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APPROXIMATION IN NON-ASPLUND SPACES

R. FRY

ABSTRACT. Results on the uniform approximation of con-
tinuous functions by Ck-smooth functions on the boundary
of certain convex subsets in Banach spaces which are non-
Asplund are given.

1. Introduction. The uniform approximation of continuous func-
tions by Ck-smooth maps on Banach spaces which admit Ck-smooth
bump functions (Ck-smooth real-valued functions with bounded, non-
empty support) has received much attention over the years, see, e.g.,
[2]. Corresponding results in non-Asplund spaces has been less com-
mon, although related work can be traced back to the seminal papers
[4] and [1], while more recently, the behavior of smooth functions on
non-Asplund spaces and their ‘harmonic’ behavior has been considered
in [2, Theorem III.1.3 and Proposition III.1.7], and results in a similar
vein are in [3].

A simple yet important observation is that if one is able to uniformly
approximate arbitrary continuous functions on an open set G in a
Banach space X via maps C1-smooth on G, then by approximating
a suitable continuous bump function on G with a C1-smooth map on
G subsequently composed with an appropriate smooth bump function
on R, one can construct a C1-smooth bump function on X. This in
turn implies that X is Asplund. Hence, for non-Asplund spaces X, it
is not possible to uniformly approximate arbitrary continuous maps on
open sets by functions C1-smooth on X. This is in stark contrast to
the situation for many Banach spaces which admit C1-smooth bump
functions such as reflexive spaces or, more generally, weakly compactly
generated Asplund spaces.

It follows that, for non-Asplund spaces, approximation theorems
are much more constrained. Nevertheless, we obtain some interesting
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positive results. In particular, if one restricts the smooth approximation
to the boundary ∂C of convex sets C, we show that smooth approxi-
mation of continuous maps is possible for certain C. We note below,
see Proposition 1, that for such approximation results, some stronger
convexity assumptions on C are also necessary when X is non-Asplund,
and in our main result these assumptions concern the extremal struc-
ture of ∂C. More specifically, the convex sets C we shall work with
are subsets of separable spaces which are convex, closed, bounded and
such that each x ∈ ∂C is strongly exposed. For such a C we show,
for example, that, given a continuous map F : C → R, n ≥ 1 and
ε > 0, there exists an open set U = Uε ⊃ ∂C and a Cn-smooth func-
tion K : U → R which approximates F to within ε on ∂C. It has been
noted [6] that even uniform approximation of continuous functions on
SX = ∂BX , where BX is the closed unit ball of X, by maps C1-smooth
on X would enable one to construct a smooth bump function on X,
indicating that we cannot expect the maps K above to be smooth off
of U in the case that X is non-Asplund.

Our results apply, for example, to C = Bl1 , with Bl1 being the
closed unit ball of an equivalent locally uniformly rotund norm of l1.
Even in separable Asplund spaces X, we obtain new results when the
smoothness of K is chosen to exceed the highest order of smoothness
of the norm of X. For example, in lp with p odd, n > p, and choosing
C = Blp (again, with a locally uniformly rotund renorming).

The fact that the approximation here is only on ∂C is not as restric-
tive as one might suppose if the function F : X → Y to be approxi-
mated is C1-smooth and Y is Asplund while X is not, since then [2,
Proposition II.1.7] gives us that F (∂C) = F (C). A related result has
recently been obtained in [3], where it is shown that if X does not
have finite cotype, while Y does, and if G ⊂ X is open and bounded
with F : X → Y having uniformly continuous derivative in a neighbor-
hood of G, then F (∂G) = F (G). Hence, in this last situation, we can
also see that approximation on ∂G gives more information than might
otherwise be expected.

The motivation, as well as many of the techniques in this note,
originate in [4].
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2. Definitions and notation. All Banach spaces are assumed real
and are denoted by X,Y , etc., and their continuous duals by X∗, Y ∗,
etc. The closed unit ball and sphere of X are written BX and SX ,
respectively, with similar notation for the dual space. A closed ball of
radius r > 0 and center p ∈ X is denoted Br(p). The interior of a
set S is written int S and its closure as S. If C ⊂ X is a bounded,
convex set, a point x ∈ C is said to be an exposed point if there exists
a functional x∗ ∈ SX∗ (the exposing functional) with x∗(x) > x∗(y)
for all y ∈ C, y �= x. The point x is said to be strongly exposed if, in
addition to being exposed, we have that for any sequence {xn} ⊂ C,
x∗(xn − x) → 0 implies xn → x, where x∗ is the exposing functional
for x. Recall that the norm of X is locally uniformly rotund (LUR)
if, for x, xn ∈ SX with ‖x + xn‖ → 2 we have ‖x − xn‖ → 0. The
importance of this notion for us is that if the norm of X is LUR, then
every x ∈ SX is strongly exposed. Any separable, or more generally any
weakly compactly generated space, admits an equivalent LUR norm.
In this note smoothness is meant in the Fréchet sense. As mentioned
in the introduction, a Ck-smooth bump function on X is a Ck-smooth,
real-valued function with bounded, nonempty support.

X is said to be an Asplund space if every continuous, convex function
on X is Fréchet differentiable on a dense Gδ subset. For example, if X
admits a C1-smooth bump function, then X is Asplund, see, e.g., [2,
Lemma II.5.4]. We refer the reader to the text [5] for more information
on Asplund spaces.

3. Main results. As noted in the introduction, in non-Asplund
spaces X some restrictions on the ‘size’ of the set over which one
is approximating are necessary, since the uniform approximation of
continuous functions over a set with nonempty interior by smooth
functions enables one to construct a smooth bump function on X. Our
approximation results shall take place on the boundaries of certain
convex subsets C of separable spaces. In addition, some further
convexity assumptions are necessary on C when X is non-Asplund,
as the following proposition indicates.

Proposition 1. Let X be a Banach space and U an open neigh-
borhood of SX . Suppose that any continuous function on SX can be
uniformly approximated on SX by a map C1-smooth on U . Further
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suppose that Y ⊂ X is a translate of a hyperplane such that Y ∩ SX is
relatively open in SX . Then X admits a C1-smooth bump function.

Proof. We can suppose that, for some x0 ∈ Y ∩ SX , we have
B3/4(x0)∩SX ⊂ Y ∩SX . For x ∈ Y ∩SX , put d(x) = dist (x,B1/2(x0)).
Using our hypothesis, let b1 : U → [0, 1] be a map C1-smooth on a
neighborhood U of Y ∩ SX such that |b1(x) − d(x)| < 1/8 on Y ∩ SX .
Let ξ ∈ C1(R, [0, 1]) be such that ξ(t) = 1 if t ≤ 1/8 and ξ(t) = 0 if
t ≥ 1/4. For x ∈ Y ∩ SX , put b2(x) = ξ(b1(x)) and extend b2 to all
of Y , still calling it b2, by setting b2 = 0 on Y \ B3/4(x0). Then b2 is
C1-smooth on Y with support (b2) ⊂ B3/4(x0) ∩ SX and b2(x0) = 1.
For x ∈ Y − x0, put b3(x) = b2(x+ x0).

Putting H = Y − x0, we have X = H ⊕ R, and we norm the
direct sum in the standard way by setting, for x = (h, r) ∈ X,
‖x‖ = ‖(h, r)‖ =

√‖h‖2 + r2. We have the projections π1(h, r) = h
and π2(h, r) = r. Finally, define the C1-smooth map b : X → [0, 1]
by b(x) = b3(π1(x))ξ(π2(x)). Then b(0) = b3(0)ξ(0) = 1, while if
‖x‖ = ‖(h, r)‖ ≥ √

2, then either ‖h‖ ≥ 1 or |r| ≥ 1, and so either
b3(π1(x)) = b3(h) = 0 or ξ(π2(x)) = ξ(r) = 0, and hence support
(b) ⊂ √

2BX .

Proposition 1 shows that, if C is a subset of X with X non-Asplund,
then in general the uniform approximation of continuous maps by Ck-
smooth maps on ∂C will be possible only if we place some stronger
convexity assumptions on C. For our main result we shall in fact assume
that each x ∈ ∂C is a strongly exposed point.

Theorem 1. Let X be a separable Banach space and C ⊂ X a closed,
convex and bounded subset such that each x ∈ ∂C is strongly exposed.
Then, if Y is an arbitrary Banach space, F : C → Y is continuous,
n ≥ 1 and ε > 0, there exists an open set U ⊃ ∂C and a Cn-smooth
map K : U → Y such that

‖F (x) −K(x)‖ < ε for all x ∈ ∂C.

Proof. Let F and C be as in the theorem statement, and let ε ∈ (0, 1)
and n ≥ 1 be given. For x ∈ ∂C, using the continuity of F , pick δx > 0
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such that y ∈ Bδx
(x) ∩ C implies

‖F (x) − F (y)‖ < ε/2.

Since any x ∈ ∂C is a strongly exposed point, for each such x there
exists an x∗ ∈ SX∗ with x∗(x) > x∗(y) for all y ∈ C, y �= x, and
moreover, for the given δx > 0, there exists εx ∈ (0, δx) with

(3.1) x∗(x− y) > εx for all y ∈ C with ‖x− y‖ ≥ δx.

Similarly, for the same x and x∗, we can find an ε′x < εx such that

(3.2) x∗(x− y) > ε′x for all y ∈ C with ‖x− y‖ ≥ εx/2.

Define a relatively open cover of ∂C by the sets

C1
x = int (Bε′

x/2(x)) ∩ ∂C for x ∈ ∂C,

and note that, since C is separable, there is a countable subcover
{C1

xj
}∞j=1 for ∂C. With notation as above, associated with the xj are

the strongly exposing functionals x∗j ∈ SX∗ , and the numbers δxj
, εxj

and ε′xj
.

Also define sets

C2
xj

= int (Bεxj
/2(xj)) ∩ ∂C,

and

C3
xj

= int (Bδxj
(xj)) ∩ ∂C,

noting that the collections {C2
xj
}∞j=1 and {C3

xj
}∞j=1 are also covers for

∂C.

To simplify notation, we shall write the sequences

{δxj
}, {εxj

}, {ε′xj
}, {C1

xj
}, {C2

xj
}, etc.,

as simply {δj}, {εj}, {ε′j}, {C1
j }, etc.

Let θ ∈ C∞(R,R+) be the function

θ(t) =
{
e−1/t2 for t > 0
0 for t ≤ 0,
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and define maps fj : X → [0, 1] by

fj(x) =
θ(εj − x∗j (xj − x))

θ(εj − x∗j (xj − x)) + θ(x∗j (xj − x) − εj/2)
.

Therefore, using (3.1),

x ∈ ∂C \ C3
j =⇒ ‖xj − x‖ ≥ δj =⇒ fj(x) = 0.

Also,
x ∈ ∂C ∩ C2

j =⇒ ‖xj − x‖ < εj/2 =⇒ fj(x) = 1.

For j ≥ 0 we define maps gj : X → [0, 1] by setting g0 = 0 and, for
j ≥ 1,

gj(x) =
θ(ε′j − x∗j (xj − x))

θ(ε′j − x∗j (xj − x)) + θ(x∗j (xj − x) − ε′j/2)
.

Observe that, for x ∈ C1
j ∩ ∂C, we have gj(x) = 1 and x ∈ ∂C \ C2

j

implies gj(x) = 0 using (3.2).

We define sets by

D1 = C2
1

Dj = C2
j \ (∪i<jC

2
i ).

Observe that the collection {Dj}∞j=1 covers ∂C and, if x ∈ Dj , then
x ∈ C2

j while x ∈ ∂C \ C2
i for i = 1, . . . , j − 1.

We finally define maps ψj : X → R+ by

ψj(x) = (‖F (xj)‖ + 1) exp
{
− βj

[
(1 − fj(x)) +

j−1∑
i=1

gi(x)
]}
,

where βj ∈ R+ shall be specified later.

Some properties of the ψj are collected in the following lemma.

Lemma 1. For the functions ψj defined above, we have

(i) ψj(x) ≤ (‖F (xj)‖ + 1)e−βj for all x ∈ ∂C \ C3
j .
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(ii) For each x ∈ ∂C, there exists a j0 such that

ψj0(x) − (‖F (xj0)‖ + 1) = 0.

(iii) For each x ∈ ∂C, there exists a j′ and an η = η(x) > 0 such that

ψj(y) ≤ (‖F (xj)‖ + 1)e−βj ,

for all y with ‖y − x‖ < η and j > j′.

Proof. (i) For x ∈ ∂C we have, since gj ≥ 0,

ψj(x) ≤ (‖F (xj)‖ + 1) exp{−βj(1 − fj(x))}.
Also, as noted above, fj(x) = 0 for x ∈ ∂C \C3

j , and the result follows.

(ii) Fix any x ∈ ∂C. From the construction of the cover {Dj},
we have that there exists j0 with x ∈ C2

j0
while x ∈ ∂C \ C2

i for
i = 1, . . . , j0 − 1. It now follows from the construction of the fj and
the gj as noted above that

|ψj0(x) − (‖F (xj0)‖ + 1)|

= (‖F (xj0)‖ + 1)
∣∣∣∣ exp

{
− βj0

[
(1 − fj0(x)) +

j0−1∑
i=1

gi(x)
]}

− 1
∣∣∣∣

= (‖F (xj0)‖ + 1)|e0 − 1|
= 0.

(iii) Fix x ∈ ∂C and fix j′ such that x ∈ C1
j′ . Then since C1

j′

is (relatively) open, there exists an η = η(x) > 0 such that ∂C ∩
intBη(x) ⊂ C1

j′ . We choose η smaller, if necessary, so that for all
y ∈ intBη(x) we have ‖xj′ − y‖ < ε′j/2.

Using the definition of gj , we then have

gj′(y) = 1 for y ∈ intBη(x).

Then, for j > j′ and y ∈ intBη(x), we have, using 1 − fj ≥ 0 and
gi ≥ 0,

ψj(y) ≤ (‖F (xj)‖ + 1) exp
{
− βj

j−1∑
i=1

gi(y)
}

≤ (‖F (xj)‖ + 1) exp{−βjgj′(y)}
= (‖F (xj)‖ + 1)e−βj .
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Referring to the proof of Lemma 1(iii), we define the open set
U = ∪x∈∂C(intBη(x)(x)) ⊃ ∂C.

Now, returning to the proof of the theorem, we define for x ∈ U ,

ψ(x) =
∞∑

j=1

ψj(x) and K(x) =

∑∞
j=1 F (xj)ψj(x)

ψ(x)
.

Choose the βj > 0 large enough that (‖F (xj)‖ + 1)2e−βj ≤ 2−(j+4).
Then Lemma 1(iii) implies that ψ(x) and

∑∞
j=1 F (xj)ψj(x) are contin-

uous on the open set U ⊃ ∂C. Also, for any x ∈ X and j ≥ 1,

ψ(x) ≥ ψj(x) = (‖F (xj)‖ + 1) exp
{
− βj

[
(1 − fj(x)) +

j−1∑
i=1

gi(x)
]}

≥ exp{−jβj}
> 0.

It follows that K is continuous on U .

Let us next investigate the first derivative of ψ(x). Fix x ∈ U and
also x0 ∈ ∂C with x ∈ intBη(x0)(x0) according to the definition of U .
We choose a neighborhood Nx of x with Nx ⊂ intBη(x0)(x0). An easy
calculation shows that all the derivatives f (k)

j and g(k)
j for k = 1, . . . , n

are bounded on X by some constants Aj > 0. We have for all y ∈ X
and ‖h‖ ≤ 1,

(3.3) ψ′
j(y)(h) ≤ ψj(y)βj

[
Aj +

j−1∑
i=1

Ai

]
.

Pick j′ = j′(x0) so that the conditions of Lemma 1 (iii) are met at
x0 and choose the βj larger if necessary so that the righthand side
of (3.3) is less than 2−j which, by Lemma 1 (iii) will hold for all
y ∈ Nx and j > j′. It follows that the partial sums

∑m
j=1 ψ

′
j(x)(h)

and
∑m

j=1 F (xj)ψ′
j(x)(h) converge uniformly on Nx for all ‖h‖ ≤ 1.

Hence, K is C1-smooth on U . Similar calculations show that, given
n ≥ 1, the βj can be chosen such that K ∈ Cn(U, Y ).

Finally we show that, on ∂C, ‖K(x)−F (x)‖ < ε. Fix x ∈ ∂C. From
Lemma 1 (ii) we have that there exists a j0 with

|ψj0(x) − (‖F (xj0)‖ + 1)| = 0.
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Then also x ∈ C2
j0

⊂ C3
j0

from the proof of Lemma 1 (ii), implying

‖F (xj0) − F (x)‖ < ε/2.

From the previous two inequalities, we obtain

ψ(x) ≥ ψj0(x) ≥ 1 and ψ(x) ≥ ψj0(x) > ‖F (x)‖.

Set J = {j : x ∈ C3
j }. Then from Lemma 1 (i) and again choosing

the βj sufficiently large(r), we obtain

∑
j /∈J

ψj(x) <
ε

4
and

∑
j /∈J

‖F (xj)‖ψj(x) <
ε

4
.

Therefore, using these estimates and the previous inequalities, we
have

‖F (x) −K(x)‖ =
1

ψ(x)

∥∥∥∥
∞∑

j=1

F (x)ψj(x) −
∞∑

j=1

F (xj)ψj(x)
∥∥∥∥

≤ 1
ψ(x)

{∑
j∈J

‖F (x) − F (xj)‖ψj(x)
}

+
1

ψ(x)

∑
j /∈J

‖F (x)‖ψj(x) +
1

ψ(x)

∑
j /∈J

‖F (xj)‖ψj(x)

<
ε

2
+
ε

4
+
ε

4
= ε.

Corollary 1. Let X be a separable, non-Asplund Banach space and
G ⊂ X convex, open and bounded such that each x ∈ G is strongly
exposed.

Then, if Y is an Asplund space, F : G → Y is continuous and
C1-smooth on G, and n ≥ 1, ε > 0, there exists an open set U ⊃ ∂G
and a map K ∈ Cn(U, Y ) such that, for any x0 ∈ G, there exists
x ∈ ∂G with

‖F (x0) −K(x)‖ < ε.
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Proof. Under the hypothesis of the corollary, by [2, Proposition
III.1.7], we have that F (∂G) is dense in F (G). Combining this with
Theorem 1 gives the result.

Corollary 2. Let X be a separable, non-Asplund Banach space with
nonfinite cotype and G ⊂ X convex, open and bounded such that each
x ∈ G is strongly exposed.

Then, if Y has finite cotype and F : X → Y is C1-smooth on
a neighborhood of G with uniformly continuous derivative on G and
n ≥ 1, ε > 0, there exists an open set U ⊃ ∂G and a map K ∈ Cn(U, Y )
such that, for any x0 ∈ G, there exists x ∈ ∂G with

‖F (x0) −K(x)‖ < ε.

Proof. Under the hypothesis of the corollary, by [3, Theorem 1], we
have that F (∂G) is dense in F (G). Combining this with Theorem 1
gives the result.

REFERENCES

1. R. Bonic and J. Frampton, Smooth functions on Banach manifolds, J. Math.
Mech. 15 (1966), 877 898.

2. R. Deville, G. Godefroy and V. Zizler, Smoothness and renormings in Banach
spaces, Pitman Monographs Surveys Pure Appl. Math., vol. 64, Longman Sci. Tech.,
Harlow, 1993.

3. R. Deville and E. Matheron, Pyramidal vectors and smooth functions on
Banach spaces, Proc. Amer. Math. Soc. 128 (2000), 3601 3608.

4. J. Kurzweil, On approximation in real Banach spaces, Studia Math. 14 (1954),
214 231.

5. R.R. Phelps, Convex functions, monotone operators and differentiability,
Lecture Notes in Math., vol. 1364, Springer-Verlag, New York, 1989.

6. J. Vanderwerff and V. Zizler, private communication.

St. Francis Xavier University, Department of Mathematics, Antigonish,
Nova Scotia, Canada
E-mail address: rfry@stfx.ca


