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EVERY ABSOLUTELY HENSTOCK-KURZWEIL
INTEGRABLE FUNCTION IS MCSHANE

INTEGRABLE: AN ALTERNATIVE PROOF

LEE TUO-YEONG

ABSTRACT. We give an alternative proof of the well-
known result that every absolutely Henstock-Kurzweil inte-
grable function is McShane integrable.

1. Introduction. It is well known that the Lebesgue integral is a
proper extension of the Riemann integral. In the late 1950s, Henstock
[4] and Kurzweil [6] independently gave a slight, but ingenious, modifi-
cation of the classical Riemann integral to obtain a Riemann-type defi-
nition of the Perron integral. This integral is now commonly known as
the Henstock-Kurzweil integral [9, 12], the Kurzweil-Henstock integral
[8, 14], the gauge integral [13] or the Henstock integral [1, 3, 7], and
we shall use the term “Henstock-Kurzweil integral.” Later, McShane
[10] modified the Henstock-Kurzweil integral to yield a Riemann-type
definition of the Lebesgue integral, which is also commonly referred to
as the McShane integral [1, 3, 7, 8, 12 14]. It turns out that f and |f |
are both Henstock-Kurzweil integrable on a compact subinterval E of
the real line if and only if f is McShane integrable there. In 1980 Pfeffer
in [11, p. 46] proposed a problem to prove, using only the definitions of
Henstock-Kurzweil and McShane integrals, that absolutely Henstock-
Kurzweil integrable functions are McShane integrable. Since then a
fairly large number of proofs have been offered. See, for example, [1,
3, 7, 8, 13, 14]. However, their proofs either involve convergence theo-
rems or the existing techniques rely heavily on the real-valued property
of integrable functions. In this paper we give an alternative proof of the
above result which is also valid for Banach-valued integrable functions
satisfying the Saks-Henstock lemma. Moreover our method, unlike the
existing known proofs, uses neither the measurability of the integrand
nor convergence theorems.
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2. Preliminaries. Unless stated otherwise, the following conven-
tions and notations will be used. The set of all real numbers is denoted
by R, and the ambient space of this paper is Rm, where m is a fixed
positive integer. The norm in Rm is the maximum norm ||| · |||. For
x ∈ Rm and r > 0, set B(x, r) := {y ∈ Rm : |||y − x||| < r}. Let
E :=

∏m
i=1[ai, bi] be a fixed interval in Rm. For a set A ⊆ E, we de-

note by χ
A , diam (A) and µm(A) the characteristic function, diameter

and m-dimensional Lebesgue outer measure of A, respectively. More-
over, we denote its interior and closure of A ⊆ E with respect to the
subspace topology of E by int (A) and A, respectively. The distance
between Y ⊆ E and Z ⊆ E will be denoted by dist (Y, Z). A set
A ⊂ E is called negligible whenever µm(A) = 0. We say that two sets
are nonoverlapping if their intersection is negligible. Let X be a Ba-
nach space equipped with norm ‖ · ‖. A function is always X-valued.
When no confusion is possible, we do not distinguish between a function
defined on a set Z and its restriction to a set W ⊂ Z.

An interval in Rm is the cartesian product of m nondegenerate
compact intervals in R. I denotes the family of all nondegenerate
subintervals of E. If I ∈ I, we shall write µm(I) as |I|. For each
J ∈ I, the regularity of an m-dimensional interval J ⊆ E, denoted
by reg (J), is the ratio of its shortest and longest sides. A function F
defined on I is said to be additive if F (I ∪ J) = F (I) + F (J) for each
nonoverlapping interval I, J ∈ I with I ∪ J ∈ I. In particular, if we
follow the proof of [8, Corollary 6.2.4], then we can verify that if F is
an additive interval function on I with J ∈ I, and {K1, K2, . . . , Kr}
is a collection of nonoverlapping subintervals of J with

⋃r
i=1Ki = J ,

then

F (J) =
r∑

i=1

F (Ki).

A partition P is a finite collection {(Ii, ξi)}p
i=1, where I1, I2, . . . , Ip

are nonoverlapping subintervals of E. Given Z ⊆ E, a positive function
δ on Z is called a gauge on Z. We say that a partition {(Ii, ξi)}p

i=1 is

(i) a partition in Z if
⋃p

i=1Ii ⊆ Z,

(ii) a partition of Z if
⋃p

i=1Ii = Z,

(iii) anchored in Z if {ξ1, ξ2, . . . , ξp} ⊂ Z,

(iv) δ-fine if Ii ⊂ B(ξi, δ(ξi)) for each i = 1, 2, . . . , p,
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(v) Perron if ξi ∈ Ii for each i = 1, 2, . . . , p,

(vi) McShane if ξi need not belong to Ii for all i = 1, 2, . . . , p.

According to Cousin’s lemma [8, Lemma 6.2.6], for any given gauge δ
on E, δ-fine Perron partitions of E exist. Hence the following definition
is meaningful.

Definition 2.1. A function f : E → X is said to be strongly
Henstock-Kurzweil integrable (respectively strongly McShane inte-
grable) on E if there exists an additive interval function F : I → X
with the following property: for each ε > 0 there exists a gauge δ on E
such that

p∑
i=1

‖f(ξi)|Ii| − F (Ii)‖ < ε

for each δ-fine Perron partition (respectively δ-fine McShane partition)
{(Ii, ξi)}p

i=1 in E. The function F is called the indefinite strong
Henstock-Kurzweil integral (respectively indefinite strong McShane
integral) of f on E.

Remark 2.2. When X = R, the reader can verify that Definition 2.1
is equivalent to the classical definition of the Henstock-Kurzweil inte-
gral. A similar result also holds for the McShane integral.

For additional properties of the Henstock-Kurzweil integral, the
reader may wish to consult, for example, [8, 13] or [9]. Unless stated
otherwise, for the rest of this paper, every integral of real-valued func-
tion will be understood as a Henstock-Kurzweil integral.

Theorem 2.3. If f : E → X is strongly Henstock-Kurzweil
integrable on E, and F is the indefinite strong Henstock-Kurzweil
integral of f , then for µm-almost all x ∈ E, given ε > 0 there exists
δ0(x) > 0 such that ∥∥∥∥f(x) − F (J)

|J |
∥∥∥∥ < ε

whenever x ∈ J ∈ I with diam (J) < δ0(x) and reg (J) = 1. In
particular, f is strongly measurable.
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Proof. The proof is similar to the case for real-valued Henstock-
Kurzweil integrable functions. See, for example, [5, Note 1.5, Theorem
2.8].

3. Main results.

Definition 3.1. A function f : E → X is absolutely strongly
Henstock-Kurzweil integrable on E if f is strongly Henstock-Kurzweil
integrable on E, and ‖f‖ is Henstock-Kurzweil integrable on E.

Our aim is to prove every absolutely strongly Henstock-Kurzweil
integrable function f on E is also strongly McShane integrable there.
Moreover, the indefinite strong integrals coincide.

Theorem 3.2. If f : E → X is absolutely strongly Henstock-
Kurzweil integrable on E, and F is the indefinite strong Henstock-
Kurzweil integral of f , then the inequality

‖F (I)‖ ≤
∫

I

‖f‖

holds for each I ∈ I.

Proof. The proof is similar to the case for real-valued absolutely
Henstock-Kurzweil integrable functions.

Definition 3.3. An additive interval function F on I is said to be
strongly absolutely continuous if given ε > 0, there exists η > 0 such
that

q∑
i=1

‖F (Ii)‖ < ε

whenever {I1, I2, . . . , Iq} is a collection of nonoverlapping subintervals
of E with

∑q
i=1 |Ii| < η.

In order to proceed further, we need to prove the following result:
if F is the indefinite strong Henstock-Kurzweil integral of an abso-
lutely strongly Henstock-Kurzweil integrable function on E, then F
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is strongly absolutely continuous on I. Unlike the existing classical
proofs, our method uses neither the strong measurability of f nor con-
vergence theorems. In particular, our method does not depend on the
truncations of f . We need a lemma.

Lemma 3.4. If g : E → R is a nonnegative Henstock-Kurzweil
integrable function on E, and X ⊆ E is closed, then gχ

X
is Henstock-

Kurzweil integrable on E.

Proof. If X = ∅ or X = E, then the result is obvious, so we may
assume that both sets X and E\X are nonempty. Since X is closed,
E\X is relatively open in E. An application of [2, Lemma 2.43] shows
that E\X can be written as countable union of nonoverlapping intervals
{Ji}∞i=1. Since g is Henstock-Kurzweil integrable on E, it follows from
[8, Theorem 6.4.2] that g is also Henstock-Kurzweil integrable on each
of the intervals Ji. Moreover, it follows from the additivity of the
indefinite Henstock-Kurzweil integral of g that

∞∑
i=1

∫
Ji

g = lim
n→∞

n∑
i=1

∫
Ji

g = lim
n→∞

∫
E

gχ∪n
i=1Ji

(1)

≤
∫

E

g < ∞.

Since g is assumed to be Henstock-Kurzweil integrable on E with
gχ

X = g−gχ
E\X

, it remains to prove that gχ
E\X

is Henstock-Kurzweil
integrable on E with integral value

∑∞
i=1

∫
Ji

g.

Let ε > 0. In view of (1), we may fix a positive number N satisfying

(2)
∞∑

i=N+1

∫
Ji

g <
ε

2
.

Since g is Henstock-Kurzweil integrable on E, there exists a gauge ∆
on E such that

p∑
i=1

∣∣∣∣g(xi)|I ′i| −
∫

I′
i

g

∣∣∣∣ <
ε

2
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whenever {(I ′i, xi)}p
i=1 is a ∆-fine Perron partition in E. Since E\X is

relatively open in E, we may also assume that

(3) E ∩ B(x, ∆(x)) ⊂ E\X

whenever x ∈ E\X, and

(4) B(x, ∆(x)) ∩
N⋃

i=1

Ji = ∅

whenever x ∈ E\ ∪N
i=1 Ji.

Now, we let Q = {(Ii, ξi)}q
i=1 be any ∆-fine Perron partition of E.

For such a partition, we let

T = {i : (Ii, ξi) ∈ Q with ξi ∈ E\X}.

In view of (3) and (4), we have

N⋃
i=1

Ji ⊆
⋃
i∈T

Ii.

Since g is assumed to be nonnegative and integrable on E, we have

(5)
∫

E

gχ∪N
i=1Ji

≤
∫

E

gχ∪i∈T Ii
.

Consequently, it follows from our choice of ∆, (5) and (2) that

∣∣∣∣
q∑

i=1

g(ξi)χE\X
(ξi)|Ii| −

∞∑
i=1

∫
Ji

g

∣∣∣∣
≤

∣∣∣∣
∑
i∈T

{
g(ξi)|Ii| −

∫
Ii

g

}∣∣∣∣ +
∞∑

i=1

∫
Ji

g −
∑
i∈T

∫
Ii

g

<
ε

2
+

∞∑
i=1

∫
Ji

g −
∫

E

gχ⋃
N

i=1
Ji

< ε,

completing the proof of the lemma.
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Theorem 3.5. If f : E → X is absolutely strongly Henstock-
Kurzweil integrable on E, and F is the indefinite strong Henstock-
Kurzweil integral of f , then F is strongly absolutely continuous on I.

Proof. Since f is assumed to be absolutely strongly Henstock-
Kurzweil integrable on E, for any given ε > 0 there exists a gauge
δ0 on E such that for any δ0-fine Perron partition {(I ′i, xi)}s

i=1 in E,
we have

(6)
s∑

i=1

‖f(xi)|I ′i| − F (I ′i)‖ <
ε

3

and

(7)
s∑

i=1

∣∣∣∣‖f(xi)‖|I ′i| −
∫

I′
i

‖f‖
∣∣∣∣ <

ε

21
.

For each positive integer n, set

Yn =
{

x ∈ E : ‖f(x)‖ ≤ n and δ0(x) ≥ 1
n

}
,

and Xn := Yn. We claim that there exists a positive number N such
that

(8)
∫

E

‖f‖ −
∫

E

‖fχ
XN

‖ <
ε

3
.

For each positive integer n, let gn := ‖fχ
Xn

‖. Since gn(x) =
‖f(x)χXn

(x)‖ = ‖f(x)‖χXn
(x) for each x ∈ E, it follows from

Lemma 3.4 that gn is Henstock-Kurzweil integrable on E. Hence given
ε > 0 there exists a gauge δn on E such that

(9)
r∑

i=1

∣∣∣∣gn(yi)|Ki| −
∫

Ki

gn

∣∣∣∣ <
ε

(21)(2n)

for each δn-fine Perron partition {(Ki, yi)}r
i=1 in E.

For each ξ ∈ E, we may assume that {δn(ξ)}∞n=0 is a decreasing
sequence of positive numbers.
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Since {gn}∞n=1 is an increasing sequence of nonnegative Henstock-
Kurzweil integrable functions with gn(x) ≤ g(x) := ‖f(x)‖ for all
positive integers n and x ∈ E, we have

∫
E

gn ≤ C := sup
n≥1

{∫
E

gn

}
≤

∫
E

g < ∞

from which we deduce that there exists a positive integer N0 such that

(10) C −
∫

E

gn <
ε

21

for all n ≥ N0.

For any given ξ ∈ E, we observe that {gn(ξ)}∞n=1 is a nondecreasing
sequence of positive numbers with limn→∞ gn(ξ) = g(ξ). Hence there
exists a positive integer p(ξ) ≥ N0 such that

(11) g(ξ) − gn(ξ) <
ε

21|E|

for all positive integers n ≥ p(ξ). Define a gauge ∆ on E by

(12) ∆(ξ) = δp(ξ)(ξ).

In view of Cousin’s lemma [8, Lemma 6.2.6], we may fix a ∆-fine
Perron partition Q = {(Ii, ξi)}q

i=1 of E, and put N = max{p(ξi) :
(Ii, ξi) ∈ Q}. Then for n ≥ N , it follows from (7), (11), (10) and our
choice of ∆ that
∫

E

‖f‖ −
∫

E

‖fχ
Xn

‖

=
q∑

i=1

{∫
Ii

g −
∫

Ii

gn

}

≤
q∑

i=1

∣∣∣∣g(ξi)|Ii|−
∫

Ii

g

∣∣∣∣+
q∑

i=1

∣∣∣∣gn(ξi)|Ii|−
∫

Ii

gn

∣∣∣∣+
q∑

i=1

|g(ξi)−gn(ξi)||Ii|

<
ε

21
+

q∑
i=1

∣∣∣∣gn(ξi)|Ii| −
∫

Ii

gn

∣∣∣∣ +
ε

21
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<
ε

21
+

q∑
i=1

{
gn(ξi) − gp(ξi)(ξi)

}|Ii| +
q∑

i=1

{∫
Ii

gn −
∫

Ii

gp(ξi)

}

+
q∑

i=1

∣∣∣∣gp(ξi)(ξi)|Ii| −
∫

Ii

gp(ξi)

∣∣∣∣ +
ε

21

≤ ε

21
+

2ε

21
+

∫
E

{
gn−gN0

}
+

∞∑
n=1

∑
p(ξi)=n

∣∣∣∣gp(ξi)(ξi)|Ii| −
∫

Ii

gp(ξi)

∣∣∣∣+ ε

21

<
ε

3
,

proving that (8) holds.

Now we set η := ε/3N . Given any finite collection {Ji}p
i=1 of

nonoverlapping subinterval of E with
∑p

i=1 |Ji| < η, which we may
assume that diam (Ji) < 1/N for each i = 1, 2, . . . , p, we let

S1 = {i ∈ {1, 2, . . . , p} : XN ∩ int (Ji) �= ∅}

and

S2 = {i ∈ {1, 2, . . . , p} : XN ∩ int (Ji) = ∅}.

If i ∈ S1, it follows from the density of YN in XN that we may choose
and fix xi ∈ YN ∩ int (Ji). Then {(Ji, xi)}p

i=1 is a 1/N -fine, and hence
δ0-fine, Perron partition anchored in YN . Thus it follows from (6), our
construction of YN , our choice of η, Theorem 3.2 and (8) that

p∑
i=1

‖F (Ji)‖ ≤
∑
i∈S1

‖f(xi)|Ji| − F (Ji)‖ +
∑
i∈S1

‖f(xi)‖|Ji| +
∑
i∈S2

‖F (Ji)‖

<
ε

3
+ N

ε

3N
+

∫
E

[‖f‖ − ‖fχ
XN

‖]

<
ε

3
+ N

ε

3N
+

ε

3
= ε,

proving that F is strongly absolutely continuous on I. The proof is
complete.

In view of Remark 2.2, the next theorem generalizes the well-known
classical theorem that every absolutely Henstock-Kurzweil integrable
function is McShane integrable.
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Theorem 3.6. If f : E → X is absolutely strongly Henstock-
Kurzweil integrable on E, then it is strongly McShane integrable there.

Proof. Let F denote the indefinite strong Henstock-Kurzweil integral
of f on E. Given ε > 0, choose a gauge δk on E such that

(13)
q∑

i=1

‖f(xi)|Ji| − F (Ji)‖ <
ε

2k+3

for each δk-fine Perron partition {(Ji, xi)}q
i=1 in E.

By Theorem 2.3, there exists a negligible set Z ⊂ E such that for
each ξ ∈ E\Z, there exists ν(ξ) > 0 such that

(14)
∥∥∥∥f(ξ) − F (I)

|I|
∥∥∥∥ < min

{
ε

8
,

ε

8|E|
}

whenever ξ ∈ I ∈ I with diam (I) < ν(ξ) and reg (I) = 1. We may also
assume that f(x) = 0 for each x ∈ Z.

For each positive integer k, set

Wk =
{

x ∈ E\Z : ‖f(x)‖ ≤ k and ν(x) ≥ 1
k

}

and Xk := Wk. Choose an open set Gk ⊃ Xk so that µm(Gk\Xk) < ηk,
where

0 < ηk <
ε

(k + 2ε)2k+3

corresponds to
ε

2k+3

in the definition of strong absolute continuity of F . Choose also an
open set O ⊃ Z so that µm(O) < η1.

For each positive integer k, set Vk := Xk\Xk−1 with X0 = ∅. We
may also assume that Vk is nonempty for all k. Now, we define a gauge
∆ on E by

∆(ξ) =

⎧⎨
⎩

min{ν(ξ), 1/k, dist ({ξ}, (E\Gk) ∪ Xk−1), δk(ξ)}
if ξ ∈ Vk\Z for some positive integer k,

dist ({ξ}, E\O) if ξ ∈ Z.
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Let P = {(Ii, ξi)}p
i=1 be any ∆-fine McShane partition in E. If

Pk := {(I, ξ) ∈ P : ξ ∈ Vk\Z} is nonempty, then we have

(15)

∑{‖f(ξ)|I| − F (I)‖ : (I, ξ) ∈ Pk

}
≤

∑ {‖f(ξ)|I| − F (I)‖ : (I, ξ) ∈ Pk with ξ ∈ I
}

+
∑ {‖f(ξ)|I| − F (I)‖ : (I, ξ) ∈ Pk with ξ /∈ I

and (Vk\Z) ∩ int (I) = ∅

}
+

∑ {‖f(ξ)|I| − F (I)‖ : (I, ξ) ∈ Pk with ξ /∈ I

and (Vk\Z) ∩ int (I) �= ∅

}
= αk + βk + γk (say).

By our choice of ∆, ∆(ξ) ≤ δk(ξ) for each ξ ∈ Vk\Z, so the inequality

(16) αk <
ε

2k+3

follows from (13). We shall next show that βk < 2ε/2k+3. Given
that (I, ξ) ∈ Pk and x ∈ Wk ∩ B(ξ, ∆(ξ)), we choose a 1-regular
interval Kξ,x ⊆ B(ξ, ∆(ξ)) such that {ξ, x} ⊂ Kξ,x. As ∆(ξ) ≤
min{ν(ξ), 1/k} ≤ min{ν(ξ), ν(x)}, it follows from (14) that

(17)

‖f(ξ)−f(x)‖ ≤
∥∥∥∥f(ξ)−F (Kξ,x)

|Kξ,x|
∥∥∥∥+

∥∥∥∥f(x)−F (Kξ,x)
|Kξ,x|

∥∥∥∥< min
{

ε

4
,

ε

4|E|
}

.

Hence it follows from (17), our choice of Gk, ηk and the strong
absolute continuity of F that

(18) βk <

(
k +

ε

4

)
ηk +

ε

2k+3
<

2ε

2k+3
.

For γk, we observe that for each (I, ξ) ∈ Pk with (Vk\Z) ∩ int (I) �=
∅, we invoke the density of Wk in Vk\Z to select and fix xξ,I ∈
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(Wk\Wk−1) ∩ int (I). Then it follows from (17) and (13) that

(19)

γk ≤
∑{‖f(ξ) − f(xξ,I)‖|I| : (I, ξ) ∈ Pk with ξ /∈ I

and (Vk\Z) ∩ int (I) �= ∅

}
+

∑ {‖f(xξ,I)|I| − F (I)‖ : (I, ξ) ∈ Pk with ξ /∈ I

and (Vk\Z) ∩ int (I) �= ∅

}
<

ε

4|E|
∑{|I| : (I, ξ) ∈ Pk with ξ /∈ I

and (Vk\Z) ∩ int (I) �= ∅

}
+

ε

2k+3
.

Consequently, given any ∆-fine McShane partition P = {(Ii, ξi)}p
i=1

in E, it follows from (15), (16), (18), (19) and our choice of O ⊃ Z that

p∑
i=1

‖f(ξi)|Ii| − F (Ii)‖ ≤
∞∑

k=1

∑
(Ii,ξi)∈Pk

‖f(ξi)|Ii| − F (Ii)‖

+
∑
ξi∈Z

‖f(ξi)|Ii| − F (Ii)‖

<

∞∑
k=1

[αk + βk + γk] +
ε

16
< ε,

from which the strong McShane integrability of f follows. The proof is
complete.
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