A NOTE ON A CLASS OF RINGS FOUND AS G_a -INVARIANTS FOR LOCALLY TRIVIAL ACTIONS ON NORMAL AFFINE VARIETIES

KRISTOFER D. JORGENSON

ABSTRACT. This paper concerns the type of ring that can be realized as a ring of invariants for a locally trivial G_a -action on a normal, affine variety.

Results involving ideal-transforms and a counterexample to the problem of Zariski are utilized to achieve an example of a locally trivial action on a normal, affine variety of dimension 4 that has a nonfinitely generated ring of invariants. This would also yield yet another example of a G_a -action on an affine variety that can be written locally as a translation but does not admit an equivariant trivialization.

1. Introduction. The main result of this paper is to show that a class of rings can be realized as rings of invariants for additive group actions. The background is Hilbert's fourteenth problem, which asks the following: "Let k be an algebraically closed field and x_1, \ldots, x_n algebraically independent elements over k. Let L be a subfield of $k(x_1, \ldots, x_n)$ containing k. Is the ring $L \cap k[x_1, \ldots, x_n]$ finitely generated over k?" [13, p. 1]. Of particular interest is the case in which this intersection is the ring of invariants for a group action.

We first introduce some notation that will be used throughout the paper. Let k be an algebraically closed field of characteristic 0. We say that a k-algebra is affine if it is finitely generated as a k-algebra and that it is a normal domain if it is an integral domain that is integrally closed in its quotient field. Let $G_a = (k, +)$ denote the additive group on k. By an affine variety we will mean an irreducible, closed subset of k^n with respect to the Zariski topology. If $X \subseteq k^n$ is an affine variety, then when G_a act as automorphisms of the affine k-domain k[X], it is well known that the associated k-homomorphism $k[X] \to k[X, t]$ is equivalent to a locally nilpotent k-derivation $D: k[X] \to k[X]$. That is, for a G_a -action $\sigma: G_a \times X \to X$, where for each $t \in G_a$, $\sigma_t \in \operatorname{Aut} X$,

AMS Mathematics Subject Classification. 14L30. Received by the editors on March 8, 2002, and in revised form on August 6, 2002.

the associated $\hat{\sigma}: k[X] \to k[X,t]$ defined by $\hat{\sigma}(P)(x) = P(\sigma_t(x))$ for $P \in k[X]$ and $x \in X$, can be realized in terms of a locally nilpotent derivation

$$\hat{\sigma}(P) = \sum_{i>0} \frac{t^i}{i!} D^i(P),$$

where $D^i(P)$ represents i compositions of D so that $D^1 = D$ and D^0 is the identity. In turn, D can be represented in terms of $\hat{\sigma}$

$$D = \frac{\hat{\sigma}(P) - P}{t} \Big|_{t=0}.$$

In short, G_a -actions on an affine variety $\sigma: G_a \times X \to X$ are in one-to-one correspondence with locally nilpotent derivations $D: k[X] \to k[X]$ on the corresponding coordinate ring. The kernel of D, ker D, equals the ring of invariants, $k[X]^{G_a}$, for the G_a -action.

Progress towards solving the fourteenth problem of Hilbert includes the generalization known as the problem of Oscar Zariski: "Let k be an algebraically closed field and $k[a_1,\ldots,a_n]$ an affine normal domain. Let L be a subfield of $k(a_1,\ldots,a_n)$ that contains k. Is the ring $k[a_1,\ldots,a_n]\cap L$ finitely generated over k?" Zariski answered in the affirmative when the transcendence degree of L over k, tr $d_{\cdot k}L$, is less than or equal to 2. This implies that any ring of invariants for a G_a -action on $X = \mathbb{C}^n$ with $n \leq 3$ (\mathbb{C} the set of complex numbers) must be finitely generated.

Rees gave a counterexample to the problem of Zariski when $\operatorname{tr} d_{k}L = 3$ [16]. Nagata later provided the first counterexamples to the original fourteenth problem itself [11, 12].

More recent work towards finding examples of nonfinitely generated rings of G_a -invariants for actions on \mathbb{C}^n began with that of Roberts [17]. This eventually led to the construction of a G_a -action on k^5 , where k is assumed only to be a field of characteristic zero, for which the associated ring of invariants in $k[x_1, x_2, x_3, x_4, x_5]$ is nonfinitely generated [3]. Another recent breakthrough under the same assumption, that k is a field of characteristic zero only, shows that every triangular derivation of $k[x_1, x_2, x_3, x_4]$ has a kernel that is finitely generated [4].

An action $\sigma: G_a \times X \to X$ is said to be *fixed-point free* or to act *freely* if, for any $x \in X$, $\sigma_t(x) = x$ only when t = 0. Let A_n denote

the affine k-domain $k[a_1, \ldots, a_n]$ where $n \geq 1$, and let σ be defined by the locally nilpotent derivation $D: A_n \to A_n$. Then σ acts freely if and only if the set $\{D(a_1), \ldots, D(a_n)\}$ has no common zeros. Such an action σ is called *triangular* if $D(a_j) \in A_{j-1}$, for all $j \in \{1, \ldots, n\}$, where A_0 is taken to be the ground field k.

An action $\sigma: G_a \times X \to X$ is said to be equivariantly trivial if there exists an affine variety Y so that X is G_a -equivariantly isomorphic to $Y \times k$ with the action fixing the first coordinate and acting as a translation of the second. In this case there exists an $s \in k[X]$ for which D(s) = 1. Such an s is called a slice, or global slice. Since for the ring of invariants $k[X]^{G_a}$, $k[X] = k[X]^{G_a}[s]$ and $k[X]^{G_a} = k[Y]$, it follows that the ring of invariants for a G_a -action that admits a global slice is necessarily finitely generated over k.

In more generality a G_a -action is termed locally trivial if there exists a set $\{U_i\}_{i\in\Gamma}$ of G_a -stable, open (in the Zariski topology) sets U_i for which $X = \bigcup_{i\in\Gamma} U_i$ and where for each $i\in\Gamma$ there exists a slice $s_i\in k[U_i]$, the ring of regular functions globally defined on U_i . Although acting freely is a necessary condition for any locally trivial G_a -action (hence for those that are equivariantly trivial), the ring of invariants for a locally trivial G_a -action need not be affine. Indeed, in [5, Corollary 2.10] a class of locally trivial G_a -actions on factorial affine varieties when $k=\mathbb{C}$ are constructed each with a nonfinitely generated ring of invariants. The smallest integer for which there is known to be a triangular, locally trivial G_a -action on \mathbb{C}^n which is not equivariantly trivial is n=5. The first such counterexample was given in [18].

2. Ideal-transforms and normal ring extensions. All rings are assumed to be commutative with identity. As mentioned in the first section, by a *normal domain* we mean an integral domain that is integrally closed in its quotient field. The *derived normal ring* of an integral domain A means the integral closure of A in its quotient field.

In discovering counterexamples to Hilbert's original fourteenth problem, Nagata used a technique for constructing a ring defined by an ideal I of an integral domain R.

Definition 2.1. If K(R) represents the quotient ring of an integral domain R and $I \subseteq R$ is an ideal, then the *ideal-transform* of R with

respect to I (or I-transform of R) is

 $S(I;R) = \{ f \in K(R) \mid fI^m \subseteq R \text{ for some positive integer } m \}.$

Remarks. The *I*-transform of R is an integral domain in K(R) that contains R. If R is a Noetherian normal domain, then the codimension or height of I, ht $(I) \geq 2$ implies that S(I;R) = R. Since ht (I) = 0 implies that S(I;R) = K(R) for a Noetherian normal domain, the only I-transform of interest comes for the case when I is of height 1. Note that the height of an ideal that is not prime is understood to be the smallest height of the primes which contain I [6, p. 225].

Work by Nagata [14] and Ogoma [15] on the types of rings that may be realized as an *I*-transform of a normal affine domain, yielded the following result.

Proposition 2.1. A ring R over a Noetherian domain B has the form $\tilde{A} \cap L$ with the derived normal ring \tilde{A} of an affine domain A over B and with a quotient field L over B if and only if R is the I-transform of the derived normal ring \tilde{C} of an affine domain C over B for an ideal I of \tilde{C} [15, Corollary 2.4].

The following results will also be needed to prove the theorem in the next section.

Proposition 2.2. If R is a normal domain and T is a multiplicatively closed subset of R with $0 \notin T$, then $T^{-1}R$ is a normal domain.

For proof, see [7, Lemma 5.63], [9, Theorem VIII.5.8] or the more general result of [6, Proposition 4.13].

Proposition 2.3. If N is a normal domain and x is transcendental over K(N), then N[x] is a normal domain.

Proof. We need to show that N[x] is an integral domain integrally closed in its quotient field. For $a, b \in N[x] - \{0\}$, the leading terms of

a and b, a_dx^d and b_fx^f , respectively, are nonzero in N[x]. Since N is a domain, $a_db_fx^{d+f} \neq 0$ so $ab \neq 0$. Therefore, N[x] is a domain.

Let $c \in K(N)(x)$ be a zero for $g(T) \in (N[x])[T]$ and assume the leading coefficient of g(T) is 1. Since $g(T) \in (K(N)[x])[T]$, it follows that c is in the integral closure of K(N)[x] in the quotient field K(N)(x) of K(N)[x]. Since K(N)[x] is a principal ideal domain, hence a unique factorization domain, it is integrally closed and so $c \in K(N)[x]$. By [1, Chapter 5], N[x] is integrally closed in K(N)[x] and so $c \in N[x]$.

Lemma 2.4. If N_1 and N_2 are normal domains and S is a ring for which $S = N_1 \cap N_2$, then S is a normal domain.

Proof. Clearly S is an integral domain. For $i \in \{1,2\}$, since $S \subseteq N_i$ implies that $K(S) \subseteq K(N_i)$, it follows that if a is in the integral closure of S in K(S), then a is in the integral closure of N_i in $K(N_i)$. Since N_i is integrally closed, $a \in N_1 \cap N_2 = S$.

3. A nonfinitely generated ring of invariants. Assume now that k is an algebraically closed field of characteristic 0. A nonzero element h of a ring R is said to be regular if it is not a zero divisor. That is, if $h \cdot x = 0$ for an $x \in R$, then x = 0. If R is an integral domain over k, then the notation $\operatorname{tr} d_{\cdot k} R$ represents the transcendence degree of the quotient field for R, K(R), over k.

Theorem 3.1. Let A be an affine normal domain over k. Let L be a field such that $k \subseteq L \subseteq K(A)$. Set $R = L \cap A$. Then there exists a normal, affine variety $X \subseteq k^n$ such that k[X] is a proper ring extension of R and a locally trivial G_a -action $\sigma: G_a \times X \to X$ such that $R = k[X]^{G_a}$, the ring of invariants for the action.

Proof. Since A is an affine normal domain, it equals its derived normal ring \tilde{A} . Since L is assumed to be a subfield of a field containing A, Proposition 2.1 can be applied to $R = A \cap L$. Thus there exists an affine domain C for which R is the ideal-transform of the derived normal domain \tilde{C} with respect to an ideal $I \subset \tilde{C}$. Since C is an affine domain, its integral closure in its quotient field, \tilde{C} is also affine [6, Corollary 13.13]. So assume $N = \tilde{C}$ is the normal affine domain with ideal $I \subset N$

such that R = S(I; N).

We can choose L to be K(R), the quotient field of R. The reason is since $R \subset L$, and L is a field, $K(R) \subseteq L$, which implies that $A \cap K(R) \subseteq A \cap L = R$. Since $R \subset A \cap K(R)$, it follows that $R = A \cap K(R)$. Additionally, $k \subseteq K(R) \subseteq K(A)$, so Proposition 2.1 can be applied and we have R = S(I; N), where N and I are defined as before.

In [10, Theorem 2.6] it is shown that an ideal-transform such as S(I; N) equals S(J; N) where $J = (h_1, h_2)N$ for regular elements $h_1, h_2 \in N$. Additionally, it is shown that

$$R = N_{h_1} \cap N_{h_2}$$

where N_{h_i} is the localization of N at the multiplicatively closed set $\{1, h_i, h_i^2, \dots h_i^m, \dots\}$ for i = 1, 2. Since N is a normal domain, by Proposition 2.2, each localization N_{h_i} is a normal domain. Therefore, by Lemma 2.4, R is a normal domain as well. By the definition of ideal-transform, $N \subseteq R \subseteq K(N)$, so K(N) = K(R).

Let y_1 and y_2 be transcendental elements over K(N). Define

$$S = \frac{N[y_1, y_2]}{y_1 h_1 + y_2 h_2 - 1}.$$

For i = 1, 2, let g_i represent the residue class of y_i . Then $S = N[g_1, g_2]$ and $g_1h_1 + g_2h_2 = 1$ in S.

Let $i, j \in \{1, 2\}$ be unequal. For any $x \in (N[(1/h_i), g_j] \cap K(N))$, $x = g_j^m n_m + \dots + g_j n_1 + n_0$, where each $n_l \in N[1/h_i]$ and $n_m \neq 0$. Since $x \in K(N)$ and g_j is transcendental over K(N), this forces m to be 0, so that $x \in N[1/h_i]$. Therefore,

$$N\left[\frac{1}{h_i}\right] = N\left[\frac{1}{h_i}, g_j\right] \cap K(N).$$

Since g_i equals $(1 - g_j h_j)/h_i$ in $S[1/h_i]$, it follows that $g_i \in N[(1/h_i), g_j]$. Therefore, $S[1/h_i] \subseteq N[(1/h_i), g_j]$, which implies that

$$S\left[\frac{1}{h_i}\right] = N\left[\frac{1}{h_i}, g_j\right].$$

Claim. $S = S[1/h_1] \cap S[1/h_2]$.

The proof of this claim can be accomplished by showing that $N[(1/h_1), g_2] \cap N[(1/h_2), g_1] \subseteq N[g_1, g_2]$. If $a \in N[(1/h_1), g_2] \cap N[(1/h_2), g_1]$, then $ah_1^p \in N[g_2]$ and $ah_2^q \in N[g_1]$ for some positive integers p and q. Since $g_1h_1 + g_2h_2 = 1$, in the expansion of $a = a(g_1h_1 + g_2h_2)^{p+q}$, every term will contain either the factor ah_1^p or ah_2^q , so every term in this expansion for a is in $N[g_1, g_2]$.

Therefore,

$$R = N \left[\frac{1}{h_1} \right] \cap N \left[\frac{1}{h_2} \right]$$

$$= \left(N \left[\frac{1}{h_1}, g_2 \right] \cap K(N) \right) \cap \left(N \left[\frac{1}{h_2}, g_1 \right] \cap K(N) \right)$$

$$= \left(S \left[\frac{1}{h_1} \right] \cap K(N) \right) \cap \left(S \left[\frac{1}{h_2} \right] \cap K(N) \right)$$

$$= S \cap K(N) = S \cap K(R),$$

and so

$$R = S \cap K(R) \subseteq S$$
.

Since K(S) contains two elements g_1 and g_2 transcendental over K(N), it follows that $K(S) \neq K(N) = K(R)$. Therefore, $R \neq S$, and so S is a proper ring extension of R. Since, for $i \in \{1,2\}$, $N_{h_i} = N[1/h_i]$ is a normal domain, and for j = 3 - i, g_j is transcendental over $K(N) = K(N[1/h_i])$, by Proposition 2.3, $N[(1/h_i), g_j]$ is a normal domain. So, since $S[1/h_i] = N[(1/h_i), g_j]$ is a normal domain, it follows that $S = S[1/h_1] \cap S[1/h_2]$ is a normal domain that is a normal affine domain over k, hence a coordinate ring k[X] of a normal affine variety X. Note that, since $S = N[g_1, g_2]$, it follows that $\operatorname{tr} d_{\cdot k} S = \operatorname{tr} d_{\cdot k} N + 1$.

Define a k-derivation $D: S = k[X] \to k[X]$, by the rule D(N) = 0, $D(g_1) = -h_2$ and $D(g_2) = h_1$. Clearly, D is locally nilpotent, so it defines the G_a -action $\sigma: G_a \times X \to X$. Since $(h_1, h_2) \subseteq (\operatorname{im} D \cap \ker D)$ generates the unit ideal in k[X], the zero-set $Z(h_1, h_2)$ is empty. Therefore, $U_1 = X - Z(h_1)$ and $U_2 = X - Z(h_2)$ are quasi-affine varieties that cover X and are G_a -stable. Since $s_1 = g_2/h_1$ and $s_2 = -g_1/h_2$ in K(S) are local slices defined on U_1 and U_2 , respectively, σ is locally trivial.

To finish the proof of the theorem, we need to show that $R = \ker D$. Denote $\ker D$ by C_0 . Note that, since $N \subseteq C_0$ and K(N) = K(R), it follows that $K(R) \subseteq K(C_0)$. Also, by [2], $C_0 = K(C_0) \cap S$. Since $R = K(R) \cap S$, we will be done if it can be shown that $K(R) = K(C_0)$. It will be enough to show that $K(C_0) \subset K(N)$.

We know that if D^e is the extension of D to $S[1/h_1]$ by the quotient rule for derivations, then D^e is locally nilpotent and $\ker D^e = C_0[1/h_1]$ by [2]. Therefore, by [19, Proposition 2.1] $S[1/h_1] = C_0[(1/h_1), s_1]$. Since $C_0[(1/h_1), s_1] = C_0[(1/h_1), g_2]$ and by (*) $S[1/h_1] = N[(1/h_1), g_2]$, it follows that $K(S) = K(N)(g_2) = K(C_0)(g_2)$. If $x \in K(C_0)$, then x = p/q, where D(p) = D(q) = 0. In other words, $p, q \in C_0[g_2]$ and $\deg_{g_2}p = \deg_{g_2}q = 0$. Since $x = p/q \in K(N)(g_2)$ and $\deg_{g_2}p = \deg_{g_2}q = 0$, it follows that $x \in K(N)$.

Corollary 3.2. There is a dimension four normal affine variety $X \subseteq \mathbb{C}^n$ and a locally trivial G_a -action $\sigma: G_a \times X \to X$ for which the ring of invariants $C_0 = \mathbb{C}[X]^{G_a} \subset \mathbb{C}[X]$ is nonfinitely generated.

Proof. In [13, pp. 57–60], the counterexample due to Rees of a nonfinitely generated k-domain R where k is of arbitrary characteristic is shown to be of the form $A \cap L$ where A is a normal k-domain and L = K(R). If we assume $k = \mathbb{C}$, then Theorem 3.1 can be applied and there is a proper ring extension S of R that is a normal affine domain and $S = \mathbb{C}[X]$ is the coordinate ring for a normal affine variety $X \subseteq \mathbb{C}^n$ for some n. Also, there exists a locally trivial G_a -action $G_a \times X \to X$ for which R is the ring of invariants.

From the proof of Theorem 3.1, we know that there exists a normal affine ${\bf C}$ -domain N for which $S=N[g_1,g_2]$ and an ideal $I\subset N$ such that R equals the I-transform of N. By the remarks made after Definition 2.1, since N is a Noetherian normal domain, $R\neq N$, since N is affine over ${\bf C}$ and R is not, and $R\neq K(R)$ (since this would lead to the false statement $K(N)\subset N[g_1,g_2]$). Consequently, it must be that ht I=1. Additionally, from the proof of Theorem 3.1, ${\rm tr}\, d._{\bf C}S={\rm tr}\, d._{\bf C}N+1$. From [13], we know that ${\rm tr}\, d._{\bf C}R=3$. Since K(R)=K(N), it follows that ${\rm tr}\, d._{\bf C}S=4$, and so by [8, Propositions I.17, I.18A], S is the coordinate ring for a normal affine variety X of dimension 4.

The G_a -action defined in Corollary 3.2, as with any locally trivial G_a -action with a nonfinitely generated ring of invariants, is another example of a locally trivial G_a -action that is not equivariantly trivial. Results from [3] and [18] leave some unanswered questions.

Question 1. Is there a G_a -action on \mathbb{C}^4 that has a nonfinitely generated ring of invariants?

Question 2. Is there a triangular G_a -action on \mathbb{C}^4 that is locally trivial but not equivariantly trivial?

Also,

Question 3. What is the smallest value of n for which $X \subseteq \mathbb{C}^n$ where X is the normal, affine variety defined in Corollary 3.2?

REFERENCES

- 1. M.F. Atiyah and I.G. McDonald, Introduction to commutative algebra, Addison-Wesley Publ. Co., Inc., New York, 1969.
- 2. D. Daigle, On some properties of locally nilpotent derivations, J. Pure Appl. Algebra 114 (1997), 221–230.
- 3. D. Daigle and G. Freudenberg, A counterexample to Hilbert's fourteenth problem in dimension 5, J. Algebra 221 (1999), 528–535.
- **4.** —, Triangular derivations of $k[X_1, X_2, X_3, X_4]$, J. Algebra **241** (2001), 328–339.
- **5.** J.K. Deveney and D.R. Finston, G_a -invariants and slices, Comm. Algebra **30** (3) (2002), 1437–1447.
- **6.** D. Eisenbud, Commutative algebra with a view toward algebraic geometry, Springer-Verlag, Inc., New York, 1995.
 - 7. J. Fogarty, Invariant theory, W.A. Benjamin, Inc., 1969.
 - 8. R. Hartshorne, Algebraic geometry, Springer-Verlag, Inc., New York, 1977.
 - 9. T. Hungerford, Algebra, Springer-Verlag, New York, 1974.
- 10. D. Katz and L.J. Ratliff, Jr., Two notes on ideal-transforms, Math. Proc. Cambridge Philos. Soc. 102 (1987), 389–397.
- 11. M. Nagata, On the fourteenth problem of Hilbert, Proc. Internat. Congress Mathematicians, Edinburgh, 1958, 459–462.
 - 12. ——, On the 14th problem of Hilbert, Amer. J. Math. 81 3(1959), 766-772.

- 13. ——, Lectures on the fourteenth problem of Hilbert, Notes by M. Pavaman Murthy, Tata Institute of Fundamental Research, Bombay, 1965.
- 14. ——, On Zariski's problem concerning the 14th problem of Hilbert, Osaka J. Math. 33 (1996), 997–1002.
- 15. T. Ogoma, On a problem of Nagata related to Zariski's problem, Osaka J. Math. 35 (1998), 487–491.
 - 16. D. Rees, On a problem of Zariski, Illinois J. Math. 2 (1958), 145-149.
- 17. P. Roberts, An infinitely generated symbolic blow-up in a power series ring and a new counterexample to Hilbert's fourteenth problem, J. Algebra 132 (1990), 461–473
- **18.** J. Winkelmann, On free holomorphic C-actions on \mathbb{C}^n and homogeneous Stein manifolds, Math. Ann. **286** (1990), 593–612.
 - 19. D. Wright, On the Jacobian conjecture, Illinois J. Math. 25 (1981), 423–440.

University of the Incarnate Word, Mathematics Department, 4301 Broadway, CPO #311, San Antonio, TX 78209 $E\text{-}mail\ address:}$ jorgenso@universe.uiwtx.edu