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COMPOSITION OF ULTRADISTRIBUTIONS
AND CORRESPONDING MICROFUNCTIONS

WITH E∗-FUNCTIONS

ATSUHIKO EIDA AND STEVAN PILIPOVIĆ

ABSTRACT. The pull back f�u ∈ D′∗(X) of u ∈ D′∗(Y )
is determined, where f = (f1, . . . , fm) : X → Y is an E∗-
function, X and Y are open sets of Rn and Rm, respectively.
The SS∗(f�u) is estimated. Also, the composition is done for
the corresponding spaces of microfunctions C∗∗(X ×Rn \ {0})
and C∗∗(Y × Rm \ {0}).

0. Introduction. Although the structural analysis of ultradistri-
bution spaces is almost completed there is an important question not
answered up to now. It concerns the composition of an ultradistribu-
tion and an ultradifferentiable function as well as of a microfunction in
C∗
∗ , cf. [1, 2, 3, 6], and an ultradifferentiable function. The composi-

tion of u ∈ D′∗(X) and a real analytic function f , under the condition
that the singular spectrum of u does not intersect the set of normals
of f , is given in [4] and [9]. We refer to [4] for the background in
distribution theory. However, the known procedure could not be used
for the composition in the class of ultradifferentiable functions.

Using an almost analytic extension, we analyze in this paper the
composition with f = (f1, . . . , fm) : X → Y , fi ∈ E∗(X), i = 1, . . . ,m,
X and Y are open sets in Rn and Rm, respectively. Also, we estimate
the corresponding ultradistributional singular spectrum.

In Section 1 is recalled the definition of ultradistributional singular
spectrum SS∗, cf. [1, 4] and [11]. The main assertion on the composi-
tion is given in Section 2. The corresponding assertion for microfunc-
tions is given in Section 3.

1. Notations and notions. We denote by Mp, p ∈ N0, a sequence
of positive numbers with M0 = 1 and refer to [5] for the meaning of
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conditions (M.1), (M.2)′, (M.2), (M.3)′ and (M.3). Also we use the
following one [8]:

(M.1)∗ M∗2
p ≤M∗

p−1M
∗
p+1, p ∈ N,

where M∗
0 = 1, M∗

p = Mp/p!, p ∈ N.

We will always assume conditions (M.1)∗, (M.2) and (M.3)′ hold.
The associated and growth functions M(ρ) and M∗(ρ) related to Mp

are defined by

M(ρ) = sup
p∈N0

ln
ρp

Mp
, M∗(ρ) = sup

p∈N0

ln
ρp

M∗
p

, ρ > 0.

Let Ω be an open set in Rn. Then K ⊂⊂ Ω means that K, or its
closure, is a compact subset of Ω. Recall, for ϕ ∈ C∞(Ω),

‖ϕ‖K,h,Mp
= sup

x∈K
α∈Nn

0

| ϕ(α)(x) |
h|α|M|α|

, h > 0 (K ⊂⊂ Ω).

The basic spaces E∗(Ω), D∗
K(Ω), D∗(Ω) and their strong duals are

defined by the meaning of these semi-norms. The symbol ∗ is used for
both (Mp) and {Mp}.

Eida [1] and Komatsu [6] have defined SS∗− and SS∗− singular
support of a hyperfunction. We will recall the definition of SS∗ for
ultradistributions. Let f ∈ D′∗. Then (x, ω) ∈ S∗Ω = Ω × Sn−1 is not
in SS∗f if and only if there exist a neighborhood U ⊂ Ω of x and a
conic neighborhood Γ of ω of the form

Γ = {ξ �= 0; | ξ/| ξ | − ω |< η}
such that for every φ ∈ D∗(U) the following holds.

In the (Mp) case for every ε > 0 there is Cε > 0 such that

| φ̂f(ξ) |≤ Cεe
−M(ε|ξ|), ξ ∈ Γ.

In the {Mp} case there exist k > 0 and C > 0 such that

| φ̂f(ξ) |≤ Ce−M(k|ξ|), ξ ∈ Γ.
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We denote by
∑

∗ φ̂f the set of all ξ ∈ Rn \ {0} having no conic
neighborhood Γ in which the estimates given above hold.

The notion SS{Mp} equals Hörmander’s notion WFL. The definition
of the singular spectrum SSf, where f ∈ B(Ω), is given by Sato, see
[11]. Let f ∈ D′∗(Ω). Then (x, ω) ∈ S∗Ω is not in SSf if (x, ω) is
not in SS{f}, where {f} denotes the corresponding hyperfunction, see
Section 3. This notion equals Hörmander’s WFAf , the analytic wave
front set of f , cf. [4, Definition 9.3.2 and Theorem 9.6.3].

It is said that (x, ξ) ∈ Ω×(Rn\{0}) is an element of the corresponding
singular spectrum defined above if this holds for (x, ξ/|ξ|).

As in [8], the almost analytic extension of φ ∈ D∗(Rn) is defined by

(1) Φ(z) =
∑
p∈Nn

0

ϕ(p)(x)
p!

(
√−1y)pκp(y), z = x+

√−1y ∈ Cn,

where

p! = p1! . . . pn!, (
√−1y)p = (

√−1y1)p1 . . . (
√−1yn)pn ,

κp(y) = κp1(y1) . . . κpn
(yn)

and κ is a nonnegative function of D∗(R) such that suppκ ⊂ [−2, 2],
κ |[−1,1]= 1 and

κp(t) = κ(4tm∗
p/h), h > 0, p ∈ N0,

where mp = Mp+1/Mp, m∗
p = mp/p, p ∈ N, and h depends on ϕ.

Note, Φ(z) is a smooth function on Cn which extends ϕ(x) and for
every 0 �= y0 ∈ Rn

(2) sup
i=1,... ,n

{
eM

∗(k/t)
∣∣∣ ∂

∂z̄i
Φ(x+

√−1ty0)
∣∣∣ }

≤ C,

| Φ(x+
√−1ty0) |≤ C, x ∈ Rn, t ∈ [0, 1)

hold in the (Mp)−case for every k > 0 and corresponding C > 0 and
in the {Mp}−case for some k > 0 and some C > 0, cf. [8].

The following two theorems are needed in the sequel. We refer to [5,
8] and [10] for the first part of Theorem 1. Its last part was proved
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for tempered ultradistributions in [9]. The proof for ultradistributions
can be adapted easily.

Recall, Γ1 ⊂⊂ Γ means that Γ̄1 ⊂ Γ ∪ {0}; Γ̄ denotes the closure of
Γ and Γ0 denotes the dual cone of Γ.

Theorem 1. Let Γ be an open convex cone in Rn and U an analytic
function in

Z = {z ∈ Cn; Re z ∈ Ω, Im z ∈ Γ, | Im z |< d}

for some d > 0.

Assume that for every compact set K ⊂⊂ Ω and every open convex
cone Γ1 ⊂⊂ Γ

| U(x+
√−1y) |≤ Cae

M∗(a/|y|), x+
√−1y ∈ K +

√−1Γ1,

holds, in the (Mp)−case for some a > 0 and Ca > 0, and in the {Mp}−
case for every a > 0 there exists Ca > 0. Then

U(x+
√−1y)

D′∗(Ω)−→ U(x+
√−10), y → 0, y ∈ Γ.

Moreover, with y0 ∈ Γ, |y0| < d, we have

〈U(x+
√−10), ϕ(x)〉

=
∫
Rn

U(x+
√−1y0)Φ(x+

√−1y0) dx

+ 2
√−1

n∑
i=1

y0,i

∫ 1

0

∫
Rn

∂

∂z̄i
Φ(x+

√−1ty0)U(x+
√−1y0t) dt dx.

We refer to [6] and [10] for the next theorem.

Theorem 2. Let Γ be an open convex cone in Rn, u ∈ D′∗(Ω),
Ω ⊂ Rn and SS∗u ⊂ Ω × Γ0. Let Ω1 ⊂⊂ Ω and let Γ1 be an open
convex cone such that Γ1 ⊂⊂ Γ. Then there is a function U analytic
in

{x+
√−1y; x ∈ Ω1, y ∈ Γ1, | y |< d}
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such that for some k > 0 and C > 0 in the (Mp)−case, for every k > 0
there is C > 0 in the {Mp}−case,

(3) | U(x+
√−1y) |≤ CeM

∗(k/|y|), x ∈ Ω1, y ∈ Γ1, | y |< d,

and
U(· + √−10) − u |Ω1∈ E∗(Ω1).

Remark 1. If an analytic function U(x+
√−1y) satisfies (3), then the

same type of estimate holds for its derivatives, i.e., for every j ∈ Nn
0

| U (j)(x+
√−1y) |≤ CeM

∗(k/|y|), x ∈ Ω1, y ∈ Γ1, | y |< d,

for some k > 0 and C > 0 in the (Mp)−case, for every k > 0 there is a
C > 0 in the {Mp}−case.

This follows by the Cauchy formula and the inequality

M∗(t1 + t2) ≤M∗(t1) +M∗(t2), t1, t2 ≥ 0.

2. Composition. Let X and Y be open sets in Rn and Rm,
respectively, and f = (f1, . . . , fm) : X → Y such that fi ∈ E∗(X),
i = 1, . . . ,m.

We are going to define the pullback f�u of u ∈ D′∗ with a suitable
property of its singular spectrum. Denote

Nf = {(f(x), η); tf ′(x)η = 0},
D′∗
γ (Y ) = {u ∈ D′∗(Y ); SS∗u ⊂ γ0},
f�γ = {(x,t f ′(x)η); (f(x), η) ∈ γ}

where γ is a closed conic subset of Y × (Rm \ {0}) conic in the second
variable and γ0 is the dual conic set (in the second variable).

Theorem 3. The pullback f�u can be defined in one and only one
way for all u ∈ D′∗(Y ) with Nf∩SS∗u = ∅ so that f�u = u◦f when u is
a continuous function and for any closed conic subset γ of Y ×(Rn\{0})
with γ ∩Nf = ∅, if u ∈ D′∗

γ(Y ), then SS∗(f�u) ⊂ f�(SS∗u).
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Proof. Let Γ be an open convex cone in Rm such that (Y ×Γ0)∩Nf =
∅ and γ = Y × Γ. Using a partition of unity we may suppose that
u ∈ D′∗

γ(Y ) ∩ E ′∗(Y ). Let Ω1 ⊂⊂ Y and supp u ⊂ Ω1. We apply
Theorem 2. The corresponding U is analytic in Ω1 +

√−1Γ1, satisfies
(3) in this domain and

U(· + √−10) − u ∈ E∗(Ω1).

We define f�u as an element of E ′∗(X) as follows. Denote by X0

an open relatively compact subset of X such that f−1(supp u) ⊂ X0.
For every x0 ∈ X0 choose h0 ∈ Rn such that f ′(x0)h0 ∈ Γ1. Note,
f ′(x0)(mh0) ∈ Γ1 for every m > 0.

Let θ ∈ D∗(X), θ = 1 on Õx0 , where Õx0 is an open neighborhood of
x0 contained in X0. We denote by

ξ = Fθ = (F1θ, . . . , Fmθ)

an almost analytic extension of fθ = (f1θ, . . . fmθ) defined by

ξi = Fiθ(z) =
∑
p∈Nn

0

(fiθ)(p)(x)
p!

(
√−1y)pκp(y),

z = x+
√−1y, x ∈ X, y ∈ Rn, i = 1, . . . ,m.

This is a smooth extension of fθ. By Taylor’s formula one can prove
that there exist an open set Ox0 , Ox0 ⊂ Õx0 , ε0 > 0 and h0 ∈ Rn \ {0}
such that

(4) Fθ(x+
√−1εh0) ∈ Ω1 +

√−1Γ1, x ∈ Ox0 , ε < ε0.

In fact, we have

Fθ(x+
√−1εh0) = Fθ(x0) + (Fθ)′(x0)

√−1εh0 + O(|x− x0|).
(Fθ(x0) = f(x0), (Fθ)′(x0) = f ′(x0).)
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We denote by Φ the almost analytic extension of ϕ defined by (1). By
Theorem 1, with suitable Y ∈ Γ1 and sufficiently small ε, we have

〈U(Fθ(x+
√−1εh0)), ϕ(x)〉

=
∫
Rn

U(Fθ(x+
√−1εh0) +

√−1Y )Φ(x+
√−1Y ) dx

+ 2
√−1

n∑
i=1

Yi

∫ 1

0

∫
Rn

(( ∂

∂z̄i
Φ

)
(x+

√−1tY )

× U(Fθ(x+
√−1εh0) +

√−1 tY )

+ Φ(x+
√−1tY )

∂

∂z̄i
(U(Fθ(z +

√−1εh0) +
√−1Y ))|z=x

)
dt dx.

We define f�ux0 as an element of D′∗(Ox0) letting ε→ 0 in (5):

(6)

〈f�ux0 , ϕ〉 =
∫
Rn

Φ(x+
√−1Y )U(Fθ(x) +

√−1Y ) dx

+ 2
√−1

m∑
i=1

Yi

∫ 1

0

∫
Rn

(( ∂

∂z̄i
Φ

)
(x+

√−1tY )

× U(Fθ(x) +
√−1tY )

+ Φ(x+
√−1tY )

∂

∂z̄i
(U(Fθ(z) +

√−1Y )
)
|z=x

)
dt dx.

Clearly, if Ox0 ∩ Ox1 �= ∅, then f�ux0|Ox0∩Ox1
= f�ux1|Ox0∩Ox1

.
Thus the family {f�ux0 ;x0 ∈ X0} defines an element of E ′∗(X) which
we denote by f�u.

More generally, let u ∈ E ′∗(f(X0)), f(X0) ⊂ Ω1 ⊂⊂ Y , such that
SS∗u ∩Nf = ∅. There exist open convex cones Γj , j = 1, . . . , s, such
that

SS∗u ⊂
s⋃
i=1

Y × Γ0
j and

s⋃
j=1

(Y × Γ0
j) ∩Nf = ∅.

Theorem 2 implies that there are holomorphic functions Uj in Ω1 +√−1Γ1j , j = 1, . . . , s, which satisfy (3) and

uj − Uj(· +
√−1Γ1j0) ∈ E∗(Ω1), SS∗uj ⊂ Ω1 × Γ0

1j ,
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and

u =
s∑
j=1

uj + r,

where r ∈ E∗(Ω1). We define

f�u =
s∑
j=1

f�uj + r ◦ f.

One can simply prove that this definition does not depend on the
decomposition of u.

Let us estimate SS∗f�u.

Let ψ ∈ E∗(Ox0) and ψ = 1 in a neighborhood of x0. Then, by (6),
we have

ψ̂f�u(ξ) = 〈(f�ux0)e
−√−1〈·,ξ〉, ψ〉

=
∫
Rn

Ψ(x+
√−1Y )U(Fθ(x) +

√−1Y )

× e−
√−1〈x+√−1Y,ξ〉 dx+ 2

√−1
m∑
i=1

Yi

×
∫ 1

0

∫
Rn

(( ∂

∂z̄i
Ψ

)
(x+

√−1tY )e−
√−1〈x+√−1Y,ξ〉

× U(Fθ(x) +
√−1tY ) + Ψ(x+

√−1tY )

× e−
√−1〈x+√−1Y,ξ〉 ∂

∂z̄i
(U(Fθ(z) +

√−1Y )|z=x
)
dt dx,

where Ψ and Fθ are the almost analytic extensions of ψ and fθ,
respectively.

Let 〈Y, ξ〉 < 0. Using the estimates given in Remark 1 and in (2), it
follows

(7) | ψ̂f�u(ξ) |≤ Cψ(e〈Y,ξ〉 +
∫ 1

0

et〈Y,ξ〉e−M
∗(k/t)) dt.

Note,

− inf
t>0

{
M∗

(
k

t

)
− | t〈Y, ξ〉 |

}
= sup

t>0

{
t〈Y, ξ〉−M∗

(
k

t

)}
= −M(k1|ξ|).
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This implies that the righthand side of (8) is O(e−kM(ξ)) in a conic
neighborhood of any point in the half space 〈Y, ξ〉 < 0.

The dual cone for tf ′(x0)Γ0
1 is {h; f ′(x0)h ∈ Γ̄1}. Thus,

tf ′(x0)Γ0
1 = {ξ ; 〈h, ξ〉 ≥ 0 if f ′(x0)h ∈ Γ̄1}.

Letting Γ1 → Γ, we obtain
∑

∗(ψf
�u) ⊂ f�Γ0.

Remark 2. We can introduce spaces D′∗
Γ (X), where X is open in

Rn and Γ is a closed cone in Rn \ {0}. Then, as in [4, Lemma 8.2.1,
Definition 8.2.2 and Theorem 8.2.3], we can consider the corresponding
statements with

“ sup
V
eM(εξ) . . . , for every ε > 0” (in the (Mp) case)

or

“ sup
V
eM(kξ) . . . , for some k > 0” (in the {Mp} case).

Then one can prove that the analogous assertions as in Lemma 8.2.1
and Theorem 8.2.3 hold. Having this, one can prove that the mapping

f� : D′∗
Γ (Y ) → D′∗

f∗Γ(X)

is continuous. We note that this can be done also in the case considered
in [4], when f is real analytic.

3. Microlocalization. Denote by B and C shaves of Sato’s hyper-
functions and microfunctions on Rn, cf. [10] and [5]). By Sp : π−1B →
C is denoted the canonical surjective spectrum map. Then the singu-
lar spectrum SS(u) of u ∈ B is SS(u) = supp (Sp(u)). The injections
D′∗ → B, respectively, D∗ → B, induce sheaf homomorphisms

π−1D′∗ −→ C, respectively, π−1D∗ −→ C.

Subsheaves of C, C∗, respectively, C∗, are defined as images of above
respective morphisms.
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We define the sheaf C∗
∗ , by the exact sequence

0 −→ C∗ −→ C∗ −→ C∗
∗ −→ 0

and refer to [3] for similar kind of microfunction spaces. Note, C∗ and
C∗ are soft sheaves, so

(C∗/C∗)(ω) = C∗(ω)/C∗(ω), for any open set ω.

Define Sp∗ : π−1D′∗ → C∗
∗ .

Let u ∈ D′∗. Then we have SS∗(u) = supp (Sp∗(u)).

Let X,Y and f be as in Section 2 and C∗
∗(X × Rn \ {0}), C∗

∗(Y ×
Rm \ {0}) be spaces of sections. The pull back

f� : C∗
∗(Y × Rm \ {0}) −→ C∗

∗(X × Rn \ {0}), h �−→ f�(h),

is defined as follows.

Let h ∈ C∗
∗(Y ×Rm \{0}) and supph ⊂ γ, cf. Section 2 for γ. Denote

by h the corresponding element in h ∈ C∗(Y × Rm \ {0}). Denote by
h0 an element in π−1D′∗(Y ×Rm \ {0}) with the property Sp(h0) = h.
Denote by h0, the corresponding element in D′∗(Y ); it has the property
SS∗h0 ⊂ γ. Then, put f�h0 for the corresponding element in D′∗(X).
We know, SS∗(f�h0) ⊂ f�γ. Finally, we put f�h0 for its image in
π−1D′∗(X × Rn \ {0}) and Sp∗(f�h0) = f�h ∈ C∗

∗(X × Rn \ {0}).
Clearly, supp f�h ⊂ f�γ.
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4, 21000 Novi Sad, Serbia and Montenegro

E-mail address: pilipovic@im.ns.ac.yu


