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A NOTE ON A CLASS OF RINGS FOUND AS
G,~-INVARIANTS FOR LOCALLY TRIVIAL
ACTIONS ON NORMAL AFFINE VARIETIES

KRISTOFER D. JORGENSON

ABSTRACT. This paper concerns the type of ring that can
be realized as a ring of invariants for a locally trivial G,-action
on a normal, affine variety.

Results involving ideal-transforms and a counterexample to
the problem of Zariski are utilized to achieve an example of a
locally trivial action on a normal, affine variety of dimension 4
that has a nonfinitely generated ring of invariants. This would
also yield yet another example of a Gg-action on an affine
variety that can be written locally as a translation but does
not admit an equivariant trivialization.

1. Introduction. The main result of this paper is to show that a
class of rings can be realized as rings of invariants for additive group
actions. The background is Hilbert’s fourteenth problem, which asks
the following: “Let k be an algebraically closed field and x1,...,x,
algebraically independent elements over k. Let L be a subfield of
k(x1,...,x,) containing k. Is the ring L N k[zq,...,x,] finitely
generated over k7?7 [13, p. 1]. Of particular interest is the case in
which this intersection is the ring of invariants for a group action.

We first introduce some notation that will be used throughout the
paper. Let k be an algebraically closed field of characteristic 0. We say
that a k-algebra is affine if it is finitely generated as a k-algebra and
that it is a normal domain if it is an integral domain that is integrally
closed in its quotient field. Let G, = (k,+) denote the additive group
on k. By an affine variety we will mean an irreducible, closed subset of
k™ with respect to the Zariski topology. If X C k™ is an affine variety,
then when G, act as automorphisms of the affine k-domain k[X], it
is well known that the associated k-homomorphism k[X] — k[X,¢] is
equivalent to a locally nilpotent k-derivation D : k[X] — Ek[X]. That
is, for a G4-action 0 : G4 x X — X, where for each t € G, 0y € Aut X,
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the associated ¢ : k[X]| — k[X,t] defined by 6(P)(z) = P(o¢(z)) for
P € k[X] and x € X, can be realized in terms of a locally nilpotent

derivation .
. o
#P) = 3 Epi(p),

i>0

where D?(P) represents i compositions of D so that D! = D and D°
is the identity. In turn, D can be represented in terms of &

t t=0

In short, G,-actions on an affine variety o : G, x X — X are in one-to-
one correspondence with locally nilpotent derivations D : k[X] — k[X]
on the corresponding coordinate ring. The kernel of D, ker D, equals
the ring of invariants, k[X]%=, for the G,-action.

Progress towards solving the fourteenth problem of Hilbert includes
the generalization known as the problem of Oscar Zariski: “Let k be
an algebraically closed field and k[aq, ... ,a,] an affine normal domain.
Let L be a subfield of k(ai,...,ay) that contains k. Is the ring
klai, ... ,a,] N L finitely generated over k?” Zariski answered in the
affirmative when the transcendence degree of L over k, trd., L, is less
than or equal to 2. This implies that any ring of invariants for a
Ge-action on X = C” with n < 3 (C the set of complex numbers)
must be finitely generated.

Rees gave a counterexample to the problem of Zariski when
trd.,L = 3 [16]. Nagata later provided the first counterexamples to
the original fourteenth problem itself [11, 12].

More recent work towards finding examples of nonfinitely generated
rings of G,-invariants for actions on C™ began with that of Roberts
[17]. This eventually led to the construction of a G,-action on k%,
where k is assumed only to be a field of characteristic zero, for which
the associated ring of invariants in k[z1, 22, 3, 24, 5] is nonfinitely gen-
erated [3]. Another recent breakthrough under the same assumption,
that k is a field of characteristic zero only, shows that every triangular
derivation of k[z1, z2, x5, x4] has a kernel that is finitely generated [4].

An action ¢ : G, x X — X is said to be fixed-point free or to act
freely if, for any © € X, o¢(x) = x only when t = 0. Let A, denote
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the affine k-domain k[aq, ... ,a,] where n > 1, and let o be defined by
the locally nilpotent derivation D : A, — A,. Then o acts freely if
and only if the set {D(ay),...,D(a,)} has no common zeros. Such an
action o is called triangular if D(a;) € A,;_4, for all j € {1,...,n},
where Ay is taken to be the ground field k.

An action 0 : G, x X — X is said to be equivariantly trivial if there
exists an affine variety Y so that X is (GG -equivariantly isomorphic
to Y x k with the action fixing the first coordinate and acting as a
translation of the second. In this case there exists an s € k[X] for
which D(s) = 1. Such an s is called a slice, or global slice. Since for
the ring of invariants k[X]%, k[X] = k[X]%[s] and k[X]% = Kk[Y], it
follows that the ring of invariants for a G,-action that admits a global
slice is necessarily finitely generated over k.

In more generality a G,-action is termed locally trivial if there exists
a set {U;}ier of Gg-stable, open (in the Zariski topology) sets U;
for which X = U;crU; and where for each ¢ € I' there exists a
slice s; € k[U;], the ring of regular functions globally defined on Us.
Although acting freely is a necessary condition for any locally trivial
G-action (hence for those that are equivariantly trivial), the ring of
invariants for a locally trivial G,-action need not be affine. Indeed, in
[5, Corollary 2.10] a class of locally trivial G,-actions on factorial affine
varieties when k = C are constructed each with a nonfinitely generated
ring of invariants. The smallest integer for which there is known to be
a triangular, locally trivial G,-action on C™ which is not equivariantly
trivial is n = 5. The first such counterexample was given in [18].

2. Ideal-transforms and normal ring extensions. All rings
are assumed to be commutative with identity. As mentioned in the
first section, by a normal domain we mean an integral domain that is
integrally closed in its quotient field. The derived normal ring of an
integral domain A means the integral closure of A in its quotient field.

In discovering counterexamples to Hilbert’s original fourteenth prob-
lem, Nagata used a technique for constructing a ring defined by an ideal
I of an integral domain R.

Definition 2.1. If K(R) represents the quotient ring of an integral
domain R and I C R is an ideal, then the ideal-transform of R with
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respect to I (or I-transform of R) is

S(I;R)={f € K(R) | fI"™ C R for some positive integer m}.

Remarks. The I-transform of R is an integral domain in K(R) that
contains R. If R is a Noetherian normal domain, then the codimension
or height of I, ht (I) > 2 implies that S(I; R) = R. Since ht (I) =0
implies that S(I; R) = K(R) for a Noetherian normal domain, the only
I-transform of interest comes for the case when I is of height 1. Note
that the height of an ideal that is not prime is understood to be the
smallest height of the primes which contain I [6, p. 225].

Work by Nagata [14] and Ogoma [15] on the types of rings that may
be realized as an I-transform of a normal affine domain, yielded the
following result.

Proposition 2.1. A ring R over a Noetherian domain B has the
form AN L with the derived normal ring A of an affine domain A over
B and with a quotient field L over B if and only if R is the I-transform
of the derived normal ring C of an affine domain C over B for an ideal
I of C [15, Corollary 2.4].

The following results will also be needed to prove the theorem in the
next section.

Proposition 2.2. If R is a normal domain and T is a multiplica-
tively closed subset of R with 0 ¢ T, then T~'R is a normal domain.

For proof, see [7, Lemma 5.63], [9, Theorem VIIL.5.8] or the more
general result of [6, Proposition 4.13].

Proposition 2.3. If N is a normal domain and x is transcendental
over K(N), then N[z] is a normal domain.

Proof. We need to show that Nz] is an integral domain integrally
closed in its quotient field. For a,b € N[x] — {0}, the leading terms of
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a and b, agz? and bfxf , respectively, are nonzero in N[z|. Since N is
a domain, agbz®*/ # 0 so ab # 0. Therefore, N[z] is a domain.

Let ¢ € K(N)(z) be a zero for g(T) € (N[z])[T] and assume the
leading coefficient of g(7T') is 1. Since g(T') € (K (N)[z])[T], it follows
that c is in the integral closure of K (N)[z] in the quotient field K (N)(x)
of K(N)[z]. Since K(N)[z] is a principal ideal domain, hence a unique
factorization domain, it is integrally closed and so ¢ € K(N)[z]. By [1,
Chapter 5], N[z] is integrally closed in K(N)[x] and so ¢ € N|x]. u]

Lemma 2.4. If Ny and Ny are normal domains and S is a ring for
which S = N1 N Ny, then S is a normal domain.

Proof. Clearly S is an integral domain. For i € {1,2}, since S C N;
implies that K(S) C K(N;), it follows that if « is in the integral closure
of S in K(S), then a is in the integral closure of N; in K(N;). Since
N; is integrally closed, a € Ny N Ny = S. ]

3. A nonfinitely generated ring of invariants. Assume now
that k is an algebraically closed field of characteristic 0. A nonzero
element h of a ring R is said to be regular if it is not a zero divisor.
That is, if h-xz = 0 for an x € R, then x = 0. If R is an integral domain
over k, then the notation trd.; R represents the transcendence degree
of the quotient field for R, K(R), over k.

Theorem 3.1. Let A be an affine normal domain over k. Let L
be a field such that k C L C K(A). Set R = LN A. Then there
exists a normal, affine variety X C k™ such that k[X] is a proper ring
extension of R and a locally trivial G4-action o : G x X — X such
that R = k[X]%, the ring of invariants for the action.

Proof. Since A is an affine normal domain, it equals its derived normal
ring A. Since L is assumed to be a subfield of a field containing A,
Proposition 2.1 can be applied to R = AN L. Thus there exists an
affine domain C for which R is the ideal-transform of the derived normal
domain C with respect to an ideal I C C. Since C is an affine domain,
its integral closure in its quotient field, C' is also affine [6, Corollary
13.13]. So assume N = C'is the normal affine domain with ideal I ¢ N
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such that R = S(I; N).

We can choose L to be K(R), the quotient field of R. The reason
is since R C L, and L is a field, K(R) C L, which implies that
ANK(R) € ANL = R. Since R C An K(R), it follows that
R = AN K(R). Additionally, & C K(R) C K(A), so Proposition 2.1
can be applied and we have R = S(I; N), where N and I are defined
as before.

In [10, Theorem 2.6] it is shown that an ideal-transform such as
S(I;N) equals S(J;N) where J = (hy,ha)N for regular elements
hi,he € N. Additionally, it is shown that

R= Nh1 ﬂth,

where N, is the localization of N at the multiplicatively closed set
{1, hi,h2,.. K", ...} for i = 1,2. Since N is a normal domain, by
Proposition 2.2, each localization Np, is a normal domain. Therefore,
by Lemma 2.4, R is a normal domain as well. By the definition of
ideal-transform, N C R C K(N), so K(N) = K(R).

Let y; and y2 be transcendental elements over K (N). Define

_ N[yhyZ]
y1hi 4+ y2ha — 1

For i = 1,2, let g; represent the residue class of y;. Then S = Nlg1, go]
and g1hy + goho =1in S.

Let 4,5 € {1,2} be unequal. For any z € (N[(1/h;),g;] N K(N)),
T = g;'Ny + -+ + gjn1 + no, where each n; € N[1/h;] and n,, # 0.
Since z € K(N) and g, is transcendental over K(N), this forces m to
be 0, so that € N[1/h;]. Therefore,

o[t o] oo

Since g¢; equals (1 — gjh;)/h; in S[1/h;], it follows that g; €
N[(1/h;), g;]. Therefore, S[1/h;] € N[(1/h;), g;], which implies that

® i) =lrs]
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Claim. S = S[1/hi] N S[1/ha).

The proof of this claim can be accomplished by showing that
N[(1/h1),92] N N[(1/h2), 1] € Nlg1,92]. If a € N[(1/h1),g2] N
N[(1/h2),¢1], then ahl € Nl[g2] and ahl € Nlg;| for some posi-
tive integers p and ¢. Since g1h; 4+ gohe = 1, in the expansion of
a = a(g1hy + g2h2)PT9, every term will contain either the factor ah’l’ or
ahd, so every term in this expansion for a is in N|g1, go].

Therefore,

rerfglonl

- (N{hil,gg} mK(N)> N (N[h%,gl] mK(N)>

= (SLH mK(N)> n (SL%J ﬂK(N)>
=SNK(N)=SnK(R),

and so
R=SNK(R)CS.

Since K(S) contains two elements g; and go transcendental over
K(N), it follows that K(S) # K(N) = K(R). Therefore, R # S, and
so S is a proper ring extension of R. Since, for i € {1,2}, N}, = N[1/h;]
is a normal domain, and for j = 3 — ¢, g; is transcendental over
K(N) = K(N[1/h;]), by Proposition 2.3, N[(1/h;),g;] is a normal
domain. So, since S[1/h;] = N[(1/h;), g;] is a normal domain, it follows
that S = S[1/h1] N S[1/h2] is a normal domain that is a normal affine
domain over k, hence a coordinate ring k[X] of a normal affine variety
X. Note that, since S = Nlg1, g2], it follows that trd.,S = trd.x N + 1.

Define a k-derivation D : S = k[X] — k[X], by the rule D(N) = 0,
D(g1) = —hg and D(g2) = hy. Clearly, D is locally nilpotent, so it
defines the G,-action o : G, x X — X. Since (hi, he) C (im DNker D)
generates the unit ideal in k[X], the zero-set Z(hi,hs) is empty.
Therefore, Uy = X—Z(hy) and Uy = X —Z(hs) are quasi-affine varieties
that cover X and are G,-stable. Since s; = go/hy and sy = —g;1/hs
in K(S) are local slices defined on U; and Uy, respectively, o is locally
trivial.
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To finish the proof of the theorem, we need to show that R = ker D.
Denote ker D by Cy. Note that, since N C Cy and K(N) = K(R),
it follows that K(R) C K(Cy). Also, by [2], Co = K(Cy) N S. Since
R = K(R)NS, we will be done if it can be shown that K(R) = K(Cj).
It will be enough to show that K(Cp) C K(N).

We know that if D€ is the extension of D to S[1/h1] by the quo-
tient rule for derivations, then D¢ is locally nilpotent and ker D¢ =
Co[1/h1] by [2]. Therefore, by [19, Proposition 2.1] S[1/h] =
Co[(l/hl),sl]. Since Co[(l/hl),sl] = Co[(l/hl),gg] and by (*)
S[1/h1] = N[(1/h1), go], it follows that K(S) = K(N)(g2) = K(Co)(g2)-
If x € K(Cy), then © = p/q, where D(p) = D(q) = 0. In other words,
p.q € Colgo] and degg,p = deggy,g = 0. Since z = p/q € K(N)(g2)
and deg g,p = deg4,q = 0, it follows that x € K(N). O

Corollary 3.2. There is a dimension four normal affine variety
X C C" and a locally trivial Gg-action o : G, x X — X for which the
ring of invariants Cy = C[X|% C C[X] is nonfinitely generated.

Proof. In [13, pp. 57-60], the counterexample due to Rees of a
nonfinitely generated k-domain R where k is of arbitrary characteristic
is shown to be of the form A N L where A is a normal k-domain and
L = K(R). If we assume k = C, then Theorem 3.1 can be applied and
there is a proper ring extension S of R that is a normal affine domain
and S = C[X] is the coordinate ring for a normal affine variety X C C"
for some n. Also, there exists a locally trivial G,-action G, X X — X
for which R is the ring of invariants.

From the proof of Theorem 3.1, we know that there exists a normal
affine C-domain N for which S = NJ[g1,¢2] and an ideal I C N
such that R equals the I-transform of N. By the remarks made
after Definition 2.1, since N is a Noetherian normal domain, R # N,
since N is affine over C and R is not, and R # K(R) (since this
would lead to the false statement K (N) C Ng1, g2]). Consequently, it
must be that ht I = 1. Additionally, from the proof of Theorem 3.1,
trd.cS = trd.cN + 1. From [13], we know that trd.cR = 3. Since
K(R) = K(N), it follows that trd.cS = 4, and so by [8, Propositions
1.17, 1.18A], S is the coordinate ring for a normal affine variety X of
dimension 4. O
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The Gg-action defined in Corollary 3.2, as with any locally trivial
Gs-action with a nonfinitely generated ring of invariants, is another
example of a locally trivial G,-action that is not equivariantly trivial.
Results from [3] and [18] leave some unanswered questions.

Question 1. Is there a G,-action on C* that has a nonfinitely
generated ring of invariants?

Question 2. Is there a triangular G,-action on C* that is locally
trivial but not equivariantly trivial?

Also,

Question 3. What is the smallest value of n for which X C C”
where X is the normal, affine variety defined in Corollary 3.27

REFERENCES

1. M.F. Atiyah and I.G. McDonald, Introduction to commutative algebra,
Addison-Wesley Publ. Co., Inc., New York, 1969.

2. D. Daigle, On some properties of locally nilpotent derivations, J. Pure Appl.
Algebra 114 (1997), 221-230.

3. D. Daigle and G. Freudenberg, A counterexample to Hilbert’s fourteenth
problem in dimension 5, J. Algebra 221 (1999), 528-535.

4. , Triangular derivations of k[X1, X2, X3, X4], J. Algebra 241 (2001),
328-339.

5. J.K. Deveney and D.R. Finston, G -invariants and slices, Comm. Algebra 30
(3) (2002), 1437-1447.

6. D. Eisenbud, Commutative algebra with a view toward algebraic geometry,
Springer-Verlag, Inc., New York, 1995.

7. J. Fogarty, Invariant theory, W.A. Benjamin, Inc., 1969.
8. R. Hartshorne, Algebraic geometry, Springer-Verlag, Inc., New York, 1977.
9. T. Hungerford, Algebra, Springer-Verlag, New York, 1974.

10. D. Katz and L.J. Ratliff, Jr., Two notes on ideal-transforms, Math. Proc.
Cambridge Philos. Soc. 102 (1987), 389-397.

11. M. Nagata, On the fourteenth problem of Hilbert, Proc. Internat. Congress
Mathematicians, Edinburgh, 1958, 459-462.

12. , On the 14th problem of Hilbert, Amer. J. Math. 81 3(1959), 766-772.




1352 K.D. JORGENSON

13. , Lectures on the fourteenth problem of Hilbert, Notes by M. Pavaman
Murthy, Tata Institute of Fundamental Research, Bombay, 1965.

14. , On Zariski’s problem concerning the 14th problem of Hilbert, Osaka
J. Math. 33 (1996), 997-1002.

15. T. Ogoma, On a problem of Nagata related to Zariski’s problem, Osaka J.
Math. 35 (1998), 487—491.

16. D. Rees, On a problem of Zariski, Illinois J. Math. 2 (1958), 145-149.

17. P. Roberts, An infinitely generated symbolic blow-up in a power series ring
and a new counterexample to Hilbert’s fourteenth problem, J. Algebra 132 (1990),
461-473.

18. J. Winkelmann, On free holomorphic C-actions on C™ and homogeneous
Stein manifolds, Math. Ann. 286 (1990), 593-612.

19. D. Wright, On the Jacobian conjecture, Illinois J. Math. 25 (1981), 423-440.

UNIVERSITY OF THE INCARNATE WORD, MATHEMATICS DEPARTMENT, 4301
Broapway, CPO #311, SAN ANTONIO, TX 78209
E-mail address: jorgensoQuniverse.uiwtx.edu



