(λs)(η, �)σ(A)−1(y0, r; η, �+ iγ)σ(λ−s+m)(η, �)‖L(L2(B)),
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with

c1 = ‖σ(λ−s)(η, �)‖L(L2(B),Hs(B)),

c2 = ‖σ(λs−m)(η, �)‖L(Hs−m(B),L2(B)),

estimate (16.8) implies estimate (16.9).

Conversely, σ(λs−m)(η, �)σ(A)(y0, r; η, �+ iγ)σ(λ−s)(η, �) is an ellip-
tic pseudodifferential operator of order zero with parameter (η, �) ∈
Rq+1 on B, uniformly in r ∈ (0, ε). From standard composition for-
mulas for parameter-dependent pseudodifferential operators (cf. Shubin
[43]), it follows that there is an R > 0 such that σ(A)(y0, r; η, �+ iγ)
is invertible for all r ∈ (0, ε) and (η, �) ∈ Rq+1 with |(η, �)| > R and

sup
r∈(0,ε)

|(η,�)|>R

‖σ(λs)(η, �)σ(A)−1(y0, r; η, �+iγ)σ(λ−s+m)(η, �)‖L(L2(B)) <∞.

This gives (16.8) for (η, �) ∈ Rq+1 large enough. On the other hand,
for those (η, �) ∈ Rq+1 which meet |(η, �)| ≤ R, the estimate (16.8)
follows from (16.9).

It is clear that the exponential estimate of Theorem 13.2 holds for
solutions of Ay0u = f , too. We skip the formulation because the result
is actually valid for solutions of the “perturbed” equation Au = f . The
proof of this takes, however, much more effort including a localization
procedure (cf. Section 17).

Example 16.6. Let us endow the surface W with the Riemannian
metric induced by the embedding W ↪→ Rq × Rn+1. We require δ
to satisfy (15.9). When combined with (16.6) for β = 1, this gives
f(0) = 0 because

Dδ′

δ′
= if − rDf.

Hence it follows, by Proposition 15.2, that the Laplace operator ∆ on
W takes the form

∆ = (δ′(r))2
((

1
δ′(r)

)2

∆y +
(

1
δ′(r)

Dr

)2

+
(

1
φ(r)

)2

∆B

)
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in the coordinates (y, r, θ) ∈ Rq × R+ ×B, modulo operators of small
local norm near the edge r = 0. Here f(r) specifies the degeneracy of
W along the edge Rq whereas φ(r) specifies the oscillation of W near
the edge. We regard ∆ as acting from Hs,γ,µ(W ) to Hs−2,γ,µ−2(W )
for s, γ, µ ∈ R. The compressed symbol of the Laplace operator is

σ(∆)(y, r; η, �+ iγ) = |η|2 + (�+ iγ)2 +
(

1
φ(r)

)2

∆B ,

where (η, �) ∈ Rq+1. As 0 is a point of the spectrum of ∆B , the
condition of Theorem 16.4 is satisfied for no γ ∈ R, because |η|2 +
(� + iγ)2 vanishes whenever |η| = |γ| and � = 0. Thus, Theorem 16.4
shows that the Laplace operator on W is never locally invertible near
the edge in the scale of weighted Sobolev spaces (Hs,γ,µ(W ))s,γ,µ∈R.

Example 16.7. On the other hand, let us consider the Schrödinger
operator on the surface W ,

A = ∆ + p(r),

the potential p being of the form p(r) = (δ′(r))2a(r) with a(r) a C∞

function on R, satisfying

|Dja(r)| ≤ cj , j ∈ Z+;
lim
r→0

Da = 0.

In this case we get

σ(A)(y, r; η, �+ iγ) = |η|2 + (�+ iγ)2 +
(

1
φ(r)

)2

∆B + a(r),

for (η, �) ∈ Rq+1. If

(16.10) lim inf
r→0

a(r) > 0,

then it is evident that the conditions of Theorem 16.4 are satisfied
with γ = 0, for each s ∈ R. It follows that the Schrödinger operator,
when acting from Hs,0,µ(W ) to Hs−2,0,µ−2(W ), is locally invertible
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at r = 0. We now assume that a stronger condition than (16.10) is
fulfilled, namely

(16.11) inf
r∈(0,ε)

a(r) ≥ k2

where k > 0. Then the operator-valued function σ(A)(y; r; η, � + iγ)
is invertible for all (η, �) ∈ Rq+1 uniformly in r ∈ (0, ε) provided that
γ ∈ (−k, k). Consequently, for any s, µ ∈ R and γ ∈ (−k, k), the
Schrödinger operator, if acting from Hs,γ,µ(W ) to Hs−2,γ,µ−2(W ), is
locally invertible near the edge r = 0. Furthermore, as the coefficients
of A are independent of y, we can make efficient use of Theorem 13.2.
Thus, if −k < γ′ ≤ γ′′ < k and u ∈ Hs,γ′,µ(W ) satisfies Au = f with
f ∈ Hs−2,γ′′,µ−2(W ) near r = 0, then u ∈ Hs,γ′′,µ(W ) near r = 0.

17. Fredholm property of differential operators on manifolds
with oscillating cuspidal edges. When discussing pseudodifferential
operators on manifolds with singularities, we will confine ourselves to
those manifolds which are embedded into an Euclidean space. The
same arguments still go for general manifolds where we should take
more care of rigorous definitions.

Let M be a compact closed topological manifold in RN and S a
submanifold of M . We assume that

1) M \ S is a C∞ submanifold of Rn \ S;

2) S is a C∞ submanifold of Rn and

3) for each point p ∈ S there are a neighborhood O in RN and a
diffeomorphism h of O to an open set in RN such that h((M \S)∩O) =
B(y0, ε) × C

(ε)
0 where

B(y0, ε) = {y ∈ Rq : |y − y0| < ε},
C

(ε)
0 = {rS(φ(r)f(r)θ) ∈ Rn+1 : r ∈ (0, ε), θ ∈ B}.

Using the cylindrical coordinates (y, r, θ) near the edge S actually
leads to a compact C∞ manifold with boundary, M. Roughly speaking,
it is obtained from M by identifying any neighborhood (M \ S)∩O in
3) with its image in B(y0, ε) × (0, ε) ×B under the diffeomorphism h.
By the very construction, there is a blow-down mapping b : M → M
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which restricts to a diffeomorphism M \ ∂M ∼=→ M \ S. Moreover, b
gives ∂M the structure of a fibered bundle over S, the fiber being B.
Note that M bears a C∞ structure with edges induced from RN , C∞

functions on M being the restrictions of C∞ near M in RN . Under
the blow-down mapping, this structure is pulled back to M. Thus,
various degeneracies of M along S may be specified within various
C∞ structures on a compact closed manifold with boundary. We have
therefore arrived at the slogan, the analysis on a closed manifold with
edges reduced to that on a C∞ manifold with boundary.

As described above, ‘typical’ differential operators A on M are those
differential operators on the smooth part M \ S of M which take the
form (16.1) in the coordinates (y, r, θ) ∈ B(y0, ε) × (0, ε) × B near S
with coefficients aβ,j meeting (16.2). More precisely, aβ,j are required
to fulfill

‖Dk
rD

B
y aj,β(y, r)‖L(Hs(B),Hs−(m−|β|−j)(B)) ≤ ck,β(aj,β),

lim
r→0

‖Draj,β(y, r)‖L(Hs(B),Hs−(m−|β|−j)(B)) = 0

for all k ∈ Z+ and B ∈ Zq
+ uniformly in y on compact subsets of

B(y0, E) and r ∈ (0, ε], ε < E .

For s, γ, µ ∈ R, the weighted Sobolev spaces Hs,γ,µ(M) on M are
introduced in a familiar way by gluing together the usual Sobolev spaces
Hs

loc(M \S) on the smooth part of M with the weighted Sobolev spaces
Hs,γ,µ(W ) of (16.3) near S. Namely, fix a finite covering (Oν) of M
by open sets in RN such that every M ∩ Oν lies in the domain of
some chart on M . These charts are of two types: either Oν ∩ S = ∅

and the local coordinates in M ∩ Oν are those on an open set in
Rdim M or Oν ∩ S �= ∅ and the local coordinates in M ∩ Oν are
(y, r, θ) ∈ B(y0, ε) × (0, ε) × B. Pick a C∞ partition of unity on
M , (ϕν), subordinate to the covering (Oν). Then a distribution u
on M \ S is said to belong to Hs,γ,µ(M) if ϕνu ∈ Hs(Rdim M ) for the
charts away from S and ϕνu ∈ Hs,γ,ν(W ) for the charts intersecting S.
It is immaterial which charts and partition of unity on M we choose
to define Hs,γ,µ(M) as long as transition diffeomorphisms obey the
structure of M . Moreover, the space Hs,γ,µ(M) can be given a Hilbert
structure in an evident way.

Obviously, the operator A maps Hs,γ,µ(M) to Hs−m,γ,µ−m(M) for
any s, γ, µ ∈ R.



BVPs IN OSCILLATING CUSPIDAL WEDGES 1453

Given any point p ∈ S, the operator A possesses an operator-valued
symbol σ(A)(y, r; η, �) in local coordinates (y, r, θ) ∈ B(y0, ε)×(0, ε)×B
near p. Here y0 = h(p). The changes of local coordinates on M obeying
the structure of M are of the form

⎧⎨
⎩
Y = Y0(y) + rY1(y, r, θ),
R = r expR1(y, r, θ),
Θ = Θ(y, r, θ),

where Y1, R1 and Θ are smooth up to r = 0 and Θ(y, r, θ) is a
diffeomorphism of B for any fixed y and r. Under such a change we
have

Dy = (δ′(R)/δ′(r))(∂Y0/∂y)T DY ,

Dr = (δ′(R)/δ′(r))((Y1)TDY + (expR1)DR),
Dθ = (∂Θ/∂θ)TDΘ

modulo operators of infinitesimal local norm as r → 0. Hence it follows
immediately that

(17.1) σ((Y,R,Θ)∗A)(Y,R; η, �) = Θ∗σ(A)(y, r;T (η, �))

modulo operators of small local norm at R = 0 where Θ∗ means the
push-forward operator on B under the diffeomorphism Θ for fixed y
and r, and

T (η, �) = (δ′(R)/δ′(r))
(

(∂Y0/∂y)T 0
(Y1)T expR1

) (
η
�

)
.

The equality (17.1) shows that whether or not the compressed symbol
σ(A) is invertible at a point p ∈ S does not depend on the choice of
local coordinates on M to evaluate it.

Theorem 17.1. Let s, γ, µ ∈ R. Then A : Hs,γ,µ(M) →
Hs−m,γ,µ−m(M) is Fredholm if

1) A is an elliptic operator on M \ S and

2) for each p ∈ S there exists ε > 0 such that σ(A)(p, r; η, ζ) is an
invertible operator on B for any (r, η, ζ) ∈ (0, ε) × Rq × (R + iγ) and
the inverse satisfies (16.8).
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Proof. Let the condition 2) be fulfilled. We claim that there exist
ε0 > 0 and operators B(L)

ε0 and B(R)
ε0 such that

(17.2) B
(L)
ε0 Aχε = χε, χεAB

(R)
ε0 = χε

for all ε ∈ (0, ε0) where χε(r) is a cut-off function of a collar neighbor-
hood of the manifolds S.

Indeed, it follows from 2) that, given any point p ∈ S with local
coordinates (y0, 0), the operator Ay0 with coefficients frozen at y0 is
locally invertible. Hence there are operators T (L)

y0,ε and T (R)
y0,ε such that

T
(L)
y0,εAy0χε = χε, χεAy0T

(R)
y0,ε = χε

for all ε > 0 small enough, in accordance with y0.

A familiar argument based on smoothness of the coefficients along
the edge shows that we can find a neighborhood Op of p on S and
operators B(L)

y0,ε and B(R)
y0,ε such that

(17.3)
B

(L)
y0,εA(ψp ⊗ χε) = ψp ⊗ χε,

(ψp ⊗ χε)AB
(R)
y0,ε = ψp ⊗ χε,

where ψp ∈ C∞
comp(Op) is a cut-off function at the point p. Note that

the domain of ε in (17.3) depends on y0.

When p varies over S, the neighborhoods Op cover S. Since S
is compact, there is a finite subcovering Opν

, ν = 1, . . . , N . Fix a
partition of unity (ψν)ν=1,... ,N on S subordinate to this covering.

Let us choose ε0 > 0 small enough so that χεν (r)χε0(r) = χε0(r) for
each ν = 1, . . . , N . Then

B
(L)
yν ,ενA(ψν ⊗ χε0) = ψν ⊗ χε0 ,

(ψν ⊗ χε0)AB(R)
yν ,εν = ψν ⊗ χε0

for any ν = 1, . . . , N .

Set ϕν,ε = ψν ⊗ χε. As
∑N

ν=1 ψν = 1, we obtain
∑N

ν=1 ϕν,ε = χε for
ε > 0 small enough.
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Introducing the operator

P (L)
ε =

N∑
ν=1

B
(L)
yν ,ενϕν,ε,

we get

P (L)
ε A =

N∑
ν=1

B
(L)
yν ,ενAϕν,ε

+
N∑

ν=1

B
(L)
yν ,εν [ϕν,ε, A].

We keep ε < ε0 small enough such that ϕν,ε0ϕν,ε = ϕν,ε, whence

B
(L)
yν ,ενAϕν,ε = B

(L)
yν ,ενA(ϕν,ε0ϕν,ε) = ϕν,ε.

On the other hand,

lim
ε→0

‖[ϕν,ε, A]‖L(Hs,γ,µ(M),Hs−m,γ,µ−m(M)) = 0

for every ν = 1, . . . , N , as is easy to check. Therefore,

P (L)
ε A = χε +Rε

where
lim
ε→0

‖Rε‖L(Hs,γ,µ(M)) = 0.

Pick an ε0 > 0 such that ‖Rε0‖L(Hs,γ,µ(M)) < 1. Then the operator
1+Rε0 is invertible within the calculus. If moreover ε < ε0 is sufficiently
small so that χε0χε = χε, then

(1 +Rε0)−1P
(L)
ε0 Aχε = (1 +Rε0)−1(χε0 +Rε0)χε = χε,

i.e., B(L)
ε0 = (1 + Rε0)−1P

(L)
ε0 is a local left inverse of A, as is required

in (17.2).

In the same way we can construct a local right inverse of A satisfying
the second equality in (17.2).

We now proceed by pasting together these local inverses with a
parametrix of A on the smooth part of M . Namely, the condition 1)
makes it legitimate to apply the usual elliptic theory away from the
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edge on M to deduce that, for any ε > 0, there are classical pseudod-
ifferential operators Q(L)

ε and Q(R)
ε such that

Q(L)
ε A(1 − χε) = (1 − χε) +K ′

ε,

(1 − χε)AQ(R)
ε = (1 − χε) +K ′′

ε ,

both R′
ε and R′′

ε being compact operators. Set

R(L)
ε = B

(L)
ε0 χε +Q(L)

ε (1 − χε),

then

R(L)
ε A = B

(L)
ε0 Aχε +Q(L)

ε A(1 − χε) +B
(L)
ε0 [χε, A] +Q(L)

ε [1 − χε, A]
= 1 +Kε + Sε,

where

Kε = K ′
ε +Q(L)

ε [1 − χε, A],

Sε = B
(L)
ε0 [χε, A].

It is clear that Kε is a compact operator for each ε > 0 small enough.
Furthermore, the operator (1+Sε) is invertible for any sufficiently small
ε > 0 because

lim
ε→0

‖[χε, A]‖L(Hs,γ,µ(M),Hs−m,γ,µ−m(M)) = 0.

Hence it follows that (1 + Sε)−1R
(L)
ε for ε � 1 is a left regularizer

of A.

The same reasoning applies to prove the existence of a right regular-
izer, which completes the proof.

Note that if the coefficients aβ,j(y, r) of A are C∞ up to r = 0,
then the condition 2) just amounts to saying that σ(A)(p, 0; η,Z) is
an invertible operator on B for any (η, ζ) ∈ Rq × (R + iγ). Indeed,
σ(A)(p, r; η, ζ) is a perturbation of σ(A)(p, 0; η, ζ) by an operator of
small local norm as r → 0.
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Theorem 17.2. Let the condition 2) of Theorem 17.1 hold uniformly
in γ on compact intervals in (a, b). If a < γ′ ≤ γ′′ < b and
u ∈ Hs,γ′,µ(M) satisfies Au = f with f ∈ Hs−m,γ′′,µ−m(M), then
u ∈ Hs,γ′′,µ(M).

Proof. In the proof of Theorem 17.1 we have constructed a local left
inverse for A near the singular manifold S. This operator B(L)

ε0 bears a
symbol analytic in the strip R+i(a, b) and thus extends to a continuous
mapping Hs−m,γ,µ−m(M) → Hs,γ,µ(M) for each γ ∈ (a, b). If ε > 0 is
small enough, then

χεu = −B(L)
ε0 A(1 − χε)u+ B

(L)
ε0 f.

We have (1 − χε)u ∈ Hs,γ′′,µ(M) and f ∈ Hs−m,γ′′,µ−m(M). By the
mapping properties of A and B

(L)
ε0 , we deduce that u ∈ Hs,γ′′,µ(M).

The proof is complete.

Example 17.3. Let us equip (the smooth part of) the manifold
M with the Riemannian metric induced by the embedding M ↪→ RN .
Consider the Schrödinger operator on M \ S

A = ∆ + p,

where p is a C∞ function on M \ S. We require the potential
to be of the form p(y, r, θ) = (δ′(r))2a(y, r, θ) in local coordinates
(y, r, θ) ∈ B(y0, ε) × (0, ε) ×B near S, with a(y, r, θ) satisfying

|Dβ
y Dj

rD
α
θ a(y, r, θ)| ≤ cβ,j,α, lim

r→0
Dra(y, r, θ) = 0

for all multi-indices β, j and α uniformly in y on compact subsets of
B(y0, E), r ∈ (0, ε], ε < E , and θ on compact subsets of the domains of
local charts on B. If moreover

lim inf
r→0

a(y, r, θ) ≥ k2

where k > 0 (cf. (16.11)), then A : Hs,γ,µ(M) → Hs−2,γ,µ−2(M) is a
Fredholm operator for all s, µ ∈ R and γ ∈ (−k, k). This follows from
Theorem 17.1 and what has already been proved in Example 16.7.
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Furthermore, any solution u ∈ Hs−k+0,µ(M) of the homogeneous
equation Au = 0 actually belongs to H∞,k−0,µ(M).

Part IV. Boundary Value Problems in Domains with Cusp-
idal Wedges.

18. Domains with cuspidal wedges. Let D be a domain
in Rq+n+1 with a compact closure D and S a closed subset of the
boundary of D. We assume that

1) ∂D \ S is a C∞ submanifold of Rq+n+1 \ S;

2) S is a C∞ submanifold of Rq+n+1 of dimension q; and

3) for each p ∈ S there are a neighborhood O in Rq+n+1 and a
diffeomorphism h of O to an open set in Rq+n+1 such that h(D∩O) =
B(0, ε) × C

(ε)
0 , where

B(0, ε) = {y ∈ Rq : |y| < ε},
C

(ε)
0 = {rS(φ(r)f(r)θ) ∈ Rn+1 : r ∈ (0, ε), θ ∈ B},

B being a relatively compact domain in Rn with smooth boundary.

It is worth mentioning that, in contrast to the definition of a closed
manifold with edges (cf. Section 17), B has here a nonempty boundary.

The functions f(r) and φ(r) have been introduced in Section 14. They
control the degeneracy of D along the edge S and the oscillation of D
near the edge S, respectively.

19. Boundary value problems in a canonical domain. Recall
that W = Rq × C0 is referred to as a canonical oscillating cuspidal
wedge, C0 being given by (14.3) with B a bounded domain in Rn with
C∞ boundary. We also call W the canonical domain.

Consider a boundary value problem in the canonical domain W with
boundary data given on the smooth part of ∂W . Namely,

(19.1)
{
Au = f in W ,
Biu = ui on ∂W \ (Rq × {0}),

where A is a differential operator in W and (Bi) is a system of
differential operators defined in a neighborhood of ∂W \ (Rq × {0}).
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The pull-backs of A and (Bi) under cylindrical coordinates (15.2) in
W are of the form

π�A = (δ′(r))m
∑

|β|+j≤m

aβ,j(y, r)Dβ
yD

j
r,

π�Bi = (δ′(r))mi

∑
|β|+j≤mi

bi,β,j(y, r)Dβ
yD

j
r,

where aβ,j is a C∞ function of (y, r) ∈ Rq × R+ whose values are
differential operators of order m − |β| − j on B and bi,β,j is a C∞

function of (y, r) ∈ Rq × R+ whose values are differential operators
of order mi − |β| − j in a neighborhood of ∂B. When passing to the
cylindrical coordinates, we are actually lifted to the infinite “stretched”
wedge W = Rq × R+ ×B.

In order to apply the theory of Chapter II, we require the coefficients
aj,α and bi,j,α to satisfy (16.2) uniformly in (y, r) ∈ Rq × R+.

For s ≥ 0 and γ, µ ∈ R, we introduce weighted Sobolev spaces
Hs,γ,µ(W ) just as in (16.3) with B being now a domain in Rn. If
s > 1/2, then we define the space Hs−1/2,γ,µ(∂W ) to consist of the
traces on ∂W \ (Rq × {0}) of functions in Hs,γ,µ(W ). It is a Hilbert
space under the canonical quotient norm.

Assuming s > maxmi + 1/2, we assign an operator

(19.2)
(

A
⊕r∂WBi

)
: Hs,γ,µ(W ) −→

Hs−m,γ,µ−m(W )
⊕

⊕Hs−mi−1/2,γ,µ−mi(∂W )

to the boundary value problem (19.1) where r∂W means restriction to
(the smooth part of) the boundary ofW . Denote the operator (19.2) by
A. It can be written as a weighted pseudodifferential operator over the
half-line R+ with an operator-valued symbol a(r, ζ) taking its values
in the space L(H1, H2) where

H1 = Hs(Rq ×B),

H2 = Hs−m(Rq ×B) ⊕ (⊕Hs−mi−1/2(Rq × ∂B)),

cf. the remark after Proposition 12.3. In fact A=(δ′(r))mopw,γ(a(r, ζ))
where

a(r, ζ) =
( ∑

|β|+j≤m aβ,j(y, r)ζjDβ
y

⊕∑
|β|+j≤mi

r∂B ◦ bi,β,j(y, r)ζjDβ
y

)
.
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Consider the weight functions

λ1(r, �) = ((1 + (δ′(r))−2∆y + �2)1/2 + ΛB)s,

λ2(r, �) = ((1 + (δ′(r))−2∆y + �2)1/2 + ΛB)s−m

⊕ (⊕λs−mi−1/2(r, �))

where ΛB : Hσ(B) → Hσ−1(B), σ > −1/2, is the order-reducing
operator described in Example 9.5 and

λs−mi−1/2(r, �) = (1 + (δ′(r))−2∆y + �2 + ∆∂B)[(s−mi−(1/2))/2],

cf. (16.5). If δ(r) meets the first condition of (12.3), then

λ1(r, �) ∈ Λw(H1, H̃1), λ2(r, �) ∈ Λw(H2, H̃2)

where

H̃1 = L2(Rq ×B),

H̃2 = L2(Rq ×B) ⊕ (⊕L2(Rq × ∂B)).

It is a standard matter to verify that a(r, �+ iγ) ∈ Sw,sv(λ1, λ2) for
each λ ∈ R.

Having disposed of this preliminary step, we now turn to the problem
of local invertibility of the boundary value problem A near the edge Rq,
i.e., at r = 0.

We shall make two standing assumptions on the functions t = δ(r)
under consideration, namely (9.1) and (16.6). These guarantee that
both λ1(r, �) and λ2(r, �) vary slowly as r → 0.

From Proposition 12.4 it follows that the operator A can be thought
of as acting from Hw(λ1; γ, µ) to Hw(λ2; γ, µ−m).

In this section we discuss conditions of local invertibility for A with
coefficients “frozen” at any point y0 ∈ Rq. Similarly to Section 16, we
write Ay0 for this operator. It still belongs to OPSw,sv(λ1, λ2).

It was Feigin [9] who observed that the local invertibility of A at
r = 0 is controlled by the “compressed” symbol of A with respect to
action in y and r. It is defined by

(19.3) σ(A)(y, r; η, �) =
( ∑

|β|+j≤m aβ,j(y, r)ηβζj

⊕∑
|β|+j≤mi

r∂B ◦ bi,β,j(y, r)ηβζj

)
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for (y, r; η, �) ∈ T ∗(Rq × R+). Thus,

σ(A)(y, r; η, �) : Hs(B) −→
Hs−m(B)

⊕
⊕Hs−mi−1/2(∂B)

is a C∞ function on T ∗(Rq × R+) taking its values in the space of
boundary value problems on B.

We also apply the symbol mapping σ to our weight functions λj(r, �)
for j = 1, 2, by

σ(λ1)(η, �) = (〈η, �〉 + ΛB)s,

σ(λ2)(η, �) = (〈η, �〉 + ΛB)s−m ⊕
(
⊕ (〈η, �〉2 + ∆∂B)

s−mi−(1/2)
2

)
.

Theorem 19.1. Let s ∈ Z+ satisfy s > maxmi and γ, µ ∈ R.
Then Ay0 acting as in (19.2) is locally invertible at r = 0 if and only
if there exists ε > 0 such that σ(A)(y0, r; η, �+ iγ) is invertible for all
(r, η, �) ∈ (0, ε) × Rq+1 and

(19.4)
sup

(0,ε)×Rq+1
‖σ(λ1)(η, �)σ(A)−1(y0, r; η, �+ iγ)σ(λ2)−1(η, �)‖ <∞

where ‖ · ‖ means the operator norm in L(L2(B)⊕ (⊕L2(∂B)), L2(B)).

Proof. Applying the Fourier transform in y ∈ Rq shows that the
estimate (16.8) just amounts to the estimate

sup
(0,ε)×R

‖λ1(r, �)σ−1
Ay0

(r, �+ iγ)λ−1
2 (r, �)‖L(H̃2,H̃1)

<∞

adapting (13.2) to our problem. Moreover, our assumptions on δ guar-
antee that the hypotheses of Theorem 13.1 are fulfilled. Consequently,
the desired conclusion follows from Theorem 13.1.

For elliptic boundary value problems A, the weight functions λ1(r, �)
and λ2(r, �) can be removed from the condition (19.4).



1462 V. RABINOVICH, B.-W. SCHULZE AND N. TARKHANOV

Corollary 19.2. Suppose σ(A)(y0, r; η, �+iγ) is an elliptic boundary
value problem on B with parameter (n, �) ∈ Rq+1, uniformly in r > 0
small enough. Then the operator Ay0 is locally invertible at r = 0 if
and only if there exists ε > 0 such that σ(A)(y0, r; η, �+iγ) is invertible
for all (r, η, �) ∈ (0, ε) × Rq+1, and

(19.5) sup
r∈(0,ε)

‖σ(A)−1(y0, r; η, �+ iγ)‖ <∞,

‖ · ‖ meaning the operator norm in L(Hs−m(B)⊕ (⊕Hs−mi−1/2(∂B)),
Hs(B)).

Proof. As is shown in the proof of Corollary 16.5, estimate (19.4)
implies estimate (19.5). On the other hand, the latter implies the
former for (η, �) on any ball in Rq+1 while for |η, �| large enough the
estimate (19.4) is a consequence of the parameter-dependent ellipticity.

As the symbols of differential boundary value problems are polyno-
mials in ζ, Theorem 13.2 applies to the operator Ay0 . This results in
an exponential estimate for solutions of the problem with coefficients
frozen along the edge.

Theorem 19.3. Under the hypotheses of Theorem 19.1, let moreover
σ(A)(y0, r; η, ζ) be invertible for all r ∈ (0, ε) and (n, ζ) ∈ Rq × (R +
i(a, b)) and the estimate (19.4) hold uniformly with respect to γ on com-
pact intervals in (a, b). Then any function u ∈ Hs,a+0,µ(W ) satisfying
Ay0u = f with f ∈ Hs−m,b−0,µ(W ) ⊕ (⊕Hs−mi−1/2,b−0,µ−mi(∂W ))
near r = 0, is actually of class Hs,b−0,µ(W ) near r = 0.

As but two examples we consider the classical Dirichlet and Neumann
problems for the Schrödinger operator.

Example 19.4. Suppose that the function f(r) specifying the
degeneracy of W along the edge meets (15.9). As mentioned, this
implies f(0) = 0. The Dirichlet problem in W is{

∆u = f in W ,
u = u0 on ∂W \ (Rq × {0}),
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where f and u0 are given functions on W and the smooth part of
∂W , respectively. The operator A of this boundary value problem
can be thought of as acting from Hs,γ,µ(W ) to Hs−2,γ,µ−2(W ) ⊕
Hs−1/2,γ,µ(∂W ) for each integer s > 0 and γ, µ ∈ R. By Proposition
15.2, the compressed symbol of A is given by

σ(A)(y, r; η, ζ) =
( |η|2 + ζ2 + (φ(r))−2∆B

r∂B

)

modulo operators of small local norm as r → 0, φ(r) being the function
controlling the oscillation of W near the edge. Denote by k2 > 0 the
first eigenvalue of the Laplacian ∆B acting on functions u ∈ Hs(B)
which satisfy r∂Bu = 0. Then Corollary 19.2 enables us to conclude
that the operator A is locally invertible near the edge r = 0 if

− k

ϕ0
< γ <

k

ϕ0
,

where
φ0 = lim inf

r→0
φ(r) > 0.

Moreover, Theorem 19.3 shows that if −k/φ0 < γ′ < γ′′ < k/φ0, then
any solution u ∈ Hs,γ′,µ(W ) of the homogeneous problem Au = 0
actually belongs to H∞,γ′′,µ(W ).

Note that the Neumann problem for the Laplacian in the canonical
domain is not locally invertible at r = 0 in any space Hs,γ,µ(W ), for
0 is an eigenvalue of the Laplacian ∆B acting on functions u which
satisfy (∂/∂n)u = 0 on the boundary of B.

Example 19.5. Let us consider the boundary value problem
{

(∆ + p(r))u = f in W ,
∂u/∂n = u1 on ∂W \ (Rq × {0}),

where f and u1 are given functions on W and the smooth part of
∂W , respectively. We assume that the potential p(r) is of the form
p(r) = (δ′(r))2a(r), with a(r) meeting the conditions of Example 16.7.
In particular, we require

lim inf
r→0

a(r) = k2 > 0.
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The operator A of this boundary value problem can be regarded as
acting from Hs,γ,µ(W ) to Hs−2,γ,µ−2(W )⊕Hs−3/2,γ,µ−1(∂W ) for each
integer s > 1 and γ, µ ∈ R. Once again we invoke Proposition 15.2 to
see that the compressed symbol of A is given by

σ(A)(y, r; η, ζ) =
( |η|2 + ζ2 + (φ(r))−2∆B + a(r)

r∂B ◦ (∂/∂n)

)

up to an operator of small local norm as r → 0. If |γ| < k, then the
operator-valued function

σ(A)(y, r; η, �+ iγ) : Hs(B) −→
Hs−2(B)

⊕
Hs−3/2(∂B)

is invertible for all (η, �) ∈ Rq+1 uniformly in r ∈ R+, and the
inverse fulfills (19.5). Thus, Corollary 19.2 applies to show that the
Neumann problem for the Schrödinger operator on W , when posed in
any weighted space Hs,γ,µ(W ) with γ ∈ (−k, k), is locally invertible
near the edge r = 0.

20. Fredholm property of a boundary value problem in a
domain with cuspidal wedges. We now turn to boundary value
problems in a domain D ⊂ RN , N = q+n+ 1, with a cuspidal edge S
of dimension q on the boundary, as is described in Section 18.

Blowing up D along the edge S by using the cylindrical coordinates
(r, y, θ) near S does not remove the singularity. What we obtain in this
way is still a domain with edges on the boundary. However, this new
domain is of product type close to the singularities on the boundary.
In fact, it bears the structure of a fibered bundle over the edge S whose
typical fiber is the semi-cylinder R+ × B over B. This “resolution
of singularities” simplifies the analysis of pseudodifferential operators
near S in D.

We consider a boundary value problem

(20.1)
{
Au = f in D,
Biu = ui on ∂D \ S,

where A is a differential operator in D and (Bi) a system of differential
operators defined near ∂D \ S in D. The coefficients of both A and
(Bi) are assumed to be C∞ functions up to the smooth part of ∂D.
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The pull-backs of A and (Bi) under cylindrical coordinates (15.2)
close to S are of the form

π�A = (δ′(r))m
∑

|β|+j≤m

aβ,j(y, r)Dβ
yD

j
r,

π�Bi = (δ′(r))mi

∑
|β|+j≤mi

bi,β,j(y, r)Dβ
yD

j
r,

where aβ,j is a C∞ function of (y, r) ∈ B(0, ε) × (0, ε) whose values
are differential operators of order m − |β| − j on B, and bi,β,j is a
C∞ function of (y, r) ∈ B(0, ε) × (0, ε) whose values are differential
operators of order mi − |β| − j in a neighborhood of ∂B. We require
the coefficients aj,α and bi,j,α to satisfy (16.2) uniformly in y on compact
subsets of B(0, E) and r ∈ (0, ε], ε < E .

For s ≥ 0 and γ, µ ∈ R, the weighted Sobolev spaces Hs,γ,µ(D) on
D are introduced by gluing together the local Sobolev spaces Hs

loc(D)
with the weighted Sobolev spaces Hs,γ,µ(W ) of (16.3).

If s > 1/2, then Hs−1/2,γ,µ(∂D) stands for the space formed by the
traces on ∂D \ S of functions in Hs,γ,µ(D). It is a Hilbert space
under the canonical quotient norm. When regarded as a normal
space, Hs−1/2,γ,µ(∂D) coincides with the weighted Sobolev space on
the surface ∂D defined in Section 17.

Assuming s > maxmi + 1/2, we assign an operator

(20.2) A =
(

A
⊕r∂DBi

)
: Hs,γ,µ(D) −→

Hs−m,γ,µ−m(D)
⊕

⊕Hs−mi−1/2,γ,µ−mi(∂D)

to the boundary value problem (20.1), r∂D being restricted to (the
smooth part of) the boundary of D.

For any point p ∈ S, we can write A in the cylindrical coordinates
near p in D and define the “compressed” symbol of A by formula
(19.3). Analysis similar to that in Section 17 actually shows that the
invertibility of σ(A)(p, r; η, �) is independent of the particular choice of
local coordinates near p to evaluate σ(A).

Theorem 20.1. Let s be an integer satisfying s > maxmi and
γ, µ ∈ R. Then the operator (20.2) is Fredholm if:
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1) A is an elliptic boundary value problem away from the edge S on
the boundary of D and

2) for each p ∈ S there exists ε > 0 such that σ(A)(p, r; η, ζ) is an
invertible operator on B for any (r, η, ζ) ∈ (0, E) × Rq × (R + iγ) and
the inverse satisfies (19.4).

Proof. The proof is based on the standard localization procedure and
Theorem 19.1, cf. the proof of Theorem 17.1.

If σ(A)(y, r; η, �+iγ) is an elliptic boundary value problem on B with
parameter (η, �) ∈ Rq+1, uniformly in r > 0 small enough, then condi-
tion 2) of Theorem 20.1 just amounts to saying that σ(A)(p, r; η, �+iγ)
is an invertible operator on B for all (p, r) ∈ S × (0, E) and (η, �) ∈
Rq+1, and the inverse satisfies

(20.3) sup
r∈(0,ε)

‖σ(A)−1(p, r; η, �+ iγ)‖ <∞,

where ‖·‖ means the norm in L(Hs−m(B)⊕(⊕Hs−mi−1/2(∂B)), Hs(B)).
If, moreover, the condition (20.3) holds uniformly in γ on compact in-
tervals in (a, b), then the conclusion of Theorem 19.3 is valid with W
replaced by D and Ay0 replaced by A.

Example 20.2. Consider the Dirichlet problem
{

∆u = f in D,
u = u0 on ∂D \ S,

where f and u0 are given functions on D and ∂D\S, respectively. The
operator A of this boundary value problem can be regarded as acting
from Hs,γ,µ(D) to Hs−2,γ,µ−2(D) ⊕ Hs−1/2,γ,µ(∂D) for any integer
s > 0 and γ, µ ∈ R. Combining Theorem 20.1 with Example 19.4
we deduce that the Dirichlet problem is Fredholm if

− k

ϕ0
< γ <

k

ϕ0
,

where k2 > 0 is the first eigenvalue of the Laplacian ∆B which acts
on functions u ∈ Hs(B) satisfying r∂Bu = 0 and φ0 = lim infr→0 φ(r).
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Furthermore, any solution u ∈ Hs,−(k/φ0)+0,µ(M) of the homogeneous
problem Au = 0 is actually of the class H∞,(k/φ0)−0,µ(M).

We leave it to the reader to examine in a similar way the Neumann
problem for the Schrödinger operator in D, cf. Example 19.5.
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Appendix

A. Hardy-Littlewood inequality on a half-line.

Lemma A.1. Let Φ(t) be a C2 function on a ray (T,∞) with values
in a Banach space H such that

‖Φ(j)‖L∞((T,∞),H) = sup
t∈(T,∞)

‖Φ(j)(t)‖H

is finite for j = 0, 1, 2. Then

‖Φ′‖L∞((T,∞),H) ≤
√

8
√
‖Φ‖L∞((T,∞),H)‖Φ′′‖L∞((T,∞),H).

Proof. We have

(e−tΦ′(t))′ = e−tΦ′′(t) − e−tΦ′(t),

and so integration by parts gives

−e−tΦ′(t) =
∫ ∞

t

e−θΦ′′(θ) dθ −
∫ ∞

t

e−θΦ′(θ) dθ

=
∫ ∞

t

e−θΦ′′(θ) dθ + e−tΦ(t) −
∫ ∞

t

e−θΦ(θ) dθ,

for t ∈ (T,∞). Hence it follows that

−Φ′(t) =
∫ ∞

t

et−θΦ′′(θ) dθ + Φ(t) −
∫ ∞

t

et−θΦ(θ) dθ.
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Let us introduce the function

k(t) =
{
et if t ≤ 0,
0 if t > 0;

then the above equality for Φ′ can be rewritten in the form

Φ′(t) = (k ∗ Φ)(t) − Φ(t) − (k ∗ Φ′′)(t),

for t ∈ (T,∞). Since ‖k‖L1(R) = 1, the well-known estimate for
convolutions yields

‖Φ′‖L∞((T,∞),H) ≤ 2‖Φ‖L∞((T,∞),H) + ‖Φ′′‖L∞((T,∞),H).

We now apply this estimate to the family of functions Φ(T +λ(t−T ))
on (T,∞) parametrized by λ ∈ R+. This gives

λ‖Φ′‖L∞((T,∞),H) ≤ 2‖Φ‖L∞((T,∞),H) + λ2‖Φ′′‖L∞((T,∞),H),

or

‖Φ′‖L∞((T,∞),H) ≤ 2
λ
‖Φ‖L∞((T,∞),H) + λ‖Φ′′‖L∞((T,∞),H),

for any λ > 0.

Taking the minimum over λ > 0 on the righthand side, we arrive at
the desired estimate.

ENDNOTES

1. Note that
◦
Hs(R

n
+) cannot be thought of as a subspace of Hs(R

n
+) because

the natural mapping of the former to the latter is not injective unless s > −1/2.
Indeed the surface layer on ∂Rn

± belongs to Hs(Rn) if s < −1/2.

2. In the Appendix we give an independent proof of the Hardy-Littlewood
inequality on the half-line.
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