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HYPERCYCLIC AND CHAOTIC CONVOLUTION
OPERATORS ON CHÉBLI-TRIMÈCHE HYPERGROUPS

J.J. BETANCOR, J.D. BETANCOR AND J.M.R. MÉNDEZ

ABSTRACT. In this paper a universality property for
Chébli-Trimèche convolution operators is proved. The re-
sults obtained extend prior analysis of the Fourier and Hankel
transforms. We also investigate hypercyclic and chaotic con-
volution operators on Chébli-Trimèche hypergroups in some
distribution spaces.

1. Introduction. In this paper we investigate new properties
for the generalized Fourier transformation, also called Chébli-Trimèche
transform, F defined, when f is a suitable function defined on (0,∞),
by

(F(f)(λ) =
∫ ∞

0

ψλ(x)f(x)A(x) dx, λ ≥ 0,

where, for every λ ≥ 0, ψλ represents the solution of the equation

(1.1) ∆ψλ(x) = (λ2 + ρ2)ψλ(x), x > 0,

satisfying that

ψλ(0) = 1 and
d

dx
ψλ(0) = 0.

Here ρ ≥ 0 and ∆ denotes the differential operator

(1.2) ∆ = − 1
A(x)

d

dx

(
A(x)

d

dx

)
,

where A is a real function on [0,∞) of the form A(x) = x2α+1B(x),
α > −1/2, with B an even positive analytic function on R satisfying
B(0) = 1. We assume that A satisfies the following conditions
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(i) A is increasing and unbounded on (0,∞),

(ii) A′/A is a decreasing C∞-function on (0,∞). Hence there exists
limx→∞A′(x)/A(x) ≥ 0.

In the sequel the positive real number ρ appearing in (1.1) is defined
by

ρ =
1
2

lim
x→∞

A′(x)
A(x)

,

when ∆ is given by (1.2).

(iii) There exist η and M > 0 and a smooth function C such that C(k)

is bounded on (0,∞), for every k ∈ N, and for which, when x ∈ (M,∞),

A′(x)
A(x)

=

⎧⎨
⎩

2ρ+ e−ηxC(x) if ρ > 0,
2α+ 1
x

+ e−ηxC(x) if ρ = 0.

(iv) There exists a positive real number δ such that (B′(x)/B(x))′ =
e−δxD(x), x ∈ [0,∞), with D being a continuous bounded function on
[0,∞).

In particular, the generalized Fourier transform F reduces to the
Hankel transform [11] when A(x) = x2α+1, x ∈ [0,∞) and α > −1/2.
Also the Jacobi transform [8] and [14] that can be interpreted in certain
cases as the spherical transform on noncompact symmetric spaces of
rank one, appears when A(x) = (sinh x)2α+1(coshx)2β+1, x ∈ [0,∞)
with α ≥ β ≥ −1/2 and α �= −1/2.

The inversion formula of the transform F is given by [5]

f(x) =
∫ ∞

0

ψλ(x)(Ff)(λ)
dλ

|c(λ)|2

where |c(λ)|−2 is a continuous function on [0,∞). The function c(λ)
can be seen as a function of the Harish-Chandra type.

For the Chébli-Trimèche transform the following Plancherel formula
[21] and [2, Theorem 2.2.13] holds

(1.3)
∫ ∞

0

|f(x)|2A(x) dx =
∫ ∞

0

|F(f)(λ)|2 dλ

|c(λ)|2 ,
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for every f ∈ L2((0,∞), A(x) dx). As usual, for every 1 ≤ p ≤ ∞,
by Lp((0,∞), dµ(x)) we represent the Lebesgue p-space on (0,∞) with
respect to the positive measure µ.

Since |ψλ(x)| ≤ 1, x, λ ∈ (0,∞) [5, Corollary 9] and [3, Lemma
3.4] it is not hard to see that F maps L1((0,∞), A(x) dx) into
L∞((0,∞), dλ/|c(λ)|2). Hence, by (1.3), Riesz-Thorin interpolation
theorem implies that F can be extended as a bounded operator from
Lp((0,∞), A(x) dx) into Lp′

((0,∞), dλ/|c(λ)|2), provided that 1≤p≤2,
where p′ denotes the exponent conjugated to p.

Chébli [5] and Trimèche [19] have established Paley-Wiener theorems
for the generalized Fourier transform. For every a > 0, the space Da

is constituted by all those even and C∞-functions φ on R such that
φ(x) = 0, |x| ≥ a. We consider on Da the topology associated with the
family {pm}m∈N of semi-norms, where for every m ∈ N:

pm(φ) = sup
x∈R

|φ(n)(x)|, φ ∈ Da.

By D we understand the strict inductive limit ∪a>0Dα and D′ denotes
the dual space of D. On D′ we consider the weak ∗ topology.

Bloom and Xu [3] studied the generalized Fourier transform on
Schwartz type spaces. They introduced the space Sp((0,∞), A) for
each 0 < p ≤ 2, as follows. A complex-valued function φ defined on
(0,∞) is in Sp((0,∞), A) if and only if there exists an even function
Φ ∈ C∞(R) such that φ = Φ on (0,∞) and that

µp
k,l(φ) = sup

x∈(0,∞)

(1 + x2)lψ0(x)−2/p
∣∣∣ dk

dxk
φ(x)

∣∣∣ <∞,

for every l, k ∈ N. The image by the Chébli-Trimèche transform of
Sp((0,∞), A) is characterized in [3, Proposition 4.26].

A one-dimensional hypergroup on (0,∞), also called Chébli-Trimèche
hypergroup (see [22, Chapter 6]) is associated to the generalized Fourier
transform (see [2]). The generalized translation u(x, y) = (τxf)(y) of
any real-valued function f on (0,∞) which is the restriction of an even
C∞-function on R is the solution of the following Cauchy problem:

(∆x − ∆y)u(x, y) = 0
u(x, 0) = f(x), x ≥ 0
uy(x, 0) = 0, x ≥ 0.
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This generalized translation τxf of f can be written

(τxf)(y) =
∫ ∞

0

f(z)D(x, y, z)A(z) dz, x, y ∈ ]0,∞) ,

(τxf)(0) = f(x), x ∈ ]0,∞) ,

and we define (τxf)(y) = (τ|x|f)(|y|), x, y ∈ R. Here, for every
x, y ∈ ]0,∞), D(x, y, ·) is a positive function such that D(x, y, z) = 0,
when z /∈ [|x−y|, x+y]. Moreover, the eigenfunction ψλ of the operator
∆ and the functionD are related through the following product formula
[21, Section II.3]

(1.4)
∫ ∞

0

D(x, y, z)ψλ(z)A(z) dz = ψλ(x)ψλ(y), x, y ∈ ]0,∞) .

The convolution operation on the Chébli-Trimèche hypergroup is
defined as follows. If f and g are in L1((0,∞), A(x) dx), then the
convolution f#g of f and g is given through

(f#g)(x) =
∫ ∞

0

f(y)(τxg)(y)A(y) dy, x ≥ 0.

The #-convolution is also defined on bounded measures on [0,∞), [15].

The integral transform F is related to the generalized translation and
to the #-convolution as the following formulas show [3, Theorem 2.4]

(i) F(τxf)(λ) = ψλ(x)F(f)(λ), f ∈ L1((0,∞), A(x) dx) and x ≥ 0,

(ii) F(f#g)(λ) = F(f)(λ)F(g)(λ), f, g ∈ L1((0,∞), A(x) dx).

Herzog [12] has proved a universality property of solutions of the heat
equation. He introduced, for every β > 0, the space Eβ constituted by
all those real and continuous functions φ defined on R such that

lim
|x|→∞

e−β|x|φ(x) = 0.

For every t > 0 and φ ∈ Eβ, β > 0, Ttφ is defined by

(Ttφ)(x) =
1

2
√
πt

∫ +∞

−∞
exp(−(x− s)2/4t)φ(s) ds, x ∈ R.



HYPERCYCLIC AND CHAOTIC OPERATORS 1211

Note that, for every t > 0, Tt defines a usual convolution operator.
Herzog proved in [12, Theorem 1.1] that, for every β > 0, the set

Uβ = {φ ∈ Eβ : {Tnφ : n ∈ N} = C(R,R)}

is a residual subset of Eβ, that is, Eβ \Uβ is of first category in Eβ. Here
C(R,R) denotes the space of real and continuous functions on R and
it is endowed with the topology of the uniform convergence of compact
subsets of R.

In Section 2, we establish the corresponding universality property
for certain #-convolution operators. Our results can be seen as an
extension of those obtained in [1] where Hankel and Fourier convolution
operators were considered.

Suppose now X is a locally convex space and T is a continuous linear
operator from X into itself. We say that T is a hypercyclic operator
when there exists x ∈ X, called a hypercyclic vector for T , such that
{Tnx}n∈N is a dense subset of X. Every hypercyclic operator on X is
topologically transitive in the sense of dynamical systems; that is, for
every pair of open and nonempty subsets U and V of X, there exists
n ∈ N for which Tn(U)∩V �= ∅. As in [4] (see also [6]), we call a linear
and continuous operator on X chaotic if it is topologically transitive
and it has a dense set of periodic points.

Trimèche [19] considered the space E that consists of all those even
and C∞-functions on R. We consider on E the topology generated by
the family {pm,n}m,n∈N of semi-norms where, for every m,n ∈ N,

pm,n(f) = sup
|x|≤n

|f (m)(x)|, f ∈ E.

According to [3, Lemma 4.18] we can see that the topology of E is also
generated by the systems {qm,n}m,n∈N and {rm,n}m,n∈N of semi-norms
where, for each m,n ∈ N,

qm,n(f) = sup
|x|≤n

|∆mf(x)|, f ∈ E,

and

rm,n(f) =
{∫ n

0

|∆mf(x)|2A(x) dx
}1/2

, f ∈ E.
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The space E can be seen as a subspace of D′, the dual space of D, in
the following sense. Each f ∈ E is identified with the element Sf of D′

defined by

〈Sf , φ〉 =
∫ ∞

0

f(x)φ(x)A(x) dx, φ ∈ D.

Thus E is a dense subspace of D′. This can be proved by using #-
approximate identities. The dual space of E is denoted by E′ and it is
constituted by distributions of compact support.

For every x ∈ [0,∞) the translation operator τx defines a continuous
and linear mapping from E into itself [19, Proposition 8.3] and from
D into itself [19, Corollary 8.2]. If T ∈ E′, respectively D′, and f ∈ E,
respectively D, the convolution T#f of T and f is defined by

(T#f)(x) = 〈T, τxf〉, x ∈ [0,∞).

Trimèche proved in [20] that, for every T ∈ E′, the linear mapping
defined by f → T#f is continuous from E into itself and from D into
itself. Moreover, the space E′ can be characterized as the space of the
#-convolution operators on D; that is, given T ∈ D′, we have that
T#φ ∈ D, for each φ ∈ D if and only if T ∈ E′. The #-convolution
S#T of S ∈ D′ and T ∈ E′ is the element of D′ defined through

〈S#T, φ〉 = 〈S, T#φ〉, φ ∈ D.

Inspired by the results in [9] and [4], in Section 3 of this paper we prove
that if T ∈ E′ is not a scalar multiple of the Dirac functional δ, then
T defines a hypercyclic and chaotic #-convolution operator on E and
on D′.

Trimèche [18] and Fitouhi [7] investigated the convergence of gener-
alized Taylor series associated to the operator ∆. We collect now some
properties established in [18] and [7] that will be useful to us. The
function λ → ψλ(x) for every x ∈ R is even and analytic and we can
write ([7, p. 246])

(1.5) ψλ(x) =
∞∑

n=0

(−1)nbn(x)(λ2 + ρ2)n, λ ∈ C,
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where, for every n ∈ N, bn is an even smooth function on R defined by

(1.6) bn(x) =
∫ x

0

K(x, u)jn−1/2(iρu)
u2n

(2n)!
du, x > 0,

where

jµ(z) =
{

2µΓ(µ+ 1)z−µJµ(z) if z �= 0,
1 if z = 0,

Jµ being the Bessel function of the first kind and index µ. Here for
every x > 0, K(x, ·) is a nonnegative integrable function with support
in [−x, x] (see [19]). We assume that b−n = 0 when n ∈ N \ {0}.

The main properties of the functions bn, n ∈ N, were established in
[18] and [7, Section 2.2]. In particular, we have that

(1.7) b0 = 1, bn(0) = 0, ∆bn = −bn−1, n ∈ N, n ≥ 1.

Moreover, according to [7, Corollary 2.1], for every n ∈ N,

0 ≤ bn(x) ≤ x2n

(2n)!
, x ∈ R,(1.8)

and

0 ≤ b′n(x) ≤ x2n−1

(2n− 1)!
, x ∈ R.(1.9)

Functions bn, n ∈ N, play in the generalized Taylor series of Trimèche
[18] the role of the power functions in the usual Taylor series.

Throughout this paper we always represent by C a positive constant,
which is not necessarily the same in each occurrence.

2. A universality property for #-convolution operators. In
this section, inspired by the paper of Herzog [12], we investigate a
universality property for certain #-convolution operators.

As in [1], we consider the set A constituted by all functions h defined
on [0,∞) that are positive, decreasing, continuous on [0,∞) and that
satisfy the following inequality

(2.1) h(x+ y) ≥ Ch(x)h(y), x, y ∈ [0,∞),
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where C > 0 is independent of x, y ∈ [0,∞).

If h ∈ A, Eh represents the function space that consists of all those
continuous functions f on [0,∞) such that limx→∞ h(x)f(x) = 0. On
Eh we define the norm ‖ · ‖h through

‖f‖h = sup
x∈[0,∞)

h(x)|f(x)|.

Thus Eh is a separable Banach space.

Let 0 < p ≤ 2 and φ ∈ Sp((0,∞), A). We define by Tφ the
#-convolution operator given by

Tφ(f) = φ#f, f ∈ Eh.

Also, for every n ∈ N, the operator Tφ,n is defined by

Tφ,nf = φ#n#f, f ∈ Eh,

where φ#n =

n︷ ︸︸ ︷
φ# · · ·#φ.

Our universality result for the #-convolution operator Tφ is the
following.

Proposition 2.1. Let φ ∈ S1((0,∞), A) and h ∈ A. Assume that
the following conditions are satisfied

(i) φ/h ∈ L1((0,∞), A(x) dx),

(ii) F(φ)(iρ) = 1 and |F(φ)(x)| < 1 for almost all x ∈ (0,∞),

(iii) h(x) cosh(x) is bounded on [0,∞),

(iv) the function F (z) =
∑∞

n=0 δn(φ)zn, z ∈ C, is holomorphic
in a neighborhood of the closed unit disk D(0, 1) where δn(φ) =∫ ∞
0
bn(x)φ(x)A(x) dx, n ∈ N.

Then the set

Uφ = {f ∈ Eh : {Tφ,n(f) : n ∈ N} = C([0,∞))}
is a residual set of Eh, where C([0,∞)) denotes the space of continuous
functions on [0,∞) endowed of the topology of uniform convergence in
[0, a] for every a > 0.
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Proof. Note firstly that the operator Tφ is bounded from Eh into
C[0,∞). Indeed, let f ∈ Eh. According to (2.1) and by taking into
account that the measure of the generalized translation operator is a
probability measure on [0,∞) for every x, y ∈ [0,∞) ([5, p. 453] and
[3, p. 90]), we have that

|(τxf)(y)| ≤ C
‖f‖h

h(x)h(y)
, x, y ∈ [0,∞).

Then it follows

|Tφ(f)(x)| ≤ C

(
1

h(x)

∫ ∞

0

( |φ(y)|
h(y)

A(y)
)
dy

)
‖f‖h, x ∈ [0,∞).

Hence, by (i), if a > 0, one has

sup
0≤x≤a

|Tφ(f)(x)| ≤ C‖f‖h.

Note that, to see that Tφ is bounded from Eh into C([0,∞)), it is
sufficient that (i) holds.

We now prove that Tφ,n is a bounded linear mapping from Eh into
C([0,∞)), for every n ∈ N. For this purpose, we will see that
φ#n/h ∈ L1((0,∞), A(x) dx), for every n ∈ N. We only establish
this property for n = 2. An inductive procedure allows us to show the
property for every n ∈ N.

Since the measure of the generalized translation operator is supported
on [|x−y|, x+y], for every x, y ∈ [0,∞) and the function h is decreasing
on [0,∞), we can write∫ ∞

0

|φ#φ(x)|
h(x)

A(x) dx

≤
∫ ∞

0

∫ ∞

0

|φ(y)|
h(x)

h(|x− y|)τx
( |φ|
h

)
(y)A(y)A(x) dy dx.

Moreover it is not hard to see that h(y)≥Ch(y−x)h(x), 0≤x≤y<∞.
Then by dividing the integral in the y-variable as follows∫ ∞

0

|φ(y)|h(|x− y|)τx
( |φ|
h

)
(y)A(y) dy

=
( ∫ x

0

+
∫ ∞

x

)
|φ(y)|h(|x− y|)τx

( |φ|
h

)
(y)A(y) dy, x ∈ (0,∞),
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a straightforward manipulation leads to

∫ ∞

0

|φ#φ(x)|
h(x)

A(x) dx ≤ C
∥∥∥ |φ|
h

#
|φ|
h

∥∥∥
L1((0,∞),A(x) dx)

.

Hence [21, (II.14)] and [3, Theorem 2.4] imply that (φ#φ)/h ∈
L1((0,∞), A(x) dx).

To simplify we denote by E0
h the subspace of Eh that consists of all

those f ∈ Eh such that f(x) = 0, x ≥ a, for some a > 0. It is not hard
to see that E0

h is a dense subspace of Eh.

We are going to see that, for every f ∈ E0
h,

lim
n→∞Tφ,n(f)(x) = 0,

uniformly in x ∈ (0,∞).

Fix f ∈ E0
h. By [3, Theorem 2.4] and [21, Theorem II.3], we can

write

Tφ,n(f)(x) =
∫ ∞

0

F(f)(y)(F(φ)(y))nψy(x)
dy

|c(y)|2 ,
x ∈ (0,∞) and n ∈ N.

Trimèche [21] proved that there exist two constants, c1, c2 > 0, such
that

c1|y|2α+1 ≤ |c(y)|−2 ≤ c2|y|2α+1,

when y is large enough. We choose l ∈ N such that l > α + 1. Since
(1 + y2)lF(φ)(y) → 0, as y → ∞, there exists y0 > 0 for which
(1 + y2)l|F(φ)(y)| < 1/2, y > y0. Hence, according to [3, Lemma
3.4] and since f ∈ E0

h, we obtain

(2.2)

∣∣∣∣
∫ ∞

y0

F(f)(y)(F(φ)(y))nψy(x)
dy

|c(y)|2
∣∣∣∣

≤ C

∫ ∞

y0

((1 + y2)l|F(φ)(y)|)n y2α+1

(1 + y2)nl
dy

≤ C

(
1
2

)n ∫ ∞

0

y2α+1

(1 + y2)nl
dy, x ∈ (0,∞).
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On the other hand, from the fact that |c(λ)|−2 is continuous on [0,∞)
we can write

(2.3)

∣∣∣∣
∫ y0

0

F(f)(y)(F(φ)(y))nψy(x)
dy

|c(y)|2
∣∣∣∣ ≤ C

∫ y0

0

|F(φ)(y)|n dy,
x ∈ (0,∞).

Then, by combining (2.2) and (2.3) and using the dominated conver-
gence theorem, we conclude in view of (ii) that limn→∞ Tφ,n(f)(x) = 0,
uniformly in x ∈ (0,∞).

Thus we prove that the set

{f ∈ Eh : lim
n→∞Tφ,nf exists in C[0,∞)}

is dense in Eh.

Hence, according to [10], our result is shown when we prove that the
set Uφ, defined by

Uφ = {f ∈ Eh : {Tφ,n(f) : n ∈ N} = C([0,∞))},

is not empty.

We now define the Banach space Fh as follows. We define first the
space F . We say that a function f is in F when it can be written as

(2.4) f(x) =
∞∑

n=0

bn(x)an, x ∈ [0,∞),

where (an)n∈N ∈ c0. Here c0 denotes the space of real sequences that
converge to zero.

Note that by (1.8) the series in (2.4) is convergent, for every x ∈
(0,∞).

For f ∈ F we put

‖f‖h = sup
p∈N

x∈(0,∞)

h(x)|∆pf(x)|.
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Note that, as f has the representation (2.4), then by (1.6), (1.7), (1.8)
and (1.9), it follows

h(x)|∆pf(x)| ≤ Ch(x)
∞∑

n=p

bn−p(x) ≤ Ch(x) cosh(x), x ∈ (0,∞).

Hence supp∈N,x∈(0,∞) h(x)|∆pf(x)| <∞. Then ‖ · ‖h defines a norm in
F . We represent by Fh the space F when it is equipped with the norm
‖ · ‖h.

We now prove that if c0 is endowed with its usual topology, that is,
the topology associated to the norm ‖ · ‖∞ defined by

‖(an)n∈N‖∞ = sup
n∈N

|an|, (an)n∈N ∈ c0,

then the mapping L defined by

L((an)n∈N)(x) =
∞∑

n=0

anbn(x), x ∈ (0,∞),

is a homeomorphism from c0 onto Fh.

Note first that, according to (1.7), L is a one-to-one mapping from
c0 onto F .

Indeed, let (an)n∈N ∈ c0. We have that

‖L((an)n∈N‖h = sup
p∈N

x∈(0,∞)

h(x)
∣∣∣∣

∞∑
n=p

bn−p(x)an

∣∣∣∣
≤ ‖(an)n∈N‖∞ sup

x∈(0,∞)

h(x) cosh(x).

Thus, from (iii), we have seen that L is a continuous mapping from c0
into Fh.

Let now f ∈ F . Assume that f = L((an)n∈N) where (an)n∈N ∈ c0.
Then by [18, p. 1016], since an = (−1)n∆nf(0), n ∈ N, we have

‖(an)n∈N‖∞ = sup
n∈N

|an| = sup
p∈N

|∆pf(0)| ≤ 1
h(0)

‖f‖h.
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Hence L−1 is continuous from Fh into c0.

Since c0 is a separable Banach space, Fh is also a separable Banach
space.

The space F is contained in Eh. Indeed, let f ∈ F . Assume that

f(x) =
∞∑

n=0

anbn(x), x ∈ [0,∞),

where (an)n∈N ∈ c0. Fix ε > 0. There exists n0 ∈ N such that |an| < ε,
n > n0. Hence, from (1.8) and (iii), one has

∣∣∣∣h(x)
∞∑

n=n0+1

anbn(x)
∣∣∣∣ ≤ εh(x)

∞∑
n=0

bn(x) ≤ Cε, x ∈ (0,∞).

Moreover, from (iii), since limx→∞ h(x)x2n = 0, for every n ∈ N, there
exists x0 > 0 such that, for all x ≥ x0,

∣∣∣∣h(x)
n0∑

n=0

anbn(x)
∣∣∣∣ ≤ ε.

Hence limx→∞ f(x) = 0.

Moreover, the space F is dense in C([0,∞)). To see this it is sufficient
to prove that, for every k ∈ N, pk(z) = z2k, z ∈ [0,∞), is in the closure
of the linear space generated by {bn}n∈N in C([0, a]) for each a > 0.
Let k > N and a > 0. We define a C∞-function qk on R such that
qk(x) = 0, |x| > a + 1 and qk(x) = pk(x), |x| < a. It is clear that
qk ∈ Sp((0,∞), A), with 0 < p ≤ 2. Hence, according to [3, Theorem
4.27], F(qk) ∈ L1((0,∞), dy/|c(y)|2) and we can write

qk(x) =
∫ ∞

0

ψy(x)F(qk)(y)
dy

|c(y)|2 , x ∈ [0,∞).

Let ε > 0. By [3, Lemma 3.4] there exists y0 > 0 for which

∣∣∣∣
∫ ∞

y0

ψy(x)F(qk)(y)
dy

|c(y)|2
∣∣∣∣ ≤

∫ ∞

y0

|F(qk)(y)| dy

|c(y)|2 | < ε, x ∈ [0,∞).
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Moreover, since the function ψy(x)F(qk)(y)/|c(y)|2 is uniformly con-
tinuous in {(x, y) : x ∈ [0, a], y ∈ [0, y0]}, we can put∫ y0

0

ψy(x)F(qk)(y)
dy

|c(y)|2

= lim
n→∞

y0
n

n∑
j=1

ψy0j/n(x)F(qk)
(
y0j

n

)∣∣∣∣c
(
y0j

n

)∣∣∣∣
−2

,

uniformly in x ∈ [0, a].

Hence, there exists n0 ∈ N such that
∣∣∣∣pk(x) − y0

n

n∑
j=1

ψy0j/n(x)F(qk)
(
y0j

n

)∣∣∣c
(
y0j

n

)∣∣∣−2
∣∣∣∣ < ε, x ∈ [0, a],

provided that n ≥ n0.

Thus we prove that pk is in the closure of the linear space generated
by {ψy}y>0 in C([0, a]).

On the other hand, by (1.5) we have that, for every y > 0,

ψy(x) =
∞∑

n=0

(−1)nbn(x)(y2 + ρ2)n, x ∈ R,

where the series is uniformly convergent in [0, a]. Hence, for every
y > 0, ψy is in the closure of the linear space generated by {bn}n∈N in
C([0, a]).

Then we conclude that pk belongs to the closure of the linear space
generated by {bn}n∈N in C([0, a]).

Our next purpose is to see that, for every f ∈ F ,

Tφ(f) = Kφ(f),

where

Kφ(f)(x) =
∞∑

n=0

(−1)nδn(φ)∆nf(x), x ∈ (0,∞).

Here δn =
∫ ∞
0
bn(y)φ(y)A(y) dy, n ∈ N. Note that by (1.8) and [3], the

integral defining δn is absolutely convergent for every n ∈ N. Moreover,
by assumption

∑∞
n=0 |δn| <∞.
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Suppose firstly that

f(x) =
p∑

n=0

bn(x)an, x ∈ (0,∞),

with p ∈ N and an ∈ R, n = 0, 1, . . . , p. It is clear that f ∈ F .

We have that, by [18, Theorem 4],

Tφ(f)(x) = (φ#f)(x)

=
∫ ∞

0

φ(y)(τxf)(y)A(y) dy

=
∫ ∞

0

φ(y)
( p∑

k=0

(−1)kbk(x)∆kf(y)
)
A(y) dy

=
p∑

k=0

bk(x)
( p∑

n=k

anδn−k(φ)
)
, x ∈ (0,∞).

Moreover, we derive

Kφ(f)(x) =
∞∑

n=0

(−1)nδn(φ)∆nf(x)

=
p∑

n=0

δn(φ)
( p∑

k=n

bk−n(x)ak

)

=
p∑

k=0

bk(x)
( p∑

n=k

δn−k(φ)an

)
, x ∈ (0,∞).

Hence Kφ(f) = Tφ(f).

We now introduce the set H defined as follows

H = {f ∈ F : f(x) =
p∑

n=0

anbn(x)

with an ∈ R, n = 0, 1, . . . , p and p ∈ N}.
Thus H is a dense subspace of Fh. Indeed, let f ∈ F with the
representation (2.4) where (an)n∈N ∈ c0. Then we can write

sup
p∈N

x∈(0,∞)

h(x)
∣∣∣∣∆p

( ∞∑
n=k

bn(x)an

)∣∣∣∣ ≤ sup
n≥k

|an| sup
x∈(0,∞)

h(x) cosh(x), k ∈ N.
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Hence by (iii) since (an)n∈N ∈ c0 we deduce that

lim
k→∞

k∑
n=0

bn(x)an = f(x),

in the sense of convergence in Fh.

Then, to see that Kφ(f) = Tφ(f), f ∈ F , it is sufficient to show that
Kφ is a continuous linear mapping from Fh into C[0,∞). Let a > 0.
We can write for all x ∈ [0, a]:

|Kφ(f)(x)| ≤
∞∑

n=0

|δn(φ)| |∆nf(x)|

≤
( ∞∑

n=0

|δn(φ)| 1
h(a)

)(
sup
p∈N

z∈(0,∞)

h(z)|∆pf(z)|
)
.

Hence Kφ defines a continuous operator from Fh into C([0,∞)).

It is clear that the operator ∆ is bounded from Fh into Fh. Then by
assumption (iv), Tφ is bounded from Fh into Fh.

We now show that

Tφ(Tφ(f)) = Tφ,2(f), f ∈ F.

Indeed, let k ∈ N. According to (1.5), we have

bk(x) =
(−1)k

2kk!

(
1
λ

d

dλ

)k

ψλ(x)|λ=iρ, x ∈ (0,∞).

Hence, by (1.4) we get for x, y ∈ (0,∞)

(2.5)

(τxbk)(y) =
(−1)k

2kk!

(
1
λ

d

dλ

)k ∫ ∞

0

ψλ(z)D(x, y, z)A(z) dz|λ=iρ

=
(−1)k

2kk!

(
1
λ

d

dλ

)k

(ψλ(x)ψλ(y))|λ=iρ

=
1
k!

k∑
j=0

(
k

j

)
bj(x)bk−j(y)j!(k − j)!

=
k∑

j=0

bj(x)bk−j(y), k ∈ N.
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This result is also true for x = y = 0 and for x or y equal to zero.

Then, by [3, Theorem 2.4], it follows for every x ∈ (0,∞)

Tφ(bk)(x) =
∫ ∞

0

bk(y)(τxφ)(y)A(y) dy

=
∫ ∞

0

(τxbk)(y)φ(y)A(y) dy

=
k∑

j=0

bj(x)
∫ ∞

0

bk−j(y)φ(y)A(y) dy, x ∈ (0,∞).

Hence, for every x ∈ (0,∞),

Tφ(Tφ(bk))(x)

=
k∑

j=0

j∑
l=0

bl(x)
(∫ ∞

0

bj−l(y)φ(y)A(y) dy
)( ∫ ∞

0

bk−j(y)φ(y)A(y) dy
)
.

On the other hand, we obtain in a similar way

Tφ#φ(bk)(x) =
k∑

j=0

bj(x)
∫ ∞

0

bk−j(y)(φ#φ)(y)A(y) dy

=
k∑

j=0

bj(x)
(−1)k−j

2k−j(k − j)!

(
1
λ

d

dλ

)k−j

F(φ#φ)(λ)|λ=iρ

=
k∑

j=0

bj(x)
k−j∑
l=0

(−1)l

2ll!

(
1
λ

d

dλ

)l

F(φ)(y)|λ=iρ

× (−1)k−j−l

2k−j−l(k − j − l)!

(
1
λ

d

dλ

)k−j−l

F(φ)(λ)|λ=iρ

=
k∑

j=0

bj(x)
k−j∑
l=0

( ∫ ∞

0

bl(y)φ(y)A(y) dy
)

×
( ∫ ∞

0

bk−j−l(y)φ(y)A(y) dy
)
, x ∈ (0,∞).

By interchanging the order of summation we conclude that

Tφ(Tφ(bk)) = Tφ,2(bk).
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Hence

(2.6) Tφ(Tφ(f)) = Tφ,2(f), f ∈ H.

On the other hand, φ#φ satisfies the conditions (i), (ii) and (iv) listed
in this proposition. Indeed, property (i) was established above for φ#φ.

Also by [3, Lemma 2.4], we have that

F(φ#φ)(iρ) = F(φ)(iρ)F(φ)(iρ) = 1,

and

|F(φ#φ)(x)| = |F(φ)(x)||F(φ)(x)| < 1, for almost all x ∈ (0,∞).

Thus φ#φ fulfills (ii).

Finally we see that φ#φ verifies (iv). Let n ∈ N. As we proved
above, according to the definition of φ#φ and [18, Theorem 4], we now
find

δn(φ#φ) =
∫ ∞

0

bn(x)(φ#φ)(x)A(x) dx

=
n∑

j=0

( ∫ ∞

0

bj(y)φ(y)A(y) dy
)( ∫ ∞

0

bn−j(y)φ(y)A(y) dy
)

=
n∑

j=0

δj(φ)δn−j(φ),

where δj(φ) and δj(φ#φ) have the obvious meaning, for every j ∈ N.

Also we can write for z in a neighborhood of the closed unit disk
D(0, 1)

( ∞∑
k=0

δn(φ)zn

)( ∞∑
j=0

δj(φ)zn

)
=

∞∑
n=0

( n∑
k=0

δk(φ)δn−k(φ)
)
zn

=
∞∑

n=0

δn(φ#φ)zn.

Hence (iv) is satisfied for φ#φ.
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Since φ#φ satisfies the same properties as φ, we infer that the
operator Tφ,2 is bounded from Fh into itself. Hence, since H is a dense
subspace of Fh, (2.6) implies that Tφ,2f = Tφ(Tφ(f)), for every f ∈ F .

An inductive argument allows us to conclude that

Tφ,n(f) =

n︷ ︸︸ ︷
Tφ . . . Tφ(f), f ∈ F and n ∈ N.

On the other hand, according to (1.7), the operator ∆ is onto. Also
the set H is contained in ∪n∈NKer (∆n). Hence ∪n∈NKer (∆n) is a
dense subset of Fh. Since δ0(φ) = F(φ)(iρ) = 1 and the spectrum
σ(∆) of ∆ is contained in the closed unit disk D(0, 1), [16, Corollary
1] allows us to deduce that Tφ is hypercyclic. That is, the set

{f ∈ F : {Tφ,nf : n ∈ N}Fh = F}

is not empty. By taking into account that the topology of Fh is stronger
than the one induced on F by C([0,∞)) and that F is a dense subspace
of C([0,∞)), we conclude that the set Uφ is not empty.

Thus the proof is finished.

3. Hypercyclic and chaotic convolution operators on the
spaces E and D′. Godefroy and Shapiro characterized the continuous
linear mapping on H(Cn), the space of holomorphic functions on Cn

that commutes with usual translations [9, Proposition 5.2]. As a
consequence of that result, they extended classical works of Birkhoff
and MacLane about the hypercyclicity of translation and differentiation
on H(C), and they proved that every partial differential operator on
Rn which is not a scalar multiple of the identity is hypercyclic and
chaotic [9, Theorems 5.1 and 6.2]. Recently, Bonet [4] showed that
usual convolution operators on spaces of ultradifferentiable functions
of Beurling and Roumieu type are hypercyclic and chaotic when they
are not scalar multiples of the identity. Our purpose in this section is
to obtain a version of Bonet’s result for #-convolution operators on E
and D′.

We first introduce a space of functions that will play the same role in
our study as the space of entire functions in the theory developed by
Godefroy and Shapiro [9].
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We denote by G the space that consists of all the complex sequences
(an)n∈N such that the series

∑∞
n=0 |an|(|x|n/(2n)!) converges, for every

x ∈ R. The function space H is defined as follows. An even function
f is defined on R is in H if and only if there exists (an)n∈N ∈ G such
that f(x) =

∑∞
n=0 anbn(x), x ∈ R. Note that, according to (1.8), if

(an)n∈N ∈ G, then
∑∞

n=0 |an|bn(x) converges uniformly in x ∈ [0, a] for
every a > 0.

Proposition 3.1. If f ∈ H, then f ∈ E. Moreover, if (an)n∈N ∈ G
then the series

∑∞
n=0 anbn converges in E.

Proof. According to (1.6) we can write

bn = X
(
u2n

(2n)!
jn−1/2 (ipu)

)
, n ∈ N,

where X represents the generalized Riemann-Liouville transform de-
fined by [19]

X (f)(x) =
∫ x

0

K(x, y)f(y) dy, x ∈ [0,∞).

Here the function K is understood as in the introduction. Since X is
an automorphism on E, for every m ∈ N and a > 0 there exist s, l ∈ N
and C,w > 1 such that
(3.1)

sup
|x|≤a

∣∣∣∣ d
m

dxm
bn(x)

∣∣∣∣ ≤ C max
j=0,1,... ,s

sup
|y|≤w

∣∣∣∣ d
j

dyj

(
y2n

(2n)!
jn−1/2(iρy)

)∣∣∣∣
≤ C max

j=0,1,... ,l
sup
|y|≤w

∣∣∣∣
(

1
y

d

dy

)j(
y2n

(2n)!
jn−1/2(iρy)

)∣∣∣∣
≤ C

w2n

(2(n− l))!
, n ∈ N, n > l.

In the last inequality we have used [23, Section 5.1, (7)] and that
jµ(iu) ≤ coshu, u ∈ R [7, p. 246]. Let (an)n∈N be in G. From (3.1)
we deduce that, for every m ∈ N, the series

∑∞
n=0 an(dm/dxm)bn(x) is
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uniformly convergent in [−a, a] for each a > 0. Hence the function f
defined by

f(x) =
∞∑

n=0

anbn(x), x ∈ R,

is in E. The above argument shows also that the series
∑∞

n=0 anbn
converges in E.

Proposition 3.2. H is a dense subspace of E.

Proof. Let T ∈ E′. The generalized Fourier transform FT is defined
by

(FT )(λ) = 〈T (x), ψλ(x)〉, λ ∈ C

(see [19]). Suppose that T|H = 0. Then, since ψλ ∈ H, for every λ ∈ C
(see (1.5)), FT = 0. Hence T = 0. Hahn-Banach’s theorem allows us
to conclude that H is dense in E.

We consider on the space H the topology induced on it by the space
E. By (1.7) it is not hard to see that the operator ∆ defines a linear and
continuous mapping from H into itself. The behavior of the translation
operator τx, x ∈ [0,∞) on H is presented in the following.

Proposition 3.3. Let x ∈ [0,∞). The translation operator τx
is a linear and continuous mapping from H into itself. Moreover, if
f =

∑∞
n=0 anbn where (an)n∈N ∈ G, then

τxf =
∞∑

n=0

(−1)nbn(x)∆nf,

where the last series converges on E.

Proof. Assume that (an)n∈N ∈ G and write

f(y) =
∞∑

n=0

anbn(y), y ∈ R.
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Let x ∈ [0,∞). Since the last series converges uniformly in every
compact subset of R, we have by using (2.5),

(3.2)

(τxf)(y) =
∞∑

n=0

an(τxbn)(y)

=
∞∑

n=0

an

n∑
k=0

bk(x)bn−k(y)

=
∞∑

n=0

bn(y)
∞∑

j=0

an+jbj(x), y ∈ [0,∞).

Note that by (1.8), for every y ∈ [0,∞),

∞∑
k=0

∣∣∣∣
∞∑

n=0

bn(x)an+k

∣∣∣∣ |y|k
(2k)!

≤
∞∑

k=0

∞∑
n=0

bn(x)|an+k| |y|
k

(2k)!

≤
∞∑

k=0

∞∑
n=0

|an+k| |x|
2n

(2n)!
|y|k
(2k)!

≤
∞∑

n=0

|an|
n∑

k=0

(
2n
2k

)
|x|2(n−k)|y|k

≤
∞∑

n=0

|an|
(2n)!

(x+
√
y)2n <∞.

Hence τxf ∈ H.

Finally, from [19, Proposition 8.3], we infer that τx defines a contin-
uous linear mapping from H into itself.

According to (3.2) we can write that

(3.3) (τxf)(y) =
∞∑

n=0

(−1)nbn(x)∆nf(y), y ∈ [0,∞).
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Let x ∈ ]0,∞). We have that, for every m, l1, l2 ∈ N, l1 < l2.∣∣∣∣∆m
y

l2∑
n=l1

(−1)nbn(x)∆nf(y)
∣∣∣∣

=
∣∣∣∣∆m

y

l2∑
n=l1

bn(x)
∞∑

j=0

an+jbj(y)
∣∣∣∣

≤
l2∑

n=l1

bn(x)
∞∑

j=m

|an+j |bj−m(y)

≤
l2+m∑

j=l1+m

|aj |
(2(j −m))!

j−m∑
n=l1

x2n

(2n)!
y2(j−m−n)

(2(j−m−n))!
(2(j−m))!

+
∞∑

j=l2+m

|aj |
(2(j −m))!

l2∑
n=l1

x2n

(2n)!
y2(j−m−n)

(2(j−m−n))!
(2(j−m))!

≤
l2+m∑

j=l1+m

|aj |
(2(j −m))!

j−m∑
n=l1

(
2(j −m)

2(j−m−n)

)
x2ny2(j−m−n)

+
∞∑

j=l2+m

|aj |
(2(j −m))!

l2∑
n=l1

(
2(j −m)

2(j−m−n)

)
x2ny2(j−m−n)

≤
∞∑

j=l1+m

|aj |
(2(j −m))!

(x+ y)2(j−m), y ∈ [0,∞).

Hence the series in (3.3) converges in E. For x = 0 the result is also
true.

We will say that a complex sequence (cn)n∈N is in P when there exist
C, r > 0 and l ∈ N such that

|cn| ≤ C
r2n

(2n− l))!
, n ∈ N.

We define the operator T(cn)n∈N
on H as follows

T(cn)n∈N
f =

∞∑
n=0

cn∆nf, f ∈ H.
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By proceeding as in the proof of Proposition 3.3, we can show the
next property.

Proposition 3.4. Let (cn)n∈N ∈ P. Then the operator T(cn)n∈N

is linear and continuous from H into itself. Moreover the series∑∞
n=0 cn∆nf converges in E for every f ∈ H.

By using the Hahn-Banach and Riesz representation theorems we can
establish the following representation of the elements of E′ that will be
useful in the sequel.

Proposition 3.5. Let T be a linear operator from E into C.
Then T ∈ E′ if and only if there exist k ∈ N and F0, F1, . . . , Fk in
L2((0,∞), A(x) dx) with compact support in [0,∞) such that

(3.4) 〈T, f〉 =
k∑

j=0

∫ ∞

0

Fj(x)∆jf(x)A(x) dx, f ∈ E.

We now characterize the linear and continuous operator on H that
commutes with the translation operator τx, x ∈ [0,∞). Our next result
corresponds in our theory to [9, Proposition 5.2].

Proposition 3.6. Assume that L is a linear and continuous mapping
from E into itself. The following properties are equivalent.

(a) L commutes with the translation operator τx, x ∈ [0,∞), that is,
Lτx = τxL, x ∈ [0,∞),

(b) There exists T ∈ E′ such that Lf = T#f , f ∈ E.

(c) There exist k ∈ N and F0, F1, . . . , Fk functions in L2((0,∞), A(x) dx)
with compact support in [0,∞) such that

L(f) =
k∑

j=0

∫ ∞

0

Fj(y)τx(∆jf)(y)A(y) d(y), f ∈ E and x ∈ [0,∞).

(d) There exists (cn)n∈N ∈ P such that L|H = T(cn)n∈N
.
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(e) L commutes with the operator ∆, that is, L∆ = ∆L.

Proof. Since the operator ∆ and τx, x ∈ [0,∞), commute, the
equivalence (b) ⇔ (c) can be deduced from Proposition 3.5.

(a) ⇒ (c). We define the functional

〈T, f〉 = (Lf)(0), f ∈ E.

It is clear that T ∈ E′. Then by Proposition 3.5, there exist k ∈
N and F0, F1, . . . , Fk functions in L2((0,∞), A(x) dx) with compact
support in [0,∞), such that

〈T, f〉 =
k∑

j=0

∫ ∞

0

Fj(y)∆jf(y)A(y) dy, f ∈ E.

Hence by (a) we can write

(Lf)(x) = τx(Lf)(0)
= L(τxf)(0)

=
k∑

j=0

∫ ∞

0

Fj(y)τx(∆jf)(y)A(y) dy, f ∈ E.

(c) ⇒ (d). Assume that, for every f ∈ E,

(Lf)(x) =
k∑

j=0

∫ ∞

0

Fj(y)τx(∆jf)(y)A(y) dy, x ∈ [0,∞),

where F0, F1, . . . , Fk are functions in L2((0,∞), A(x) dx) with compact
support in [0,∞) for a certain k ∈ N.

Let f ∈ H. According to Proposition 3.3, we get

(Lf)(x) =
k∑

j=0

∞∑
n=0

(−1)n∆n+jf(x)
∫ ∞

0

Fj(y)bn(y)A(y) dy

=
∞∑

n=0

∆nf(x)
k∑

l=0

(−1)n−l

∫ ∞

0

Fl(y)bn−l(y)A(y) dy,

x ∈ [0,∞).
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Let a > 0 be such that the supports of F0, . . . , Fk are contained in
[0, a]. Then by (1.8) we have

∣∣∣∣
k∑

l=0

∫ ∞

0

Fl(y)bn−l(y)A(y) dy
∣∣∣∣ ≤

k∑
l=0

∫ a

0

Fl(y)
y2(n−l)

(2(n− l))!
A(y) dy,

≤ C

k∑
l=0

a2(n−l)

(2(n− l))!

≤ C
a2n

(2(n− k))!
, n ∈ N.

Hence, by writing

cn =
k∑

l=0

(−1)n−l

∫ ∞

0

Fl(y)bn−l(y)A(y) dy, n ∈ N,

the sequence (cn)n∈N is in P and L|H = T(cn)n∈N
.

(d) ⇒ (a). Suppose that L|H = T(cn)n∈N
for a certain (cn)n∈N ∈ P.

Then the series
∑∞

n=0 cn∆nf converges uniformly in every compact
subset of R for every f ∈ H. Hence we can write for x, y ∈ ]0,∞):

τx(Lf)(y) =
∫ x+y

|x−y|
D(x, y, z)

∞∑
n=0

cn∆nf(z)A(z) dz

=
∞∑

n=0

cn

∫ x+y

|x−y|
D(x, y, z)∆nf(z)A(z) dz

=
∞∑

n=0

cnτx(∆nf)(y), f ∈ H.

This relation is also true for x = y = 0 and for x or y equal to zero.

Since the operators ∆ and τx, x ∈ [0,∞), commute on E, we conclude
that τxL = Lτx, x ∈ [0,∞) on H. The proof of (a) can be completed
by using Proposition 3.2 and [19, Proposition 8.3].

(e) ⇒ (a). If (e) holds, then Proposition 3.3 implies that L and τx,
x ∈ [0,∞) commute on H. By [19, Proposition 8.3], we can conclude
that L and τx, x ∈ [0,∞) commute on E.
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(d) ⇒ (e). Let (cn)n∈N ∈ P. By Proposition 3.4 the series∑∞
n=0 cn∆nf converges in E for every f ∈ H.

Then, since ∆ is a linear and continuous linear operator on H, we get

∆T(cn)n∈N
f = ∆

( ∞∑
n=0

cn∆nf

)

=
∞∑

n=0

cn∆n+1f

= T(cn)n∈N
∆f, f ∈ H.

Thus we prove that ∆L = L∆ on H. The proof finishes by using
Proposition 3.2.

The main results of this section are the following ones.

Proposition 3.7. Let L be a continuous linear mapping from E
into itself. Suppose that L is not a scalar multiple of the identity.
If L commutes with the translation operator τx, x ∈ [0,∞), then L
is hypercyclic and chaotic on E and there exists a dense L-invariant
linear submanifold M of E such that each nonzero member of M is a
hypercyclic vector of L.

Proof. Assume first that V is a subset of C having adherence points.
Then the space SV = span {ψλ : λ ∈ V } is dense in E. Indeed, let
T ∈ E′ be such that 〈T, ψλ〉 = 0, λ ∈ V . According to Proposition 3.5,
there exist k ∈ N and functions F0, F1, . . . , Fk with support in [0,∞)
such that

(3.5) 〈T, f〉 =
k∑

j=0

∫ ∞

0

Fj(x)∆jf(x)A(x) dx, f ∈ E.

In particular, by (1.1), for every λ ∈ C, we have

(3.6) 〈T, ψλ〉 =
k∑

j=0

(λ2 + ρ2)j

∫ ∞

0

Fj(x)ψλ(x)A(x) dx.
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The function F (λ) = 〈T, ψλ〉, λ ∈ C, is an entire function. Moreover,
F (λ) = 0, λ ∈ V . Hence, F is identically zero on C.

From (3.6) we deduce that, for every m ∈ N,

〈
T,

(
1
λ

d

dλ

)m

ψλ

〉
= 0, λ ∈ C.

Then by (1.5),

〈T, bm〉 =
〈
T,

(
(−1)m

2mm!

( 1
λ

d

dλ

)m

ψλ

)
|λ=iρ

〉
= 0,

for everym ∈ N. Since, by Propositions 3.1 and 3.2, span {bm : m ∈ N}
is a dense subspace of E, we conclude that T = 0.

Hahn-Banach theorem allows us to show that span {ψλ : λ ∈ V } is a
dense subspace of E.

Suppose that L is a continuous linear mapping from E into itself that
commutes with the translation operator τx, x ∈ [0,∞). According to
Proposition 3.6, there exists a sequence (cn)n∈N such that

Lf =
∞∑

n=0

cn∆nf, f ∈ H.

Hence for every λ ∈ C,

(3.7) Lψλ =
∞∑

n=0

cn∆nψλ = ψλΦ(λ),

where Φ(λ) =
∑∞

n=0 cn(λ2 + ρ2)n, λ ∈ C. Since (cn)n∈N ∈ P, Φ is
entire. Φ is not identically zero and thus the setW ={λ ∈ C : Φ(λ) �=0}
is open and nonempty in C. Hence SW is a dense subspace of E. Since
(3.7) implies that SW is contained in the range of L, we conclude that
the range of L is dense in E.

By proceeding now as in the proof of [9, Theorem 5.1], we can prove
as a consequence of the Fréchet space version of [9, Corollary 1.5], that
L has a hypercyclic vector f ∈ E. Moreover, the submanifold M of E
defined by

M = {p(L)f : p is a polynomial}
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is a dense, L-invariant, linear submanifold of E whose nonzero members
are hypercyclic vectors for the operator L. To see this, we can argue
as in [9, Sections 2 and 3].

To prove that L is chaotic on E it is sufficient to establish that the
set of periodic points of L is dense in E.

Let (cn)n∈N and Φ be as above. Φ is entire. Moreover, Φ is not
constant because L is not a scalar multiple of the identity. Hence there
exists m ∈ N such that

Φ(D(0,m)) ∩ ∂D(0, 1),

contains an open and nonempty subset of ∂D(0, 1) where D(0,m) is
the disk of center 0 and radius m.

Then the set G = {z ∈ D(0,m) : Φ(z)l = 1 for some l ∈ N} is
infinity and hence G has adherence points in D(0,m). Hence the space
span {ψλ : λ ∈ G} is dense in E. Moreover, if λ ∈ G then, for some
l ∈ N,

Ll(ψλ) = Φ(λ)lψλ = ψλ.

Thus we prove that each element of SG is a periodic point of L and the
proof is complete.

We now analyze the #-convolution operators on D′.

Proposition 3.8. Let T ∈ E′. The convolution operator LT on D′

defined by
LT (S) = S#T, S ∈ D′,

is hypercyclic and chaotic provided that T is not a scalar multiple of
the Dirac functional δ.

Proof. The space E is dense in D′. Moreover, if f ∈ E then LT (f)
coincides with the distribution generated by the function T#f ∈ E.
Indeed, let f ∈ E. The #-convolution Sf#T is defined on D by

〈Sf#T, φ〉 = 〈Sf , T#φ〉
=

∫ ∞

0

f(x)〈T, τxφ〉A(x) dx, φ ∈ D.
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Then, according to [21, p. 102], by proceeding as in [23, Theorem
5.6] using Riemann sums we get

〈Sf#T, φ〉 =
〈
Ty,

∫ ∞

0

f(x)(τxφ)(y)A(x) dx
〉

=
〈
Ty,

∫ ∞

0

(τyf)(x)φ(x)A(x) dx
〉

=
∫ ∞

0

φ(x)〈Ty, (τxf)(y)〉A(x) dx

= 〈ST#f , φ〉, φ ∈ D.

Now our result is a consequence of the comparison principle [17,
p. 111], see also [4, Lemma 3] and Proposition 3.7.
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measures on Chébli-Trimèche hypergroups, C.R. Math. Rep. Acad. Sci. Canada 17
(1995), 165 169.

16. T.L. Miller and V.G. Miller, Local spectral theory and orbits of operators,
Proc. Amer. Math. Soc. 127 (1999), 1029 1037.

17. J.H. Shapiro, Composition operators and classical function theory, Springer,
Berlin, 1993.
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