TYPE SUBMODULES AND DIRECT SUM DECOMPOSITIONS OF MODULES

JOHN DAUNS AND YIQIANG ZHOU

Abstract

A type decomposition of a module M over a ring R is a direct sum decomposition for which any two distinct summands have no nonzero isomorphic submodules. In this paper, we investigate when a module possesses certain kinds of type decompositions and when such decompositions are unique.

Introduction. It is well known that every torsion abelian group has a unique decomposition into its p-torsion subgroups. By GoodearlBoyle [4], every nonsingular injective module E has a unique decomposition $E=E_{1} \oplus E_{2} \oplus E_{3}$ where E_{1}, E_{2}, E_{3} are of types $I, I I, I I I$ respectively, see Definition 2.7. Why do such decompositions exist? Why are such decompositions unique? Are there any common things between these two results? All these questions will be answered in this paper. In fact, we can present a more general theory on existence and uniqueness of type decompositions of modules, so that the above results, as well as many other known results, are obtained as very special cases.

The common property for certain diverse kinds of direct sum decompositions of modules M including the two decompositions above is that any two distinct direct summands have no nonzero isomorphic submodules, or equivalently all direct summands are what we will call type submodules. The cause for the existence of such decompositions is that these modules M have a 'decomposability property' which will be discussed in detail in Section 1, while the uniqueness of such direct sum decompositions is ensured by a module property called UTC. A theory of such modules is developed in Section 2.

Throughout, all rings R are associative with identity and modules are unital right R-modules and M is an R-module. A class \mathcal{K} of modules is a type, or natural class, if it is closed under isomorphic copies,

[^0]submodules, arbitrary direct sums and injective hulls. A submodule N of M is a type submodule if, for some type \mathcal{K}, N is a submodule of M which is maximal with respect to $N \in \mathcal{K}$. In this case, we also say N is a type submodule of type \mathcal{K}. Two modules M_{1} and M_{2} are orthogonal, written $M_{1} \perp M_{2}$, if they do not have nonzero isomorphic submodules. Equivalently, a submodule N of M is a type submodule if and only if, whenever $N \subset X \subseteq M$, there exists $0 \neq Y \subseteq X$ such that $N \perp Y$. An atomic module is any nonzero module A which has only one nonzero type submodule, namely A itself. A module direct sum, or module decomposition $M=\oplus_{i \in I} M_{i}$ is called a type direct sum, or type decomposition, if $M_{i} \perp M_{j}$ for all $i \neq j$ in I.

Let N be a submodule of M. By Zorn's lemma, there exists a submodule P of M which is maximal with respect to the property that $N \subseteq P$ and every nonzero submodule of P is not orthogonal to N. The module P is called a type closure of N in M and is denoted by $N^{t c}=P$, even though P need not be unique. Again by Zorn's lemma, there exists a submodule Q of M maximal with respect to $N \perp Q$. The module Q is called a type complement of N in M. Clearly, type closures and type complements of N in M all are type submodules of M.

For any module class \mathcal{F}, let $c(\mathcal{F})=\{N: \forall 0 \neq X \leq N, X \nrightarrow P$ for all $P \in \mathcal{F}\}$ and $d(\mathcal{F})=\{N: \forall 0 \neq X \leq N, \exists 0 \neq Y \leq X$ and $P \in \mathcal{F}$ such that $Y \hookrightarrow P\}$. Note that both $c(\mathcal{F})$ and $d(\mathcal{F})$ are natural classes and they are Boolean complements of each other in the complete Boolean lattice of all natural classes. If $\mathcal{F}=\{N\}$, we write $d(N)=d(\{N\})$, [3, p. 514]. Two types \mathcal{K}_{1} and \mathcal{K}_{2} are orthogonal if $M_{1} \perp M_{2}$ for all $M_{1} \in \mathcal{K}_{1}$ and all $M_{2} \in \mathcal{K}_{2}$, and this happens if and only if $\mathcal{K}_{1} \wedge \mathcal{K}_{2}=\mathbf{0}$. We define a maximal set of pairwise orthogonal types to be any family $\left\{\mathcal{K}_{i}: i \in I\right\}$ of types \mathcal{K}_{i} such that $\vee_{i \in I} \mathcal{K}_{i}=\mathbf{1}$ and $\mathcal{K}_{i} \wedge \mathcal{K}_{j}=\mathbf{0}$ when $i \neq j$. The notation $N \leq_{t} M$ and $N \leq_{e} M$ denote type and essential submodules of M.

1. 2-decomposable modules and existence of type decompositions. The two decompositions mentioned in the beginning of the introduction are both type decompositions. Every type decomposition $M=\oplus_{i \in I} M_{i}$ gives a maximal set $\{c(M)\} \cup\left\{d\left(M_{i}\right): i \in I\right\}$ of pairwise orthogonal types such that $M_{i} \in d\left(M_{i}\right)$, for $i \in I$, and $(0) \in c(M)$. Conversely, any decomposition $M=\oplus_{i \in I} M_{i}$ where $\left\{\mathcal{K}_{i}: i \in I\right\}$ is a
maximal set of pairwise orthogonal types and $M_{i} \in \mathcal{K}_{i}, i \in I$, is a type decomposition. So, the study of type decompositions of modules could be started with the following definition.

Definition 1.1. A module M is called n-decomposable if, for any maximal set $\left\{\mathcal{K}_{i}: i=1, \cdots, n\right\}$ of pairwise orthogonal types, M has a decomposition $M=\oplus_{i=1}^{n} M_{i}$ where $M_{i} \in \mathcal{K}_{i}$. The module M is called finitely decomposable if M is n-decomposable for every positive integer n. If M has a decomposition $M=\oplus_{i \in I} M_{i}$ with $M_{i} \in \mathcal{K}_{i}$ for every countable maximal set, respectively every maximal set, $\left\{\mathcal{K}_{i}: i \in I\right\}$ of pairwise orthogonal types, then we say M is countably decomposable, respectively fully decomposable.

Theorem 1.2. The following are equivalent for a module M :
(1) M is 2-decomposable.
(2) Every submodule of M has a type complement Q in M such that Q is a direct summand of M.
(3) Every type submodule of M has a (type) complement Q in M such that Q is a direct summand of M.

Proof. (1) $\Rightarrow(2)$. Let N be a submodule of M and let $\mathcal{K}=d(N)$. By (1), M has a decomposition $M=M_{1} \oplus M_{2}$ where $M_{1} \in \mathcal{K}$ and $M_{2} \in c(\mathcal{K})$. It follows that M_{2} is a type complement of N in M.
$(2) \Rightarrow(3)$. It is clear because the complements of a type submodule N in M are precisely the type complements of N in M.
$(3) \Rightarrow(1)$. Let $\mathcal{K}_{1}, \mathcal{K}_{2}$ be types such that $\mathcal{K}_{1} \vee \mathcal{K}_{2}=\mathbf{1}$ and $\mathcal{K}_{1} \wedge \mathcal{K}_{2}=\mathbf{0}$. Let N be a type submodule of M of type \mathcal{K}_{1}. By hypothesis $M=P \oplus Q$ where $P \leq M$ and $N \oplus Q \leq_{e} M$. Thus, N is essentially embeddable in $M / Q \cong P$. So, $P \in \mathcal{K}_{1}$. Since N is a type submodule, $N \cap Q=0$ implies $N \perp Q$. It follows that $Q \in c\left(\mathcal{K}_{1}\right)=\mathcal{K}_{2}$ since N is a type submodule of type \mathcal{K}_{1}.

A module is called TS if every type submodule is a direct summand [12]. A module M is said to satisfy $\left(C_{11}\right)$ if every submodule of M has a complement Q in M such that Q is a direct summand of M [10]. Clearly, TS-modules and modules satisfying $\left(C_{11}\right)$ all are 2-
decomposable. Later we will give examples of 2-decomposable modules which are neither TS nor $\left(C_{11}\right)$.

Theorem 1.3. Any direct sum of 2-decomposable modules is 2decomposable. In particular, any direct sum of atomic modules is 2decomposable.

Proof. Let $M=\oplus_{i \in I} M_{i}$ where each M_{i} is 2-decomposable. Let \mathcal{K} be a natural class. Then, for each $i, M_{i}=X_{i} \oplus Y_{i}$ where $X_{i} \in \mathcal{K}$ and $Y_{i} \in c(\mathcal{K})$. Let $X=\oplus_{i \in I} X_{i}$ and $Y=\oplus_{i \in I} Y_{i}$. Then $M=X \oplus Y$ and $X \in \mathcal{K}$ and $Y \in c(\mathcal{K})$. Thus, M is 2-decomposable. For the last statement, note that every atomic module is 2 -decomposable.

Let $Z(M) \subseteq Z_{2}(M)$ be the singular and second singular submodules of M and let \widehat{M} denote the injective hull of M. A submodule N of M is fully invariant if $f(N) \subseteq N$ for all $f \in \operatorname{End}(M)$.

Theorem 1.4. The following are equivalent for a module M :
(1) M is 2-decomposable.
(2) $M=Z_{2}(M) \oplus K$ where $Z_{2}(M)$ is 2-decomposable and K is nonsingular TS.
(3) For some fully invariant type submodule F of $M, M=F \oplus K$ where F and K both are 2-decomposable.
(4) For every fully invariant type submodule F of $M, M=F \oplus K$ where F and K both are 2-decomposable.

Proof. (1) \Rightarrow (4). Suppose M is 2-decomposable and F is a fully invariant type submodule of M. Then $M=X \oplus Y$ where $X \in d(F)$ and $Y \in c(F)$. Since F is fully invariant, $F=(F \cap X) \oplus(F \cap Y)$. Since $Y \perp F, F \cap Y=0$, and so $F \subseteq X$. It follows that $F=X$ since F is a type submodule of type $d(F)$. Thus, we have $M=F \oplus K$ with $K=Y$ orthogonal to F.

To see F is 2 -decomposable, let \mathcal{F} be a natural class. We let A be a type submodule of F of type \mathcal{F}. Since M is 2-decomposable, $M=M_{1} \oplus M_{2}$ where $M_{1} \in d(A) \subseteq \mathcal{F}$ and $M_{2} \in c(A)$. Since $A \perp M_{2}$,
$M_{2} \in c(\mathcal{F})$. Since $F \leq M$ is fully invariant, $F=\left(F \cap M_{1}\right) \oplus\left(F \cap M_{2}\right)$, where $F \cap M_{1} \in \mathcal{F}$ and $F \cap M_{2} \in c(\mathcal{F})$. So, F is 2-decomposable.

To prove that K is 2 -decomposable, let \mathcal{F} be a natural class. We let B be a type submodule of K of type \mathcal{F}. Since M is 2-decomposable, $M=N_{1} \oplus N_{2}$ where $N_{1} \in d(B)$ and $N_{2} \in c(B)$. Since $F \leq M$ is fully invariant, we have $F=\left(F \cap N_{1}\right) \oplus\left(F \cap N_{2}\right)$. We claim $F \cap N_{1}=0$. If not, there exist $0 \neq C_{1} \leq F \cap N_{1}$ and $0 \neq C_{2} \leq B \leq K$ with $C_{1} \cong C_{2}$, contradicting that $F \perp K$. Hence $F=F \cap N_{2}$. Thus, $N_{2}=F \oplus\left(N_{2} \cap K\right)$ and $M=N_{1} \oplus F \oplus\left(N_{2} \cap K\right)$. Let π be the projection of M onto K along F. Then $N_{1} \oplus F=\pi\left(N_{1}\right) \oplus F$. It follows that $M=\pi\left(N_{1}\right) \oplus F \oplus\left(N_{2} \cap K\right)$ and so $K=\pi\left(N_{1}\right) \oplus\left(N_{2} \cap K\right)$. Since $\pi\left(N_{1}\right) \cong K /\left(N_{2} \cap K\right) \cong\left(K+N_{2}\right) / N_{2} \hookrightarrow N_{1}$, we see that $\pi\left(N_{1}\right) \in \mathcal{F}$. Since $N_{2} \in c(B), N_{2} \cap K \in c(\mathcal{F})$. Thus, K is 2-decomposable.
$(4) \Rightarrow(2)$. Since $Z_{2}(M)$ is a fully invariant type submodule of M, by (4), $M=Z_{2}(M) \oplus K$ where both $Z_{2}(M)$ and K are 2-decomposable. Since K is nonsingular, K is TS, by Example 2.2 (1).
$(2) \Rightarrow(3)$. Obvious.
$(3) \Rightarrow(1)$. By Theorem 1.3.

Part 1 of the next corollary follows from Theorem 1.4 (2) and [12, Corollaries 15.1-15.3]. Two modules M_{1} and M_{2} are parallel, written $M_{1} \| M_{2}$, if every nonzero submodule of M_{1} is not orthogonal to M_{2} and every nonzero submodule of M_{2} is not orthogonal to M_{1}. For example, as \mathbf{Z}-modules, $\mathbf{Z}_{2} \oplus \mathbf{Z}_{4}, \mathbf{Z}_{2}$ and \mathbf{Z}_{4} all are parallel. See $[\mathbf{6}$, Definition 1.30] for the superspectivity of modules.

Corollary 1.5. (1) A module M is 2-decomposable if and only if $M=A \oplus B \oplus C \oplus D \oplus E$ with a Goldie torsion 2-decomposable module A, a nonsingular TS-module B having essential socle, a nonsingular socle-free TS-module C having an essential submodule which is a direct sum of uniform submodules, a nonsingular TS-module D containing no uniform submodules and having an essential submodule which is a direct sum of atomic submodules, and a nonsingular TS-module E containing no atomic submodules.
(2) The decomposition of M above is unique up to superspectivity.

Proof. We only need to prove (2). Suppose $M=A^{\prime} \oplus B^{\prime} \oplus C^{\prime} \oplus D^{\prime} \oplus E^{\prime}$ is another decomposition as described in (1). Then $A=Z_{2}(M)=A^{\prime}$. Let $M=B \oplus X$. Then $Z_{2}(M)=Z_{2}(X) \subseteq X$. Since $C^{\prime} \oplus D^{\prime} \oplus E^{\prime}$ is nonsingular and orthogonal to B, it follows from [11, Lemma 3.1] applied to the projection $\pi: M=B \oplus X \rightarrow B$ with $\pi\left(C^{\prime} \oplus D^{\prime} \oplus E^{\prime}\right)=0$ that $C^{\prime} \oplus D^{\prime} \oplus E^{\prime} \subseteq X$. This gives that $M=B^{\prime}+X$. Since $X \perp B$ and $B^{\prime} \| B$, we have $X \perp B^{\prime}$. It follows that $M=B^{\prime} \oplus X$. Similarly we see that $M=B^{\prime} \oplus Y$ implies $M=B \oplus Y$. So, B^{\prime} is superspective to B. The same arguments show that C^{\prime}, D^{\prime} and E^{\prime} are superspective to C, D and E respectively.

A 2-decomposable module M that does not satisfy either of $\left(C_{11}\right)$ and TS can be given as follows.

Example 1.6. Let $R=\mathbf{Z} \propto\left(\mathbf{Z}_{2} \oplus \mathbf{Z}_{2}\right)$ be the trivial extension of \mathbf{Z} and the \mathbf{Z}-module $\mathbf{Z}_{2} \oplus \mathbf{Z}_{2}$, i.e., $R=\left\{\left(\begin{array}{cc}n & x \\ 0 & n\end{array}\right): n \in \mathbf{Z}, x \in \mathbf{Z}_{2} \oplus \mathbf{Z}_{2}\right\}$ be the subring of the formal triangular matrix $\operatorname{ring}\left(\begin{array}{cc}\mathbf{Z} & \mathbf{Z}_{2} \oplus \mathbf{Z}_{2} \\ 0 & \mathbf{Z}\end{array}\right)$. Let $I_{0}=\left\{\left(\begin{array}{cc}2 n & 0 \\ 0 & 2 n\end{array}\right): n \in \mathbf{Z}\right\}, I=\left\{\left(\begin{array}{cc}4 n & 0 \\ 0 & 4 n\end{array}\right): n \in \mathbf{Z}\right\}$ and $J=$ $\left\{\left(\begin{array}{ll}0 & x \\ 0 & 0\end{array}\right): x \in \mathbf{Z}_{2} \oplus \mathbf{Z}_{2}\right\}$. Set $M=M_{1} \oplus M_{2}$ where $M_{1}=R / I$ and $M_{2}=R / J$. Note that U is an essential (right) ideal of R if and only if $U=V \oplus J$ for some $0 \neq V \subseteq I_{0}$. It follows that $J=Z(R)=Z_{2}(R)$. Thus, M_{2} is nonsingular uniform. $M_{1}=R / I$ contains an essential submodule $\left(I_{0}+J\right) / I \cong\left(I_{0} / I\right) \oplus J$. Note that I_{0} / I is embeddable in J. This shows that $\left(I_{0}+J\right) / I$ is singular and atomic. It follows that M_{1} is Goldie torsion and atomic. Therefore, by Theorem 1.2, M is 2-decomposable. To prove that M is not TS, we only need to show that M_{1} is not M_{2}-injective because of [12, Proposition 14]. Consider $f:(I+J) / J \rightarrow R / I$ given by $\left(\begin{array}{cc}4 n & 0 \\ 0 & 4 n\end{array}\right)+J \mapsto\left(\begin{array}{cc}2 n & 0 \\ 0 & 2 n\end{array}\right)+I$. Then f is a well-defined R-homomorphism. Suppose f extends to a homomorphism $g: R / J \rightarrow R / I$. Write $g\left(1_{R}+J\right)=\left(\begin{array}{cc}m & x \\ 0 & m\end{array}\right)+I$. Then $\left(\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right)+I=f\left(41_{R}+J\right)=g\left(41_{R}+J\right)=g\left(1_{R}+J\right) 41_{R}=$ $\left(\begin{array}{cc}m & x \\ 0 & m\end{array}\right)\left(\begin{array}{ll}4 & 0 \\ 0 & 4\end{array}\right)+I=0+I=\overline{0}$. This is a contradiction. So, M_{1} is not $M_{2^{-}}$ injective. To see M does not satisfy $\left(C_{11}\right)$, let $N=[(K+I) / I] \oplus(R / J)$ where $K=\left\{\left(\begin{array}{ll}0 & x \\ 0 & 0\end{array}\right): x \in(0) \oplus \mathbf{Z}_{2}\right\}$. Suppose M satisfies $\left(C_{11}\right)$. Then
there exists a complement P of N in M such that P is a direct summand of M. Clearly $P \neq 0$. Since $P \cap M_{2}=0$, we have $P \hookrightarrow M_{1}$. This shows that P is Goldie torsion. So, $P \subseteq M_{1}$ and thus P is a direct summand of M_{1}. But it is easy to see that M_{1} is indecomposable, so it must be $P=M_{1}$. It follows that $(K+I) / I \subseteq N \cap P$, a contradiction. So, M does not satisfy $\left(C_{11}\right)$.

Before giving more decomposition results of 2-decomposable modules, we point out here that the proof of the uniqueness of $[\mathbf{1 2}$, Proposition 11] has a gap and a proper statement of [12, Proposition 11] should be Proposition 1.7. We recall some definitions from [6, Definitions 1.24 and 1.32]. A module D is directly finite if D is not isomorphic to a proper direct summand of itself. A module P is purely infinite if $P \cong P \oplus P$. A module M is said to satisfy $\left(T_{3}\right)$ if, whenever M_{1} and M_{2} are type submodules as well as direct summands of M such that $M_{1} \oplus M_{2}$ is essential in M, then $M=M_{1} \oplus M_{2}[\mathbf{1 2}$, p. 86] .

Proposition 1.7. Let M be a TS-module with $\left(T_{3}\right)$. Then M has a decomposition, unique up to superspectivity, $M=D \oplus P$, where D and \widehat{D} are directly finite, \widehat{P} is purely infinite, and $D \perp P$.

Proof. See the next proposition.

The next two propositions extend the above result and [12, Proposition 13] from TS-modules to 2-decomposable modules.

Proposition 1.8. Every 2-decomposable module M has a decomposition $M=D \oplus P$, where D and \widehat{D} are directly finite, \widehat{P} is purely infinite, and $D \perp P$. If in addition M satisfies $\left(T_{3}\right)$, then the decomposition is unique up to superspectivity.

Proof. Let $\mathcal{F}=\left\{X: X^{\left(\aleph_{0}\right)} \hookrightarrow M\right\}$ and $\mathcal{K}=c(\mathcal{F})$. Then $M=D \oplus P$ where $D \in \mathcal{K}$ and $P \in c(\mathcal{K})=c(c(\mathcal{F}))=d(\mathcal{F})$. Then D and \widehat{D} are directly finite by $[\mathbf{6}$, Lemma 1.26$], D \perp P$ and $\widehat{P} \in d(\mathcal{F})$. By [6, Theorem 1.35], $\widehat{P}=E_{1} \oplus E_{2}$ where E_{1} is directly finite, E_{2} is purely infinite and $E_{1} \perp E_{2}$. We prove $E_{1}=0$ and hence $\widehat{P}=E_{2}$ is purely
infinite. If $E_{1} \neq 0$ then, since $E_{1} \in d(\mathcal{F})$, there exists $0 \neq X \subseteq E_{1}$ such that $X \in \mathcal{F}$. Thus, $X^{\left(\aleph_{0}\right)} \cong N \leq M$ for some N. Since $N \in d(\mathcal{F})$, $D \perp N$. It follows that N is embeddable in P. Since $E_{1} \perp E_{2}$, $N \perp E_{2}$. This implies that $X^{\left(\aleph_{0}\right)} \cong N$ is embeddable in E_{1}. Thus, E_{1} is not directly finite by [6, Proposition 1.27], a contradiction. So, $E_{1}=0$.

Let $M=D_{1} \oplus P_{1}$ where D_{1} and $\widehat{D_{1}}$ are directly finite, $\widehat{P_{1}}$ is purely finite and $D_{1} \perp P_{1}$. Then we have $\widehat{M}=\widehat{D} \oplus \widehat{P}=\widehat{D_{1}} \oplus \widehat{P_{1}}$. By the uniqueness of $\left[\mathbf{6}\right.$, Theorem 1.35], $\widehat{D} \cong \widehat{D_{1}}$ and $\widehat{P} \cong \widehat{P_{1}}$. Thus, $D_{1} \in c(\mathcal{F})$ and $P_{1} \in d(\mathcal{F})$. Now the uniqueness follows from [12, Lemma 6].

A module M_{1} is square free if $X \oplus X \nrightarrow M_{1}$ for any nonzero module X, while a module M_{2} is square full if, for any $0 \neq N \leq M_{2}$, we have $X \oplus X \hookrightarrow M_{2}$ for some $0 \neq X \leq N$, see [6, Definitions 2.34 and 2.35].

Proposition 1.9. The module M is square free if and only if every complement submodule of M is a type submodule.

Proof. Suppose that M is not square free. Then there exist submodules A and B of M such that $0 \neq A \cong B$ and $A \cap B=0$. For any complement closure A^{c} of A in $M, A^{c} \cap B=0$ and B embeds in A^{c}. So, A^{c} is not a type submodule of M.

Suppose that there exists a complement submodule N of M such that N is not a type submodule. Then there exists a proper extension P of N in M such that $N \| P$. Since N is a complement submodule of M, $N \cap X=0$ for some nonzero submodule X of P. Since $N \| P, X$ and N have nonzero isomorphic submodules, and thus M is not square free.

Proposition 1.10. Every 2-decomposable module M has a decomposition $M=M_{1} \oplus M_{2}$, where M_{1} is square free, M_{2} is square full and $M_{1} \perp M_{2}$. If in addition M satisfies $\left(T_{3}\right)$, the decomposition is unique up to superspectivity.

Proof. The proof of [12, Proposition 13] works.

There exist 2-decomposable modules satisfying $\left(T_{3}\right)$ but not TS.

Example 1.11. Let M be the \mathbf{Z}-module $\mathbf{Z}_{p} \oplus \mathbf{Q}$ where p is a prime number. Then, by [10, Example 4.2], any submodule isomorphic to a direct summand of M is a direct summand of M. Thus, for direct summands M_{1}, M_{2} of M with $M_{1} \cap M_{2}=0, M_{1} \oplus M_{2}$ is a direct summand of M, see $\left[\mathbf{6}\right.$, Proposition 2.2]. So, M satisfies $\left(T_{3}\right)$. But $Z_{2}(M)=\mathbf{Z}_{p}$ is not \mathbf{Q}-injective. Thus, M is not TS by $[\mathbf{1 2}$, Proposition 14], but M is 2 -decomposable by Theorem 1.3.

A module M has finite type dimension n, notation: $\operatorname{t} \operatorname{dim}(M)=n$, if there exists an essential type direct sum $A_{1} \oplus A_{2} \oplus \cdots \oplus A_{n} \leq_{e} M$ of atomic submodules $A_{i} \subseteq M$. In this case such an n is uniquely determined, see [11, Definition 1.1] and [12, p. 91]. From now on, for a module M, the annihilator of any $m \in M$ is denoted by $m^{\perp}=\{r \in$ $R: m r=0\}$.

Theorem 1.12. The following hold for a module M.
(1) If every type direct summand of M is 2-decomposable, then M is finitely decomposable. In particular, every TS-module is finitely decomposable.
(2) Suppose that for any chain $m_{1}^{\perp} \subseteq m_{2}^{\perp} \subseteq \cdots$ of right ideals, where $m_{i} \in M, t . \operatorname{dim}\left[\oplus_{i=1}^{\infty} R / m_{i}^{\perp}\right]<\infty$.
(a) If every type direct summand of M is 2-decomposable, then M is countably decomposable.
(b) M is fully decomposable if and only if M is a direct sum of atomic modules.
(c) If M is $T S$, then M is fully decomposable.

Proof. Let $I=\{1<2<\ldots<n<\ldots\} \subseteq\{i: 1 \leq i<$ $\omega\}$. By induction assume that for some $0 \leq j<\omega$ we have that $M=\left(\oplus_{i=1}^{j} M_{i}\right) \oplus N_{j}$, where M_{i} is a type submodule of M of type \mathcal{K}_{i} and $\left(\oplus_{i=1}^{j} M_{i}\right) \perp N_{j}$. Then N_{j} is a type submodule of M. By hypothesis, N_{j} is 2-decomposable. Thus, $N_{j}=M_{j+1} \oplus N_{j+1}$, where $M_{j+1} \in \mathcal{K}_{j+1}, N_{j+1} \in c\left(\mathcal{K}_{j+1}\right)$. Then, by [12, Lemma 1], M_{j+1} is a
type submodule of M of type \mathcal{K}_{j+1}. Thus again $M=\left(\oplus_{i=1}^{j+1} M_{i}\right) \oplus N_{j+1}$ with $\left(\oplus_{i=1}^{j+1} M_{i}\right) \perp N_{j+1}$.
(1) If the index set is the finite set $\{1, \ldots, n\}$, take $j=n$. Since $\vee_{i \leq n} \mathcal{K}_{i}=\mathbf{1}, N_{n+1}=0$, and so $M=\oplus_{i=1}^{n} M_{i}$. The last statement follows because every type direct summand of a TS-module is TS [12, Lemma 4].
(2) We first note that, by the proof of [12, Proposition 18], it follows from our assumption that every local type summand of M, i.e., a direct sum $\oplus_{i \in I} X_{i}$ in M with all X_{i} type submodules such that $\oplus_{i \in F} X_{i}$ is a summand of M for any finite subset F of I, is a type submodule.
(a) Let $I=\{i: 1 \leq i<\omega\}$. Then by induction, $\oplus_{i<\omega} M_{i} \oplus C \leq_{e} M$ for some $C \leq M$, where M_{i} is a type submodule of M of type \mathcal{K}_{i}, and $\left(\oplus_{i<\omega} M_{i}\right) \perp C$. This shows that $\mathcal{K}_{i} \wedge d(C)=\mathbf{0}$ for all $i<\omega$. Since any complete Boolean lattice satisfies a limited infinite distributive law, $d(C)=d(C) \wedge\left(\vee_{i<\omega} \mathcal{K}_{i}\right)=\vee_{i<\omega}\left(d(C) \wedge \mathcal{K}_{i}\right)=\mathbf{0}$, from which we conclude that also $C=0$. Next, by the note above, the local type summand $\oplus_{i<\omega} M_{i} \leq_{e} M$ is a type submodule, and hence in particular, a complement submodule. Hence $M=\oplus_{i<\omega} M_{i}$.
(b) Suppose that $M=\oplus_{t \in T} X_{t}$ where all X_{t} are atomic modules. Let $\left\{\mathcal{K}_{i}: i \in I\right\}$ be a maximal set of pairwise orthogonal types. Note that each X_{t} is in some unique \mathcal{K}_{i}. For each $i \in I$, let $N_{i}=\oplus\left\{X_{t}: t \in T\right.$ and $\left.X_{t} \in \mathcal{K}_{i}\right\}$ or $N_{i}=0$ if no X_{t} is in \mathcal{K}_{i}. Then $N_{i} \in \mathcal{K}_{i}$ and $M=\oplus_{i \in I} N_{i}$. So, M is fully decomposable.

Suppose that M is fully decomposable. The hypothesis implies that every nonzero submodule of M contains an atomic submodule. So, there exists a family $\left\{X_{i}: i \in I\right\}$ of atomic submodules of M such that $X_{i} \perp X_{j}$ if $i \neq j \in I$ and $X=\oplus_{i \in I} X_{i} \leq_{e} M$. Then $\{c(X)\} \cup\left\{d\left(X_{i}\right): i \in I\right\}$ is a maximal set of pairwise orthogonal types, and thus $M=P \oplus\left(\oplus_{i \in I} M_{i}\right)$ where $P \in c(X)$ and $M_{i} \in d\left(X_{i}\right)$. It must be that $P=0$ and all M_{i} are atomic.
(c) Note that every local type summand of M is a direct summand. If M is TS, then, by [12, Proposition 16], $M=\oplus_{i \in I} M_{i}$ where each M_{i} is not a type direct sum of two nonzero submodules. Each M_{i} is still TS, so it must be atomic.

A ring R is said to satisfy (right) t-acc if, for any ascending chain $I_{1} \subseteq I_{2} \subseteq \cdots \subseteq I_{n} \subseteq \cdots$ of right ideals, $\operatorname{t.dim}\left(\oplus_{i} R / I_{i}\right)<\infty$. The rings satisfying t-acc were characterized in [12]. The next theorem gives some new characterizations of these rings.

Theorem 1.13. The following are equivalent for a ring R :
(1) R satisfies t-acc.
(2) Every module whose type direct summands are 2-decomposable is countably decomposable.
(3) Every TS-module is fully (or countably) decomposable.
(4) Every injective module is fully (or countably) decomposable.

Proof. (1) $\Rightarrow(2)+(3)+(4)$. By Theorem 1.12.
$(3) \Rightarrow(4)$. Obvious.
$(2) \Rightarrow(1)$ and $(4) \Rightarrow(1)$. Suppose that every injective module is countably decomposable. By [12, Theorem 22], it suffices to show that, for any set $\left\{E_{i}: i \in I\right\}$ of pairwise orthogonal injective modules, $\oplus_{i \in I} E_{i}$ is injective. By [6, Theorem 1.7], we can assume that I is a countable set. Let $E=E\left(\oplus_{i \in I} E_{i}\right)$. Then $\{c(E)\} \cup\left\{d\left(E_{i}\right): i \in I\right\}$ is a countable maximal set of pairwise orthogonal types. Since E is countably decomposable, $E=A \oplus\left(\oplus_{i \in I} A_{i}\right)$ where $A \in c(E)$ and $A_{i} \in d\left(E_{i}\right)$. It must be that $A=0$. So $E=A_{i} \oplus\left(\oplus_{j \neq i} A_{j}\right)$ and $\oplus_{j \neq i} A_{j} \in c\left(E_{i}\right)=c\left(d\left(E_{i}\right)\right)$. On the other hand, $E=E_{i} \oplus B_{i}$ for some B_{i}. Because $E_{i} \perp E_{j}$ whenever $i \neq j$ in $I, E_{i} \perp B_{i}$ and so $B_{i} \in c\left(E_{i}\right)$. Thus, we have $E=E_{i} \oplus B_{i}=A_{i} \oplus\left(\oplus_{j \neq i} A_{j}\right)$ where $E_{i}, A_{i} \in d\left(E_{i}\right)$ and $B_{i}, \oplus_{j \neq i} A_{j} \in c\left(E_{i}\right)$. By [12, Lemma 6], E_{i} is perspective to A_{i}. Thus, $E_{i} \cong A_{i}$ for all $i \in I$. It follows that $\oplus_{i \in I} E_{i} \cong \oplus_{i \in I} A_{i}=E$ is injective.

By Theorem 1.13, for any ring R without t-acc, there exists a finitely decomposable R-module which is not countably decomposable. We do not know if every 2-decomposable module is always finitely decomposable and if every countably decomposable module is always fully decomposable. But if $R=\mathbf{Z}$ or a commutative Dedekind domain, every 2-decomposable module is always fully decomposable as the next theorem shows.

Theorem 1.14. For $R=\mathbf{Z}$, the following are equivalent for an abelian group M :
(1) M is 2-decomposable.
(2) M is fully decomposable.
(3) M is a direct sum of a torsion abelian group and a torsion free abelian group.
(4) Every direct summand of M is 2-decomposable.

Proof. (1) \Rightarrow (3). By Theorem 1.4.
$(3) \Rightarrow(2)$. Note that every torsion free abelian group is atomic and every torsion abelian group is a direct sum of atomic modules. Then, if (3) holds, M is a direct sum of atomic modules. By $2(\mathrm{~b})$ of Theorem $1.12, M$ is fully decomposable.
$(2) \Rightarrow(1)$ and $(4) \Rightarrow(1)$. Obvious.
(3) \Rightarrow (4). Write $M=A \oplus B$ where A is torsion and B is torsion free. Let N be any direct summand of M. Write $M=N \oplus N^{\prime}$. Since $Z_{2}(M) \leq M$ is fully invariant, $Z_{2}(M)=\left[Z_{2}(M) \cap N\right] \oplus\left[Z_{2}(M) \cap N^{\prime}\right]=$ $Z_{2}(N) \oplus Z_{2}\left(N^{\prime}\right)$. Thus $N=N \cap\left[Z_{2}(N) \oplus Z_{2}\left(N^{\prime}\right) \oplus K\right]=Z_{2}(N) \oplus$ $\left\{N \cap\left[Z_{2}\left(N^{\prime}\right) \oplus K\right]\right\}$, where the last summand is torsion free. Thus, N satisfies (3). By the equivalence (1) $\Leftrightarrow(3), B$ is 2-decomposable.

The next proposition gives a partial answer to the question of when a direct sum of atomic modules is TS. For any $M=\oplus_{i \in I} M_{i}$ and any $j \in I$, set $M(I-j)=\oplus\left\{M_{i}: i \in I, i \neq j\right\}$.

Proposition 1.5. Let $0 \neq N \leq_{t} M=\oplus_{i \in I} M_{i}$ be any type submodule where all $M_{i}, i \in I$ are atomic and, for all $j \in I$, $\left.\operatorname{Hom}_{R}(\widehat{M(I-j}), \widehat{M}_{j}\right)=0$. Then $N=\oplus\left\{M_{i}: i \in I, M_{i} \subseteq N\right\}$.

Proof. Define $I(0)=\left\{i \in I: M_{i} \subseteq N\right\} \subseteq I(1)=\left\{i \in I \mid \pi_{i} N \neq 0\right\}$. Note that $\oplus_{i \in I(0)} M_{i} \subseteq N \subseteq \oplus_{i \in I(1)} M_{i}$. It suffices to prove that for any $j \in I(1), j \in I(0)$ so that $I(0)=I(1)$. Choose the notation so that $j=1$ and let $K=M(I-1)$. Then $M=M_{1} \oplus K$ and $\widehat{M}=\widehat{M}_{1} \oplus \widehat{K}$. Let $\pi: \widehat{M} \longrightarrow \widehat{M}_{1}$ and $\rho: \widehat{M} \longrightarrow \widehat{K}$ be the corresponding projections.

Take $C \leq N$ with $\left(N \cap M_{1}\right) \oplus(N \cap K) \oplus C \leq_{e} N$. Note that $K \cap C=K \cap N \cap C=0$ and $M_{1} \cap C=M_{1} \cap N \cap C=0$, so $\operatorname{ker}(\pi) \cap C=0$ and $\operatorname{ker}(p) \cap C=0$. Thus $C \cong \pi C \cong p C$. It follows that $C \in d\left(M_{1}\right)$ and $C \in d(K)$. But since $M_{1} \perp K$, and $C \in d\left(M_{1}\right) \cap d(K)=\{(0)\}$, $C=0$. Thus $\left(N \cap M_{1}\right) \oplus(N \cap K) \leq_{e} N$.

Case 1. $N \cap M_{1}=0$. Thus also $N \cap \widehat{M}_{1}=0$. From $\left(N \cap M_{1}\right) \oplus$ $(N \cap K) \leq_{e} N$ we get that $N \cap K \leq_{e} N$. For $n, n^{\prime} \in N$, if $p n=p n^{\prime}$, then $p\left(n-n^{\prime}\right)=0, n-n^{\prime} \in N \cap \widehat{M}_{1}=0$, or $n=n^{\prime}$. Consequently the restriction $\left.p\right|_{N}: N \rightarrow K, n \mapsto p n$ is monic. Let g be the monic inverse $\operatorname{map} g: p(N) \rightarrow N$, where $g(p n)=n$. Define $\varphi=\pi g$. Thus there exists a map $\widehat{\varphi}: \widehat{K} \rightarrow \widehat{M}_{1}$ that extends φ. If $p(N)=0$, then $N \subseteq \widehat{M_{1}}$, and hence $N \subseteq N \cap \widehat{M_{1}}=0$. So let $p(N) \neq 0$, in which case $g p(N)=N$. If $\left.\pi\right|_{N}: N \rightarrow \widehat{M}_{1}$ is not zero, then $\varphi(p N)=\pi(g p(N))=\pi N \neq 0$. Hence $0 \neq \widehat{\varphi} \in \operatorname{Hom}_{R}\left(\widehat{K}, \widehat{M}_{1}\right)=0$ contradicts the hypothesis. Therefore $\pi(N)=0$, which contradicts that $1 \in I(1)$.

Case 2. $N \cap M_{1} \neq 0$. If $\left(N \cap M_{1}\right) \oplus D \leq M_{1}$ with D nonzero, then by the atomicity of $M_{1}, N \cap M_{1}$ and D have a common nonzero isomorphic submodule. But since $N+D=N \oplus D$, it follows that $N \perp D$, and this is a contradiction. So, $N \cap M_{1} \leq_{e} M_{1}$. Form $N \subseteq \widehat{N} \subseteq \widehat{M}$, and since $N \cap M_{1} \subset N$, choose some injective hull of $N \cap M_{1}$ inside \widehat{N}, i.e., $\widehat{M}_{1} \cong \widehat{N \cap M}_{1} \subseteq \widehat{N}$. Since $\widehat{M}_{1}<\widehat{M}$ is fully invariant by the hypothesis, \widehat{M} contains a unique injective hull of M_{1}, i.e., $\widehat{M}_{1}=\widehat{N \cap M_{1}} \subseteq \widehat{N}$. Since $N<M$ is a complement, and since $N \leq_{e} \widehat{N} \cap M$, necessarily $N=\widehat{N} \cap M$. Since also $\widehat{M}_{1} \cap M=M_{1}$, we get that

$$
\widehat{M}_{1} \subseteq \widehat{N} \Longrightarrow M \cap \widehat{M}_{1} \subseteq M \cap \widehat{N} \Longleftrightarrow M_{1} \subseteq N .
$$

Thus $1 \in I(0)$. Consequently $I(0)=I(1)$.

We conclude this section by proving a type analogue of a result of Müller and Rizvi in [7].

Theorem 1.16. If every type direct summand of M is 2-decomposable, then M has a decomposition $M=M_{1} \oplus M_{2}$, where M_{1} is essential over a type direct sum $\oplus_{i \in I} N_{i}$ of atomic type summands of M and
M_{2} contains no atomic submodules. Moreover, if in addition M satisfies the condition that, for any two type direct summands A and B with $A \cap B=0, A \oplus B$ is a direct summand of M, then the decomposition is unique in the sense that if M has another decomposition $M=M_{1}^{\prime} \oplus M_{2}^{\prime}$, where M_{1}^{\prime} is essential over a type direct sum $\oplus_{j \in J} N_{j}^{\prime}$ of atomic type summands of M and M_{2}^{\prime} contains no atomic submodules, then $M_{1} \cong M_{1}^{\prime}, M_{2} \cong M_{2}^{\prime}$ and there is a bijection $\theta: I \rightarrow J$ such that $N_{i} \cong N_{\theta(i)}^{\prime}$ for all $i \in I$.

Proof. The existence: Let \mathcal{K} be the class of the modules containing no atomic submodules. Then \mathcal{K} is a natural class and $c(\mathcal{K})$ is the class of the modules N such that every nonzero submodule of N contains an atomic submodule. Thus, there exists $M_{1} \in c(\mathcal{K})$ and $M_{2} \in \mathcal{K}$ such that $M=M_{1} \oplus M_{2}$. It follows that M_{1} contains an essential submodule $X=\oplus_{i \in I} X_{i}$ where each X_{i} is atomic. Without loss of generality, we may assume that $X_{i} \perp X_{j}$ for all $i \neq j$ in I. By the hypothesis, M_{1} is 2-decomposable. For each $k \in I$, let $Z_{k}=\oplus\left\{X_{i}: i \in I, i \neq k\right\}$. Then, by Theorem 1.2 , there exists a type complement N_{k} of Z_{k} in M_{1} such that N_{k} is a summand of M_{1} (and hence of M). Since $X_{k} \oplus Z_{k} \leq_{e} M_{1}$, it can easily be proved that $N_{k} \| X_{k}$. So, N_{k} is an atomic type summand of M and $\oplus_{i \in I} N_{i}$ is a type direct sum. To see that $\oplus_{i \in I} N_{i}$ is essential in M_{1}, let $\left(\oplus_{i \in I} N_{i}\right) \cap Y=0$ where Y is a submodule of M_{1}. Since each N_{i} is a type submodule, $Y \perp N_{i}$ for all $i \in I$. Thus, $Y \perp X_{i}$ for all $i \in I$. It follows that $Y \perp\left(\oplus_{i \in I} X_{i}\right)$ and so $Y \cap\left(\oplus_{i \in I} X_{i}\right)=0$. Since $\oplus_{i \in I} X_{i}$ is essential in M_{1}, we have $Y=0$.
The uniqueness: Suppose $M_{1}^{\prime}, M_{2}^{\prime}$ and $\oplus_{j \in J} N_{j}^{\prime}$ are as assumed above. Since M is a 2-decomposable module satisfying $\left(T_{3}\right)$, by $[\mathbf{1 2}$, Lemma $6], M_{1} \cong M_{1}^{\prime}$ and $M_{2} \cong M_{2}^{\prime}$. Note that both type direct sums $\oplus_{i \in I} N_{i}$ and $\oplus_{j \in J} N_{j}^{\prime}$ are essential in M_{1} and all N_{i}, N_{j}^{\prime} are atomic. It follows that, for each $i \in I$, there exists a unique $j_{i} \in J$ such that $N_{i} \| N_{j_{i}}^{\prime}$, and, for each $j \in J$, there exists a unique $i_{j} \in I$ such that $N_{j}^{\prime} \| N_{i_{j}}$. Then $\theta: I \longrightarrow J$ defined by $\theta(i)=j_{i}$ is a bijection. Since N_{i} and $N_{\theta(i)}^{\prime}$ both are type summands of M_{1}, write $M_{1}=N_{i} \oplus A=N_{\theta(i)}^{\prime} \oplus B$ with $N_{i} \perp A$ and $N_{\theta(i)}^{\prime} \perp B$. Then N_{i} and $N_{\theta(i)}^{\prime}$ are in $d\left(N_{i}\right)$ and A, B are in $c\left(N_{i}\right)$. By [12, Lemma 6], $N_{i} \cong N_{\theta(i)}^{\prime}$.
2. UTC-modules and uniqueness of type decompositions. If $M=\oplus_{i \in I} M_{i}$ where each $M_{i} \in \mathcal{K}_{i}$ and $\left\{\mathcal{K}_{i}: i \in I\right\}$ is a maximal set of pairwise orthogonal types, then each M_{i} is a type submodule of M of type \mathcal{K}_{i}. Thus, an obvious sufficient condition for this decomposition to be unique is that M has a unique type submodule of type \mathcal{K} for every natural class \mathcal{K}. This observation leads us to introduce and study UTCmodules. A partial homomorphism from M to N is a homomorphism from a submodule of M to N.

Theorem 2.1. The following are equivalent for a module M :
(1) M has a unique type submodule of type \mathcal{K} for every natural class \mathcal{K}.
(2) For every natural class $\mathcal{K}, \Sigma\{X \subseteq M: X \in \mathcal{K}\} \in \mathcal{K}$, i.e., M has a largest submodule in \mathcal{K}.
(3) Every submodule has a unique type closure in M.
(4) For any nonzero submodule N of M, if $C_{1} \neq C_{2}$ are two closures of N in M then there exists $0 \neq X \subseteq C_{1}+C_{2}$ such that $C_{1} \cap X=0$ and $X \hookrightarrow N$.
(5) There does not exist an R-module X and a proper essential submodule Y of X such that $X \perp(X / Y)$ and $X \oplus(X / Y)$ embeds in M.
(6) Every partial endomorphism $f: A \longrightarrow M$ with $f(A) \perp A$, $\operatorname{ker}(f)$ is a complement submodule of A.

Proof. (1) $\Leftrightarrow(2)$. It is obvious.
$(2) \Rightarrow(3)$. Let N be a submodule of M and $\mathcal{K}=d(N)$. Then \mathcal{K} is a natural class. For any type closure $N^{t c}$ of N in M, we have $N^{t c} \in \mathcal{K}$. Thus $N^{t c} \subseteq P$ where $P=\Sigma\{X \subseteq M: X \in \mathcal{K}\} \in \mathcal{K}$. By the definition of $N^{t c}, P=N^{t c}$. Therefore, P is the only type closure of N in M.
$(3) \Rightarrow(4)$. Suppose that a nonzero submodule N of M has closures $C_{1} \neq C_{2}$ in M. Let $\mathcal{K}=d(N)$ and $P=C_{1}+C_{2}$. Then $N \leq_{e} C_{1}$ and $N \leq{ }_{e} C_{2}$. It is easy to see that $C_{1}^{t c}$ and $C_{2}^{t c}$ are type closures of N in M. By (3), $C_{1}^{t c}=C_{2}^{t c}$. So, $P \subseteq C_{1}^{t c} \in \mathcal{K}$. Since $C_{1} \neq C_{2}, C_{1} \cap A=0$ for some $0 \neq A \subseteq P$. Then $A \in \mathcal{K}$. It follows that $X \hookrightarrow N$ for some $0 \neq X \subseteq A$. Thus, (4) is proved.
$(4) \Rightarrow(2)$. Let \mathcal{K} be a natural class. To show (2), it suffices to show that for any submodules X and Y of M, if X and Y are in \mathcal{K} then so is $X+Y$. By Zorn's lemma, there exists a submodule P maximal with respect to $X \subseteq P \in \mathcal{K}$ and a submodule Q maximal with respect to $Y \subseteq Q \in \mathcal{K}$. Then P and Q are complement submodules of M, $P \cap Q \leq_{e} P$ and $P \cap Q \leq_{e} Q$. So, P and Q both are closures of $P \cap Q$ in M. If $P \neq Q$, by (4), there exists $0 \neq X \subseteq P+Q$ such that $P \cap X=0$ and $X \hookrightarrow P \cap Q$. Then $X \in \mathcal{K}$ and $P \subset P \oplus X \in \mathcal{K}$, a contradiction. So $P=Q$ and thus $X+Y \subseteq P \in \mathcal{K}$.
$(5) \Rightarrow(1)$. Suppose (1) does not hold. Then there exist type submodules $T_{1} \neq T_{2}$ of M of type \mathcal{K} for a natural class \mathcal{K}. It follows that $T_{1} \cap T_{2} \neq 0, T_{1} \cap T_{2} \leq_{e} T_{i}$ for $i=1,2$, and $T_{1} \cap T_{2}$ is not essential in $T_{1}+T_{2}$. Thus, there exists $0 \neq A \subseteq T_{1}+T_{2}$ such that $T_{1} \cap T_{2} \cap A=0$. It follows that $T_{i} \cap A=0$ for $i=1,2$. Since each T_{i} is a type submodule of M, we have $T_{i} \perp A$. We see that $A=A /\left(T_{1} \cap A\right) \cong\left(A+T_{1}\right) / T_{1} \subseteq\left(T_{2}+T_{1}\right) / T_{1} \cong T_{2} /\left(T_{1} \cap T_{2}\right)$. Then $A \cong B /\left(T_{1} \cap T_{2}\right)$ for some B with $T_{1} \cap T_{2} \leq_{e} B \subseteq T_{2}$. Note that $B \perp A$, and so $B \cap A=0$ and $B \oplus A \subseteq M$.
$(3) \Rightarrow(5)$. Suppose there exists an embedding $X \oplus(X / Y) \xrightarrow{\alpha} M$ where Y is a proper essential submodule of X and $X \perp(X / Y)$. Take $x \in X$ but $x \notin Y$ and let $m_{1}=\alpha(x)$ and $m_{2}=\alpha(x+Y)$. Then $m_{1} R \perp$ $m_{2} R$. To see this, let $m_{1} a R \cong m_{2} b R$ for some $a, b \in R$. It follows that $\alpha(x a R) \cong \alpha((x+Y) b R)$. This gives that $x a R \cong(x+Y) b R$. It must be $x a R=0$ since $X \perp(X / Y)$. So, $m_{1} a R=0$. Thus, $m_{1} R \perp m_{2} R$. Moreover, $m_{1}^{\perp} \subseteq m_{2}^{\perp}$ and $m_{2}^{\perp} / m_{1}^{\perp} \leq_{e} R / m_{1}^{\perp}$. We next prove $m_{2}=0$, which gives a contradiction. Define $\beta: m_{1} R \rightarrow m_{2} R$ by $\beta\left(m_{1} r\right)=m_{2} r$, $r \in R$. Then β is a homomorphism and $\operatorname{ker}(\beta)=m_{1} m_{2}^{\perp}$. Let L be a type closure of $\operatorname{ker}(\beta)$ in $m_{1} R$. Define $f: m_{1} R \rightarrow m_{1} R \oplus m_{2} R(\subseteq M)$ by $f(x)=x+\beta(x), x \in m_{1} R$. Then f is a monomorphism. Since L is a type closure of $\operatorname{ker}(\beta)$ in $m_{1} R, f(\operatorname{ker}(\beta))$ is parallel to $f(L)$. This gives that $\operatorname{ker}(\beta)$ is parallel to $f(L)$. Let $L^{t c}$ and $f(L)^{t c}$ be the type closures of L and $f(L)$ in M respectively. Then both $L^{t c}$ and $f(L)^{t c}$ are type closures of $\operatorname{ker}(\beta)$ in M. By (3), $L^{t c}=f(L)^{t c}$. It follows that $L+f(L)$ is a parallel extension of L. Note L is a type submodule of $m_{1} R$. Since $m_{1} R \perp m_{2} R, L$ is a type submodule of $m_{1} R \oplus m_{2} R$. This implies that $L=L+f(L)$, i.e., $f(L) \subseteq L$. It follows that $\beta(L) \subseteq L$.

Since $m_{1} R \perp m_{2} R$, we have $\beta(L)=0$. Thus, $\operatorname{Ker}(\beta)=L$ is a type submodule of $m_{1} R$. Since $m_{1} R / \operatorname{ker}(\beta) \cong m_{2} R$, the fact that $m_{1} R \perp m_{2} R$ implies that $\operatorname{ker}(\beta)=m_{1} R$. Hence $m_{2}=\beta\left(m_{1}\right)=0$.
(6) \Rightarrow (5). Suppose (5) does not hold. Then there exists $0 \neq X$ and a proper essential submodule Y of X such that $X \perp(X / Y)$ and $X \oplus(X / Y) \stackrel{h}{\hookrightarrow} M$ and $\pi: X \rightarrow X / Y$ the quotient map. Let $A=h(X)$ and $f=h \circ \pi \circ h^{-1}$. Then $f: A \longrightarrow M$ is well defined, $f(A)=h(X / Y)$ and $\operatorname{ker}(f)=h(Y)$. So, $\operatorname{ker}(f)$ is not a complement submodule of A, but $f(A) \perp A$.
$(5) \Rightarrow(6)$. Suppose there exists $f: A \rightarrow M$ such that $f(A) \perp A$, but $\operatorname{ker}(f)$ is not a complement submodule of A. Replacing A by a complement closure of $\operatorname{ker}(f)$ in A, we can assume without loss of generality that $\operatorname{ker}(f)$ is properly essential in A. Note that $f(A) \cap A=$ 0 , and thus $A \oplus[A / \operatorname{ker}(f)] \hookrightarrow M$. So, (5) fails to hold.

A module M is called a UTC-module (UTC for unique type closure) if M satisfies any of the equivalent conditions in Theorem 2.1.

Example 2.2. (1) All nonsingular modules are UTC.
(2) A module is a UC-module if every submodule has a unique complement closure [9]. All UC-modules are UTC.
(3) All atomic modules are UTC.
(4) For $R=\mathbf{Z}$, an abelian group M is UTC if and only if either M is torsion, or M is torsion free. This can easily be verified using Theorem 2.1 (5).

Theorem 2.1 (6) shows that submodules of a UTC-module are UTC. Next, using ideas of Camillo and Zelmanowitz in [1], we determine when an essential extension of a UTC-module is UTC, and when a type direct sum of UTC-modules is UTC. For a submodule X of M, if X is itself a UTC-module then X is called a UTC-submodule.

Proposition 2.3. Let M_{i} be an ascending chain of UTC-submodules of M. Then $\cup M_{i}$ is a UTC-submodule. In particular, every module contains maximal UTC-submodules.

Proof. Suppose that $\cup M_{i}$ is not UTC. Then there exists a partial homomorphism $f: A \rightarrow \cup M_{i}$ such that $f(A) \perp A$ but $\operatorname{ker}(f)$ is not a complement submodule of A. We can assume that $\operatorname{ker}(f)$ is properly essential in A. Take $a \in A$ but $a \notin \operatorname{ker}(f)$. Then $f(a) \in M_{i}$ for some i. Let $A^{\prime}=\operatorname{ker}(f)+a R$. Thus $f: A^{\prime} \rightarrow M_{i}$ is such that $f\left(A^{\prime}\right) \perp A^{\prime}$ and $\operatorname{ker}(f)$ is not a complement submodule of A^{\prime}. So, M_{i} is not UTC. -

The next example shows that an essential extension of a UTC-module may not be UTC.

Example 2.4. Let $M=\oplus_{i=1}^{\infty} \mathbf{Z} / p_{i} \mathbf{Z}$ where p_{i} is the i th prime number. Let $\left.R=\left\{\begin{array}{c}n x \\ 0 n\end{array}\right): n \in \mathbf{Z}, x \in M\right\}$. R is a ring under the usual addition and multiplication of matrices, and $\operatorname{Soc}(R)=\left\{\binom{0 x}{00}: x \in M\right\}$ is essential in R_{R}. Since $\operatorname{Soc}\left(R_{R}\right)$ is semi-simple, it is clearly UTC. To see R_{R} is not UTC, let $N=\oplus_{i \geq 2} \mathbf{Z} / p_{i} \mathbf{Z}, A=\left\{\binom{n x}{0 n}: n \in 2 \mathbf{Z}, x \in \mathbf{N}\right\}$ and $B=\left\{\binom{n x}{0 n}: n \in 4 \mathbf{Z}, x \in \mathbf{N}\right\}$. Then A and B are R-modules, $A \perp(A / B)$ and $A \oplus(A / B)$ embeds in R_{R}.

For a module M, define $\varphi_{t}(M)=\{X \leq \widehat{M}$: for $Y \leq X$ and $f \in \operatorname{End}(\widehat{M}), f(Y) \perp Y$ and $f(Y \cap M)=0$ implies $f(Y)=0\}$. As in [1, p. 253], define $\varphi(M)=\{X \leq \widehat{M}:$ for $Y \leq X$ and $f \in \operatorname{End}(\widehat{M})$, $f(Y) \cap Y=0$ and $f(Y \cap M)=0$ implies $f(Y)=0\}$.

Theorem 2.5. For a module M, the following hold.
(1) $M \in \varphi(M) \subseteq \varphi_{t}(M)$.
(2) $\varphi_{t}(M)$ has maximal elements.
(3) If M is UTC, then every $X \in \varphi_{t}(M)$ is UTC.
(4) If $X \leq_{e} \widehat{M}$ and $X \notin \varphi_{t}(M)$ then X is not UTC.

Proof. The proof of [1, Theorem 8] works.

The next result is the type analogue of [1, Theorem 13] which gives a sufficient and necessary condition for a direct sum of modules to be UC.

Theorem 2.6. Let $M=\oplus_{i \in I} M_{i}$ where $M_{i} \perp M_{j}$ whenever $i \neq j$. Then M is UTC if and only if each M_{i} is UTC and every partial homomorphism between two distinct M_{i} is zero.

Proof. " \Rightarrow." For any $h: A_{i} \longrightarrow M_{j}$ where $A_{i} \leq M_{i}$ and $i \neq j$, we have $A_{i} \perp h\left(A_{i}\right)$. By Theorem 2.1, $\operatorname{ker}(h)$ is a complement submodule of A_{i}. Let B_{i} be a complement of $\operatorname{ker}(h)$ in A_{i}. Thus, B_{i} is isomorphic to an essential submodule of $A_{i} / \operatorname{ker}(h)$ which embeds in M_{j}. Since $M_{i} \perp M_{j}$, it must be that $A_{i} / \operatorname{ker}(h)=\overline{0}$, i.e., $h=0$.
" \Leftarrow." By Proposition 2.3, it suffices to show that M is UTC whenever $|I|<\infty$. We proceed by induction on $|I|$.

Case 1. $|I|=2$, i.e., $M=M_{1} \oplus M_{2}$. Let $A \subseteq M$ and $f: A \rightarrow M$ be a homomorphism with $f(A) \perp A$. We need to show that $\operatorname{ker}(f)$ is a complement submodule of A by Theorem 2.1. Replacing A by a complement closure of $\operatorname{ker}(f)$ in A, we may assume that $\operatorname{ker}(f) \leq_{e} A$. We want to show that $f=0$. Let π_{i} be the projection of M onto M_{i}, $i=1,2$.

Subcase 1. $\pi_{1} f(A)=0$, i.e., $f(A) \subseteq M_{2}$. The map $f: A \cap M_{2} \longrightarrow M_{2}$ has an essential kernel $\operatorname{ker}(f) \cap M_{2}$. Since M_{2} is UTC, it must be $f\left(A \cap M_{2}\right)=0$ by Theorem 2.1. So, there is a natural epimorphism $A / A \cap M_{2} \longrightarrow A / \operatorname{ker}(f) \rightarrow 0$ with $A / \operatorname{ker}(f) \hookrightarrow M_{2}$. But, there is a monomorphism $A / A \cap M_{2} \xrightarrow{\bar{\pi}} M_{1}$ where $\bar{\pi}(\bar{a})=\pi_{1}(a), a \in A$. Since every partial homomorphism from M_{1} to M_{2} is zero, $A / \operatorname{ker}(f)=\overline{0}$, and so $f=0$. Similarly, $f=0$ if $\pi_{2}(A)=0$.

Subcase 2. $\pi_{1} f(A) \neq 0$ and $\pi_{2} f(A) \neq 0$. Thus, either $\pi_{1} f(A) \cap A \not Z_{e}$ $\pi_{1} f(A)$ or $\pi_{2} f(A) \cap A \not Z_{e} \pi_{2} f(A)$, for otherwise, $A \cap\left[\left(\pi_{1} f(A) \oplus\right.\right.$ $\left.\pi_{2} f(A)\right] \leq_{e}\left(\pi_{1} f(A) \oplus \pi_{2} f(A)\right.$ which leads $A \cap f(A) \neq 0$, contradicting $A \perp f(A)$. So, we may assume $\pi_{1} f(A) \cap A \not Z_{e} \pi_{1} f(A)$. Thus, $\left[\pi_{1} f(A) \cap A\right] \cap Y_{0}=0$ for some $0 \neq Y_{0} \subseteq \pi_{1} f(A)$. Let $A_{0}=\left(\pi_{1} f\right)^{-1}\left(Y_{0}\right)$ and then $\left.\pi_{1} f\right|_{A_{0}}: A_{0} \longrightarrow Y_{0}$ gives a partial homomorphism from M to M_{2}. Clearly the kernel of $\left.\pi_{1} f\right|_{A_{0}}$ is $\operatorname{ker}(f)$ which is essential in A_{0}. By Subcase $1,\left.\pi_{1} f\right|_{A_{0}}=0$. Thus, $Y_{0}=0$, a contradiction.

Case 2. $|I|=n>2$. Then $M=\oplus_{i=1}^{n} M_{i}$. By the induction hypothesis, $Z=\oplus_{i=2}^{n} M_{i}$ is UTC. Then $M=M_{1} \oplus Z$ with $M_{1} \perp Z$, and every partial homomorphism from M_{1} to Z is zero. Next we prove every partial homomorphism from Z to M_{1} is zero, and thus the claim follows from Case 1.

Let $B \subseteq Z$ and $g: B \rightarrow M_{1}$ be a homomorphism. We prove $g=0$ by induction on n. Suppose $g \neq 0$. Since $Z \perp M_{1}, \operatorname{ker}(g)$ is not a complement submodule of B. Replacing B by a complement closure of $\operatorname{ker}(g)$ in B, we may assume $\operatorname{ker}(g) \leq_{e} B$. Let $W=\oplus_{i=3}^{n} M_{i}$ and π be the projection of Z onto M_{2}. By induction hypothesis, the restriction of g on $A \cap W$ is zero. Thus, $g(B \cap W)=0$ and so there is an epimorphism $B / B \cap W \rightarrow B / \operatorname{ker}(g) \longrightarrow 0$ with $B / \operatorname{ker}(g) \hookrightarrow M_{1}$. But there is a monomorphism $B / B \cap W \stackrel{\bar{\pi}}{\hookrightarrow} M_{2}$ where $\bar{\pi}(\bar{b})=\pi(b), b \in B$. Since every partial homomorphism from M_{2} to M_{1} is zero, $B / \operatorname{ker}(g)=\overline{0}$, and so $g=0$. The proof is complete.

Note that $\mathbf{Z} \oplus \mathbf{Z}_{2}$ is not UTC though $\mathbf{Z}, \mathbf{Z}_{2}$ are UTC and $\mathbf{Z} \perp \mathbf{Z}_{2}$. For a UTC-module M, if M is 2-decomposable, then M is TS because any type submodule of M is the unique type closure of its unique type complement in M and hence is a direct summand of M. If N is a submodule of a UTC-module M such that N is fully invariant in \widehat{M} (equivalently, N is quasi-injective), then N has a unique complement closure, in M, which is a type submodule of M, by Theorem 2.1. Next, we are back to type decompositions of modules.

Definition $2.7[\mathbf{3}]$. We use $X \subseteq \subseteq^{\oplus} Y$ to mean that X is a direct summand of module Y. Let E be an injective module. Then E is said to be abelian if $E=P_{1} \oplus P_{2} \oplus V$ with $P_{1} \cong P_{2}$ implies $P_{1}=P_{2}=0$. The module E is of type I if for all $0 \neq N \subseteq \oplus$, there exists $0 \neq X \subseteq{ }^{\oplus} N$ such that X is abelian. Next the module E is of type III if for all $0 \neq N \subseteq{ }^{\oplus} E, P \cong P \oplus P$ for some $0 \neq P \subseteq \oplus N$. Lastly, E is of type II provided that for all $0 \neq N \subseteq \oplus{ }^{\oplus} E, N$ is not abelian, and there exists $0 \neq X \subseteq{ }^{\oplus} N$ such that $P \not \approx P \oplus P$ for all $0 \neq P \subseteq \oplus X$.

A module M is said to be of type I, respectively type II or type III, if and only if \widehat{M} is of type I, respectively type II or type III.

Let \mathcal{I}_{1}, respectively \mathcal{I}_{2} or \mathcal{I}_{3}, be the class of all R-modules of type I, respectively type II or type III. Then, by $[\mathbf{3}], \mathcal{I}_{1}, \mathcal{I}_{2}, \mathcal{I}_{3}$ form a maximal set of pairwise orthogonal types.

Corollary 2.8. Every 2-decomposable module M has a decomposition $M=M_{1} \oplus M_{2}$ where M_{1} contains an essential direct sum of uniform submodules and M_{2} contains no uniform submodules. The decomposition is unique if M is in addition UTC.

Proof. Let \mathcal{K} be the class of all modules containing an essential direct sum of uniform submodules. Then \mathcal{K} is a natural class and $c(\mathcal{K})$ is the class of all modules containing no uniform submodules. Since M is 2-decomposable and UTC, the existence and uniqueness of the decomposition follow.

Corollary 2.9. Every finitely decomposable module M has a decomposition $M=M_{1} \oplus M_{2} \oplus M_{3}$ with $M_{1} \in \mathcal{I}_{1}, M_{2} \in \mathcal{I}_{2}$ and $M_{3} \in \mathcal{I}_{3}$. The decomposition is unique if M is in addition UTC.

Acknowledgments. The first author thanks the hospitality of Memorial University of Newfoundland during a research visit paid by the second author's NSERC grant. During this visit part of this work was done.

REFERENCES

1. V.P. Camillo and J.M. Zelmanowitz, Dimension modules, Pacific J. Math. 91 (1980), 249-261.
2. J. Dauns, Unsaturated classes of modules, in Abelian groups and modules, (Colorado Springs, CO, 1995), 211-225, Lecture Notes in Pure and Appl. Math., 182, Dekker, New York, 1996.
3. ——, Module types, Rocky Mountain J. Math. 27 (1997), 503-557.
4. K.R. Goodearl and A.K. Boyle, Dimension theory for nonsingular injective modules, Mem. Amer. Math. Soc., vol. 7, Amer. Math. Soc., Providence, 1976.
5. M.A. Kamal and M.J. Müller, Extending modules over commutative domains, Osaka J. Math. 25 (1988), 531-538.
6. S.H. Mohamed and B.J. Müller, Continuous and discrete modules, London Math. Soc. Lectures Note Ser., vol. 147, Cambridge Univ. Press, 1990.
7. B.J. Müller and S.T. Rizvi, On the decomposition of continuous modules, Canad. Math. Bull. 25 (1982), 296-301.
8. - On injective and quasi-continuous modules, J. Pure Appl. Algebra 28 (1983), 197-210.
9. P.F. Smith, Modules for which every submodule has a unique closure, in Ring theory, World Sci. Publishing, River Edge, NJ, 1993.
10. P.F. Smith and A. Tercan, Generalizations of CS-modules, Comm. Algebra 21 (1993), 1809-1847.
11. Y.Zhou, Nonsingular rings with finite type dimension, in Advances in ring theory, Birkhäuser, Boston, 1997.
12. Decomposing modules into direct sums of submodules with types, J. Pure Appl. Algebra 138 (1999), 83-97.

Tulane University, New Orleans, Louisiana 70118-5698, USA
E-mail address: dauns@tulane.edu
Memorial University of Newfoundland, St. John's, NF A1C 5S7, Canada

[^0]: 1991 AMS Mathematics Subject Classification. Primary 16D70, 16D80.
 Research of the second author was supported by NSERC Grant OGP0194196.

