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A NOTE ON A CLASS OF RINGS FOUND AS
Ga-INVARIANTS FOR LOCALLY TRIVIAL

ACTIONS ON NORMAL AFFINE VARIETIES

KRISTOFER D. JORGENSON

ABSTRACT. This paper concerns the type of ring that can
be realized as a ring of invariants for a locally trivial Ga-action
on a normal, affine variety.

Results involving ideal-transforms and a counterexample to
the problem of Zariski are utilized to achieve an example of a
locally trivial action on a normal, affine variety of dimension 4
that has a nonfinitely generated ring of invariants. This would
also yield yet another example of a Ga-action on an affine
variety that can be written locally as a translation but does
not admit an equivariant trivialization.

1. Introduction. The main result of this paper is to show that a
class of rings can be realized as rings of invariants for additive group
actions. The background is Hilbert’s fourteenth problem, which asks
the following: “Let k be an algebraically closed field and x1, . . . , xn

algebraically independent elements over k. Let L be a subfield of
k(x1, . . . , xn) containing k. Is the ring L ∩ k[x1, . . . , xn] finitely
generated over k?” [13, p. 1]. Of particular interest is the case in
which this intersection is the ring of invariants for a group action.

We first introduce some notation that will be used throughout the
paper. Let k be an algebraically closed field of characteristic 0. We say
that a k-algebra is affine if it is finitely generated as a k-algebra and
that it is a normal domain if it is an integral domain that is integrally
closed in its quotient field. Let Ga = (k, +) denote the additive group
on k. By an affine variety we will mean an irreducible, closed subset of
kn with respect to the Zariski topology. If X ⊆ kn is an affine variety,
then when Ga act as automorphisms of the affine k-domain k[X], it
is well known that the associated k-homomorphism k[X] → k[X, t] is
equivalent to a locally nilpotent k-derivation D : k[X] → k[X]. That
is, for a Ga-action σ : Ga×X → X, where for each t ∈ Ga, σt ∈ AutX,
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the associated σ̂ : k[X] → k[X, t] defined by σ̂(P )(x) = P (σt(x)) for
P ∈ k[X] and x ∈ X, can be realized in terms of a locally nilpotent
derivation

σ̂(P ) =
∑
i≥0

ti

i!
Di(P ),

where Di(P ) represents i compositions of D so that D1 = D and D0

is the identity. In turn, D can be represented in terms of σ̂

D =
σ̂(P ) − P

t

∣∣∣
t=0

.

In short, Ga-actions on an affine variety σ : Ga×X → X are in one-to-
one correspondence with locally nilpotent derivations D : k[X] → k[X]
on the corresponding coordinate ring. The kernel of D, kerD, equals
the ring of invariants, k[X]Ga , for the Ga-action.

Progress towards solving the fourteenth problem of Hilbert includes
the generalization known as the problem of Oscar Zariski: “Let k be
an algebraically closed field and k[a1, . . . , an] an affine normal domain.
Let L be a subfield of k(a1, . . . , an) that contains k. Is the ring
k[a1, . . . , an] ∩ L finitely generated over k?” Zariski answered in the
affirmative when the transcendence degree of L over k, tr d·kL, is less
than or equal to 2. This implies that any ring of invariants for a
Ga-action on X = Cn with n ≤ 3 (C the set of complex numbers)
must be finitely generated.

Rees gave a counterexample to the problem of Zariski when
tr d·kL = 3 [16]. Nagata later provided the first counterexamples to
the original fourteenth problem itself [11, 12].

More recent work towards finding examples of nonfinitely generated
rings of Ga-invariants for actions on Cn began with that of Roberts
[17]. This eventually led to the construction of a Ga-action on k5,
where k is assumed only to be a field of characteristic zero, for which
the associated ring of invariants in k[x1, x2, x3, x4, x5] is nonfinitely gen-
erated [3]. Another recent breakthrough under the same assumption,
that k is a field of characteristic zero only, shows that every triangular
derivation of k[x1, x2, x3, x4] has a kernel that is finitely generated [4].

An action σ : Ga × X → X is said to be fixed-point free or to act
freely if, for any x ∈ X, σt(x) = x only when t = 0. Let An denote
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the affine k-domain k[a1, . . . , an] where n ≥ 1, and let σ be defined by
the locally nilpotent derivation D : An → An. Then σ acts freely if
and only if the set {D(a1), . . . , D(an)} has no common zeros. Such an
action σ is called triangular if D(aj) ∈ Aj−1, for all j ∈ {1, . . . , n},
where A0 is taken to be the ground field k.

An action σ : Ga × X → X is said to be equivariantly trivial if there
exists an affine variety Y so that X is Ga-equivariantly isomorphic
to Y × k with the action fixing the first coordinate and acting as a
translation of the second. In this case there exists an s ∈ k[X] for
which D(s) = 1. Such an s is called a slice, or global slice. Since for
the ring of invariants k[X]Ga , k[X] = k[X]Ga [s] and k[X]Ga = k[Y ], it
follows that the ring of invariants for a Ga-action that admits a global
slice is necessarily finitely generated over k.

In more generality a Ga-action is termed locally trivial if there exists
a set {Ui}i∈Γ of Ga-stable, open (in the Zariski topology) sets Ui

for which X = ∪i∈ΓUi and where for each i ∈ Γ there exists a
slice si ∈ k[Ui], the ring of regular functions globally defined on Ui.
Although acting freely is a necessary condition for any locally trivial
Ga-action (hence for those that are equivariantly trivial), the ring of
invariants for a locally trivial Ga-action need not be affine. Indeed, in
[5, Corollary 2.10] a class of locally trivial Ga-actions on factorial affine
varieties when k = C are constructed each with a nonfinitely generated
ring of invariants. The smallest integer for which there is known to be
a triangular, locally trivial Ga-action on Cn which is not equivariantly
trivial is n = 5. The first such counterexample was given in [18].

2. Ideal-transforms and normal ring extensions. All rings
are assumed to be commutative with identity. As mentioned in the
first section, by a normal domain we mean an integral domain that is
integrally closed in its quotient field. The derived normal ring of an
integral domain A means the integral closure of A in its quotient field.

In discovering counterexamples to Hilbert’s original fourteenth prob-
lem, Nagata used a technique for constructing a ring defined by an ideal
I of an integral domain R.

Definition 2.1. If K(R) represents the quotient ring of an integral
domain R and I ⊆ R is an ideal, then the ideal-transform of R with
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respect to I (or I-transform of R) is

S(I; R) = {f ∈ K(R) | fIm ⊆ R for some positive integer m}.

Remarks. The I-transform of R is an integral domain in K(R) that
contains R. If R is a Noetherian normal domain, then the codimension
or height of I, ht (I) ≥ 2 implies that S(I; R) = R. Since ht (I) = 0
implies that S(I; R) = K(R) for a Noetherian normal domain, the only
I-transform of interest comes for the case when I is of height 1. Note
that the height of an ideal that is not prime is understood to be the
smallest height of the primes which contain I [6, p. 225].

Work by Nagata [14] and Ogoma [15] on the types of rings that may
be realized as an I-transform of a normal affine domain, yielded the
following result.

Proposition 2.1. A ring R over a Noetherian domain B has the
form Ã∩L with the derived normal ring Ã of an affine domain A over
B and with a quotient field L over B if and only if R is the I-transform
of the derived normal ring C̃ of an affine domain C over B for an ideal
I of C̃ [15, Corollary 2.4].

The following results will also be needed to prove the theorem in the
next section.

Proposition 2.2. If R is a normal domain and T is a multiplica-
tively closed subset of R with 0 /∈ T , then T−1R is a normal domain.

For proof, see [7, Lemma 5.63], [9, Theorem VIII.5.8] or the more
general result of [6, Proposition 4.13].

Proposition 2.3. If N is a normal domain and x is transcendental
over K(N), then N [x] is a normal domain.

Proof. We need to show that N [x] is an integral domain integrally
closed in its quotient field. For a, b ∈ N [x] − {0}, the leading terms of
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a and b, adx
d and bfxf , respectively, are nonzero in N [x]. Since N is

a domain, adbfxd+f �= 0 so ab �= 0. Therefore, N [x] is a domain.

Let c ∈ K(N)(x) be a zero for g(T ) ∈ (N [x])[T ] and assume the
leading coefficient of g(T ) is 1. Since g(T ) ∈ (K(N)[x])[T ], it follows
that c is in the integral closure of K(N)[x] in the quotient field K(N)(x)
of K(N)[x]. Since K(N)[x] is a principal ideal domain, hence a unique
factorization domain, it is integrally closed and so c ∈ K(N)[x]. By [1,
Chapter 5], N [x] is integrally closed in K(N)[x] and so c ∈ N [x].

Lemma 2.4. If N1 and N2 are normal domains and S is a ring for
which S = N1 ∩ N2, then S is a normal domain.

Proof. Clearly S is an integral domain. For i ∈ {1, 2}, since S ⊆ Ni

implies that K(S) ⊆ K(Ni), it follows that if a is in the integral closure
of S in K(S), then a is in the integral closure of Ni in K(Ni). Since
Ni is integrally closed, a ∈ N1 ∩ N2 = S.

3. A nonfinitely generated ring of invariants. Assume now
that k is an algebraically closed field of characteristic 0. A nonzero
element h of a ring R is said to be regular if it is not a zero divisor.
That is, if h ·x = 0 for an x ∈ R, then x = 0. If R is an integral domain
over k, then the notation tr d·kR represents the transcendence degree
of the quotient field for R, K(R), over k.

Theorem 3.1. Let A be an affine normal domain over k. Let L
be a field such that k ⊆ L ⊆ K(A). Set R = L ∩ A. Then there
exists a normal, affine variety X ⊆ kn such that k[X] is a proper ring
extension of R and a locally trivial Ga-action σ : Ga × X → X such
that R = k[X]Ga , the ring of invariants for the action.

Proof. Since A is an affine normal domain, it equals its derived normal
ring Ã. Since L is assumed to be a subfield of a field containing A,
Proposition 2.1 can be applied to R = A ∩ L. Thus there exists an
affine domain C for which R is the ideal-transform of the derived normal
domain C̃ with respect to an ideal I ⊂ C̃. Since C is an affine domain,
its integral closure in its quotient field, C̃ is also affine [6, Corollary
13.13]. So assume N = C̃ is the normal affine domain with ideal I ⊂ N
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such that R = S(I; N).

We can choose L to be K(R), the quotient field of R. The reason
is since R ⊂ L, and L is a field, K(R) ⊆ L, which implies that
A ∩ K(R) ⊆ A ∩ L = R. Since R ⊂ A ∩ K(R), it follows that
R = A ∩ K(R). Additionally, k ⊆ K(R) ⊆ K(A), so Proposition 2.1
can be applied and we have R = S(I; N), where N and I are defined
as before.

In [10, Theorem 2.6] it is shown that an ideal-transform such as
S(I; N) equals S(J ; N) where J = (h1, h2)N for regular elements
h1, h2 ∈ N . Additionally, it is shown that

R = Nh1 ∩ Nh2 ,

where Nhi
is the localization of N at the multiplicatively closed set

{1, hi, h
2
i , . . . h

m
i , . . . } for i = 1, 2. Since N is a normal domain, by

Proposition 2.2, each localization Nhi
is a normal domain. Therefore,

by Lemma 2.4, R is a normal domain as well. By the definition of
ideal-transform, N ⊆ R ⊆ K(N), so K(N) = K(R).

Let y1 and y2 be transcendental elements over K(N). Define

S =
N [y1, y2]

y1h1 + y2h2 − 1
.

For i = 1, 2, let gi represent the residue class of yi. Then S = N [g1, g2]
and g1h1 + g2h2 = 1 in S.

Let i, j ∈ {1, 2} be unequal. For any x ∈ (N [(1/hi), gj ] ∩ K(N)),
x = gm

j nm + · · · + gjn1 + n0, where each nl ∈ N [1/hi] and nm �= 0.
Since x ∈ K(N) and gj is transcendental over K(N), this forces m to
be 0, so that x ∈ N [1/hi]. Therefore,

N

[
1
hi

]
= N

[
1
hi

, gj

]
∩ K(N).

Since gi equals (1 − gjhj)/hi in S[1/hi], it follows that gi ∈
N [(1/hi), gj ]. Therefore, S[1/hi] ⊆ N [(1/hi), gj ], which implies that

(∗) S

[
1
hi

]
= N

[
1
hi

, gj

]
.
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Claim. S = S[1/h1] ∩ S[1/h2].

The proof of this claim can be accomplished by showing that
N [(1/h1), g2] ∩ N [(1/h2), g1] ⊆ N [g1, g2]. If a ∈ N [(1/h1), g2] ∩
N [(1/h2), g1], then ahp

1 ∈ N [g2] and ahq
2 ∈ N [g1] for some posi-

tive integers p and q. Since g1h1 + g2h2 = 1, in the expansion of
a = a(g1h1 + g2h2)p+q, every term will contain either the factor ahp

1 or
ahq

2, so every term in this expansion for a is in N [g1, g2].

Therefore,

R = N

[
1
h1

]
∩ N

[
1
h2

]

=
(

N

[
1
h1

, g2

]
∩ K(N)

)
∩

(
N

[
1
h2

, g1

]
∩ K(N)

)

=
(

S

[
1
h1

]
∩ K(N)

)
∩

(
S

[
1
h2

]
∩ K(N)

)

= S ∩ K(N) = S ∩ K(R),

and so
R = S ∩ K(R) ⊆ S.

Since K(S) contains two elements g1 and g2 transcendental over
K(N), it follows that K(S) �= K(N) = K(R). Therefore, R �= S, and
so S is a proper ring extension of R. Since, for i ∈ {1, 2}, Nhi

= N [1/hi]
is a normal domain, and for j = 3 − i, gj is transcendental over
K(N) = K(N [1/hi]), by Proposition 2.3, N [(1/hi), gj ] is a normal
domain. So, since S[1/hi] = N [(1/hi), gj ] is a normal domain, it follows
that S = S[1/h1] ∩ S[1/h2] is a normal domain that is a normal affine
domain over k, hence a coordinate ring k[X] of a normal affine variety
X. Note that, since S = N [g1, g2], it follows that tr d·kS = tr d·kN +1.

Define a k-derivation D : S = k[X] → k[X], by the rule D(N) = 0,
D(g1) = −h2 and D(g2) = h1. Clearly, D is locally nilpotent, so it
defines the Ga-action σ : Ga ×X → X. Since (h1, h2) ⊆ (im D∩kerD)
generates the unit ideal in k[X], the zero-set Z(h1, h2) is empty.
Therefore, U1 = X−Z(h1) and U2 = X−Z(h2) are quasi-affine varieties
that cover X and are Ga-stable. Since s1 = g2/h1 and s2 = −g1/h2

in K(S) are local slices defined on U1 and U2, respectively, σ is locally
trivial.
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To finish the proof of the theorem, we need to show that R = ker D.
Denote kerD by C0. Note that, since N ⊆ C0 and K(N) = K(R),
it follows that K(R) ⊆ K(C0). Also, by [2], C0 = K(C0) ∩ S. Since
R = K(R)∩S, we will be done if it can be shown that K(R) = K(C0).
It will be enough to show that K(C0) ⊂ K(N).

We know that if De is the extension of D to S[1/h1] by the quo-
tient rule for derivations, then De is locally nilpotent and ker De =
C0[1/h1] by [2]. Therefore, by [19, Proposition 2.1] S[1/h1] =
C0[(1/h1), s1]. Since C0[(1/h1), s1] = C0[(1/h1), g2] and by (∗)
S[1/h1] = N [(1/h1), g2], it follows that K(S) = K(N)(g2) = K(C0)(g2).
If x ∈ K(C0), then x = p/q, where D(p) = D(q) = 0. In other words,
p, q ∈ C0[g2] and deg g2p = deg g2q = 0. Since x = p/q ∈ K(N)(g2)
and deg g2p = deg g2q = 0, it follows that x ∈ K(N).

Corollary 3.2. There is a dimension four normal affine variety
X ⊆ Cn and a locally trivial Ga-action σ : Ga × X → X for which the
ring of invariants C0 = C[X]Ga ⊂ C[X] is nonfinitely generated.

Proof. In [13, pp. 57 60], the counterexample due to Rees of a
nonfinitely generated k-domain R where k is of arbitrary characteristic
is shown to be of the form A ∩ L where A is a normal k-domain and
L = K(R). If we assume k = C, then Theorem 3.1 can be applied and
there is a proper ring extension S of R that is a normal affine domain
and S = C[X] is the coordinate ring for a normal affine variety X ⊆ Cn

for some n. Also, there exists a locally trivial Ga-action Ga × X → X
for which R is the ring of invariants.

From the proof of Theorem 3.1, we know that there exists a normal
affine C-domain N for which S = N [g1, g2] and an ideal I ⊂ N
such that R equals the I-transform of N . By the remarks made
after Definition 2.1, since N is a Noetherian normal domain, R �= N ,
since N is affine over C and R is not, and R �= K(R) (since this
would lead to the false statement K(N) ⊂ N [g1, g2]). Consequently, it
must be that ht I = 1. Additionally, from the proof of Theorem 3.1,
tr d·CS = tr d·CN + 1. From [13], we know that tr d·CR = 3. Since
K(R) = K(N), it follows that tr d·CS = 4, and so by [8, Propositions
I.17, I.18A], S is the coordinate ring for a normal affine variety X of
dimension 4.
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The Ga-action defined in Corollary 3.2, as with any locally trivial
Ga-action with a nonfinitely generated ring of invariants, is another
example of a locally trivial Ga-action that is not equivariantly trivial.
Results from [3] and [18] leave some unanswered questions.

Question 1. Is there a Ga-action on C4 that has a nonfinitely
generated ring of invariants?

Question 2. Is there a triangular Ga-action on C4 that is locally
trivial but not equivariantly trivial?

Also,

Question 3. What is the smallest value of n for which X ⊆ Cn

where X is the normal, affine variety defined in Corollary 3.2?
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