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COMPOSITION OF ULTRADISTRIBUTIONS
AND CORRESPONDING MICROFUNCTIONS
WITH £*-FUNCTIONS

ATSUHIKO EIDA AND STEVAN PILIPOVIC

ABSTRACT. The pull back f*u € D™*(X) of u € D'*(Y)
is determined, where f = (f1,...,fm) : X — Y is an &*-
function, X and Y are open sets of R™ and R", respectively.
The SS«(f*u) is estimated. Also, the composition is done for
the corresponding spaces of microfunctions C} (X x R™\ {0})
and CX(Y x R™\ {0}).

0. Introduction. Although the structural analysis of ultradistri-
bution spaces is almost completed there is an important question not
answered up to now. It concerns the composition of an ultradistribu-
tion and an ultradifferentiable function as well as of a microfunction in
C:, cf. [1, 2, 3, 6], and an ultradifferentiable function. The composi-
tion of u € D'*(X) and a real analytic function f, under the condition
that the singular spectrum of u does not intersect the set of normals
of f, is given in [4] and [9]. We refer to [4] for the background in
distribution theory. However, the known procedure could not be used
for the composition in the class of ultradifferentiable functions.

Using an almost analytic extension, we analyze in this paper the
composition with f = (f1,..., fm): X =Y, fi € EY(X),i=1,...,m,
X and Y are open sets in R™ and R, respectively. Also, we estimate
the corresponding ultradistributional singular spectrum.

In Section 1 is recalled the definition of ultradistributional singular
spectrum S5y, cf. [1, 4] and [11]. The main assertion on the composi-
tion is given in Section 2. The corresponding assertion for microfunc-
tions is given in Section 3.

1. Notations and notions. We denote by M, p € Ny, a sequence
of positive numbers with My = 1 and refer to [5] for the meaning of
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conditions (M.1), (M.2)’, (M.2), (M.3)" and (M.3). Also we use the
following one [8]:

(M.1)* M2 < M;_ M',,peN,

where My =1, My = M, /p!, p € N.

We will always assume conditions (M.1)*, (M.2) and (M.3)" hold.
The associated and growth functions M (p) and M*(p) related to M,
are defined by

_ [ £y [
M(p) = sup In —, M*(p) = sup In—, p>0.
pENo p pENo Mp

Let 2 be an open set in R™. Then K CC (2 means that K, or its
closure, is a compact subset of Q. Recall, for ¢ € C*(),

| o{*)(a) |

h K Q).
BTN, >0 (KccQ)

¢l s n,01, = sup
rzeK
aENG

The basic spaces £*(2), D3 (2), D*(©2) and their strong duals are
defined by the meaning of these semi-norms. The symbol * is used for
both (M) and {M,}.

Eida [1] and Komatsu [6] have defined SS.— and SS*— singular
support of a hyperfunction. We will recall the definition of SS, for
ultradistributions. Let f € D'*. Then (z,w) € S*Q =Q x S"~! is not
in SS,f if and only if there exist a neighborhood U C Q of z and a
conic neighborhood I' of w of the form

F={{#0 [&/I€]—wl<n}
such that for every ¢ € D*(U) the following holds.
In the (M,) case — for every € > 0 there is C. > 0 such that

|67(€) | Cee D, geT,
In the {M),} case — there exist k£ > 0 and C > 0 such that

| 6F(€) |[< CeMMED - e,
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We denote by Z*qg? the set of all £ € R™ \ {0} having no conic
neighborhood I' in which the estimates given above hold.

The notion SS¢a,y equals Hérmander’s notion WFy. The definition
of the singular spectrum SSf, where f € B(2), is given by Sato, see
[11]. Let f € D'*(Q). Then (z,w) € S*Q is not in SSf if (z,w) is
not in SS{f}, where {f} denotes the corresponding hyperfunction, see
Section 3. This notion equals Hormander’s W Fy f, the analytic wave
front set of f, cf. [4, Definition 9.3.2 and Theorem 9.6.3].

It is said that (z, &) € Qx(R™\{0}) is an element of the corresponding
singular spectrum defined above if this holds for (z,£/[€]).

As in [8], the almost analytic extension of ¢ € D*(R"™) is defined by

®) (g
O o)=Y O Typew), =tV Iyec

|
peENY
where

pl=pi!. . pal, (\/—_1y)p = (\/—_1y1)p1 . (\/—_1yn)p",

kip(y) = kip, (Y1) - - - Kip,, (Yn)
and k is a nonnegative function of D*(R) such that supp x C [—2,2],
K |(—1,1= 1 and

kip(t) = Kk(4tmy,/h), h >0, pe Ny,

where m, = Mp41/M,, my, = my/p, p € N, and h depends on .

Note, ®(z) is a smooth function on C™ which extends ¢(x) and for
every 0 # yo € R"

(2) sup {eM*(k/t)

1=1,...,n

ai¢(x+¢?1tyo) ‘ } <c,

2

| ®(z+vV—1tyy) | C, z€R™te][0,1)

hold in the (Mp)—case for every k > 0 and corresponding C' > 0 and
in the {M),}—case for some k& > 0 and some C > 0, cf. [8].

The following two theorems are needed in the sequel. We refer to [5,
8] and [10] for the first part of Theorem 1. Its last part was proved
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for tempered ultradistributions in [9]. The proof for ultradistributions
can be adapted easily.

Recall, I'; CC T’ means that 'y C T'U {0}; I denotes the closure of
" and I'Y denotes the dual cone of T.

Theorem 1. Let T' be an open convex cone in R™ and U an analytic
function in

Z={2€C" RezeQ, Imzel, |Imz|<d}

for some d > 0.

Assume that for every compact set K CC Q and every open convex
conel'y cC T

| Uz +V=1y) |< Cue™ @/ 24 /"Iy € K 4+ /1T,

holds, in the (M,)—case for some a > 0 and C, > 0, and in the {M,}—
case for every a > 0 there exists C, > 0. Then

Uz +v—1y) =& U(e +v=10), y—0, yel.
Moreover, with yo € T, |yo| < d, we have

(U(z 4+ v/—10), ¢(x))
= /n Uz 4+ vV—=1yo)®(z + v~1yo) dz

n 1

B)

+2v—-1 Zyw/ / o ®(z+ vV —1tyo)U(z+ V—1yot) dt da.
i=1 0 n Y

We refer to [6] and [10] for the next theorem.

Theorem 2. Let I' be an open convex cone in R™, u € D' (Q),
Q Cc R” and SS,u C Q xT0 Let Q cC Q and let Ty be an open
convex cone such that Ty CC I'. Then there is a function U analytic
m

{x—i_\/_lyv erla yerla ‘y|<d}
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such that for some k > 0 and C > 0 in the (M,)—case, for every k >0
there is C > 0 in the {M,}—case,

(3) | U(J?—f— V_ly) |S CeM*(k/ly‘)’ erla yerla |y|< da

and
U(-++v-10) —u|o, € E ().

Remark 1. If an analytic function U (z++/—1y) satisfies (3), then the
same type of estimate holds for its derivatives, i.e., for every j € N

| U (2 + V=Ty) [< CM W) weq,, yeTy, |yl<d,
for some k£ > 0 and C > 0 in the (M,)—case, for every k > 0 there is a

C > 0 in the {M,}—case.
This follows by the Cauchy formula and the inequality

M*(ty 4+ ta) < M*(t1) + M*(t2), t1,t2 > 0.

2. Composition. Let X and Y be open sets in R™ and R™,
respectively, and f = (f1,...,fm) : X — Y such that f; € £*(X),
1=1,...,m.

We are going to define the pullback f*u of u € D'* with a suitable
property of its singular spectrum. Denote

Ny ={(f(z),n); "f'(x)n=0},
DI (Y) ={u e D*(Y); SS.uC 4"},

fry=A@"f@m; (f@).n) e}

where 7 is a closed conic subset of Y x (R™ \ {0}) conic in the second
variable and 7" is the dual conic set (in the second variable).

Theorem 3. The pullback f*u can be defined in one and only one
way for allu € D" (Y) with NyNSS.u = @ so that f*u = uof when u is
a continuous function and for any closed conic subset v of Y x (R™\{0})
with y NNy = @, if u € D' (Y), then SS.(f*u) C f*(SS.u).
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Proof. Let T be an open convex cone in R™ such that (Y xT'9)NN; =
@ and v =Y x I'. Using a partition of unity we may suppose that
u € D':(Y) NE™(Y). Let ; CC Y and suppu C ;. We apply
Theorem 2. The corresponding U is analytic in §; 4+ +/—1I'1, satisfies
(3) in this domain and

U+ V=T0) — u € ().

We define f*u as an element of £*(X) as follows. Denote by Xo
an open relatively compact subset of X such that f~!(suppu) C Xo.
For every xg € Xo choose hg € R™ such that f'(xg)ho € T';. Note,
1 (xo)(mho) € Ty for every m > 0.

Let 0 € D*(X),0 =1o0n Ozo, where OIO is an open neighborhood of
2o contained in Xy. We denote by

£:F9:(F19;"'3Fm9)

an almost analytic extension of f0 = (f10,... f;,0) defined by

0)(P) (o
&=Foz)= S LD (e,

|
peEN? p:

z=z++V-1ly, z€X, yeR" i=1,... ,m.

This is a smooth extension of f#. By Taylor’s formula one can prove
that there exist an open set Oy, O, C Oy, €0 > 0 and hg € R™\ {0}
such that

(4) Fg(ZE + \/—lé‘ho) e +v-1I'y, =xe€ O;cm e <egg.
In fact, we have

Fy(x + v/ —=1ehg) = Fy(xo) + (Fp)' (z0)V—1ehg + O(|z — zo|).
(Fo(z0) = f(z0), (Fp)'(z0) = f'(20).)
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We denote by ® the almost analytic extension of ¢ defined by (1). By
Theorem 1, with suitable Y € I'; and sufficiently small e, we have

(U(Fy(z + V—1ehg)), p(x))
_ / U(Fy(e + vVTeho) + V=TIV )®(z + vV=IY) da

+2\/_ZY// (821 :1:+\/—tY)

x U(Fy(x + v/ —1lehg) + V—1tY)

+ ®(z 4+ V—1tY) 52 (U(Fy(z + v —1ehg) + \/—_IY))|z=x) dt dz.

We define f*u,, as an element of D'*(O,,) letting € — 0 in (5):

()
(Fusgso) = [ Blat VIV (Fa(o) + V1Y) da

+2\/_ZY//<

x U(Fy(x) + V—1tY)
B(o + VLY ) (U (B (2) + V1Y) e ) dhd

x+\/—tY)

Clearly, if Oz, N Oy, # @, then f*ugzy0,,no0,, = [ Uz, 0,,n0
Thus the family {f*u.,;z0 € Xo} defines an element of £&*(X) which
we denote by f*u.

More generally, let u € & (f(Xo)), f(Xo) C Q1 CC Y, such that
SS,uN Ny = @. There exist open convex cones I'j, j =1,...,s, such
that

SSuCUYxFO and UYxFo)ﬂNf_

=1

Theorem 2 implies that there are holomorphic functions U; in ©; +
V—1I'1j, j =1,...,s, which satisfy (3) and

—Uj(-+\/—1F1j0) Eg*(Ql), SS*UJ c XF(IJJ-,
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and
S
u = E uj + 1,
Jj=1

where r € £*(21). We define

S

f*u:Zf*uj +rof.

j=1
One can simply prove that this definition does not depend on the
decomposition of u.

Let us estimate SS, f*u.

Let ¢ € £*(0y4,) and 1 = 1 in a neighborhood of z¢. Then, by (6),
we have

DFu(E) = {(Fruz, eV y)
= / ) U(x + /1)U (Fy(z) +v/—1Y)

x e~ VIEHVEIVE) go 4 9/ Z Y;

i=1

! )

x// (( 7\IJ)(I+\/—ltY)e*V*Mz*‘/*lY@
0 n aZi

x U(Fp(z) + V-=1tY) + ¥(z + v —1tY)
« e—\/—_l(x+\/—_1Y,£>8%(U(F9(z) + \/—1Y)|z_m) dtdz,

7

where W and Fy are the almost analytic extensions of 3 and [0,
respectively.

Let (Y, &) < 0. Using the estimates given in Remark 1 and in (2), it
follows

1
M) Q) < Cue™ 4 [ e g,
0
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This implies that the righthand side of (8) is O(e~*M(©)) in a conic
neighborhood of any point in the half space (Y, &) < 0.

The dual cone for f(zo)TY is {h; f'(zo)h € ['1}. Thus,
(o) T8 = {€ 3 (h,€) = 0'if f'(wo)h € Ty ).

Letting I'y — T, we obtain > (¢ f*u) C f*T°.

Remark 2. We can introduce spaces Dff(X), where X is open in
R"™ and T is a closed cone in R™ \ {0}. Then, as in [4, Lemma 8.2.1,
Definition 8.2.2 and Theorem 8.2.3], we can consider the corresponding
statements with

“sup M) | for every e > 07 (in the (M,) case)
%
or
“supeM*S) | for some k > 07 (in the {M,} case).
%

Then one can prove that the analogous assertions as in Lemma 8.2.1
and Theorem 8.2.3 hold. Having this, one can prove that the mapping

f*:DE(Y) = Dfp(X)

is continuous. We note that this can be done also in the case considered
in [4], when f is real analytic.

3. Microlocalization. Denote by B and C shaves of Sato’s hyper-
functions and microfunctions on R™, cf. [10] and [5]). By Sp: 7~ 1B —
C is denoted the canonical surjective spectrum map. Then the singu-
lar spectrum SS(u) of w € B is SS(u) = supp (Sp(u)). The injections
D™ — B, respectively, D* — B, induce sheaf homomorphisms

7 D" — C, respectively, 7 'D* — C.

Subsheaves of C, C*, respectively, C,, are defined as images of above
respective morphisms.
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We define the sheaf C¥, by the exact sequence
0—C.—C"—C;,—0

and refer to [3] for similar kind of microfunction spaces. Note, C* and
C. are soft sheaves, so

(C*/C)(w) =C"(w)/Ci(w), for any open set w.

Define Sp, : 71D — CZ.
Let u € D™. Then we have SS.(u) = supp (Sp«(u)).

Let X,Y and f be as in Section 2 and C;(X x R™\ {0}), C}(Y x
R™\ {0}) be spaces of sections. The pull back

frCL(Y x R™A{0}) — CH(X x R\ {0}),  h+— f*(h),

is defined as follows.

Let h € C;(Y x R™\ {0}) and supp h C , cf. Section 2 for v. Denote
by h the corresponding element in h € C*(Y x R™ \ {0}). Denote by
ho an element in 7= !D"*(Y x R™\ {0}) with the property Sp(ho) = h.
Denote by hg, the corresponding element in D’*(Y'); it has the property
SS.hg C 7. Then, put f*hg for the corresponding element in D™ (X).
We know, SS.(f*hg) C f*y. Finally, we put f*hg for its image in
a7 DX x R™\ {0}) and Sp.(f*ho) = f*h € C(X x R™\ {0}).
Clearly, supp f*h C f*.
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