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TYPE SUBMODULES AND DIRECT
SUM DECOMPOSITIONS OF MODULES

JOHN DAUNS AND YIQIANG ZHOU

ABSTRACT. A type decomposition of a module M over
a ring R is a direct sum decomposition for which any two
distinct summands have no nonzero isomorphic submodules.
In this paper, we investigate when a module possesses certain
kinds of type decompositions and when such decompositions
are unique.

Introduction. It is well known that every torsion abelian group
has a unique decomposition into its p-torsion subgroups. By Goodearl-
Boyle [4], every nonsingular injective module E has a unique decom-
position E = E1 ⊕ E2 ⊕ E3 where E1, E2, E3 are of types I, II, III
respectively, see Definition 2.7. Why do such decompositions exist?
Why are such decompositions unique? Are there any common things
between these two results? All these questions will be answered in this
paper. In fact, we can present a more general theory on existence and
uniqueness of type decompositions of modules, so that the above re-
sults, as well as many other known results, are obtained as very special
cases.

The common property for certain diverse kinds of direct sum de-
compositions of modules M including the two decompositions above
is that any two distinct direct summands have no nonzero isomorphic
submodules, or equivalently all direct summands are what we will call
type submodules. The cause for the existence of such decompositions
is that these modules M have a ‘decomposability property’ which will
be discussed in detail in Section 1, while the uniqueness of such direct
sum decompositions is ensured by a module property called UTC. A
theory of such modules is developed in Section 2.

Throughout, all rings R are associative with identity and modules
are unital right R-modules and M is an R-module. A class K of
modules is a type, or natural class, if it is closed under isomorphic copies,
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submodules, arbitrary direct sums and injective hulls. A submodule N
of M is a type submodule if, for some type K, N is a submodule of
M which is maximal with respect to N ∈ K. In this case, we also
say N is a type submodule of type K. Two modules M1 and M2 are
orthogonal, written M1 ⊥ M2, if they do not have nonzero isomorphic
submodules. Equivalently, a submodule N of M is a type submodule if
and only if, whenever N ⊂ X ⊆ M , there exists 0 �= Y ⊆ X such that
N ⊥ Y . An atomic module is any nonzero module A which has only
one nonzero type submodule, namely A itself. A module direct sum,
or module decomposition M = ⊕i∈IMi is called a type direct sum, or
type decomposition, if Mi ⊥ Mj for all i �= j in I.

Let N be a submodule of M . By Zorn’s lemma, there exists a
submodule P of M which is maximal with respect to the property
that N ⊆ P and every nonzero submodule of P is not orthogonal to
N . The module P is called a type closure of N in M and is denoted by
N tc = P , even though P need not be unique. Again by Zorn’s lemma,
there exists a submodule Q of M maximal with respect to N ⊥ Q.
The module Q is called a type complement of N in M . Clearly, type
closures and type complements of N in M all are type submodules of
M .

For any module class F , let c(F) = {N : ∀ 0 �= X ≤ N, X �↪→ P for all
P ∈ F} and d(F) = {N : ∀ 0 �= X ≤ N, ∃ 0 �= Y ≤ X and P ∈ F such
that Y ↪→ P}. Note that both c(F) and d(F) are natural classes and
they are Boolean complements of each other in the complete Boolean
lattice of all natural classes. If F = {N}, we write d(N) = d({N}),
[3, p. 514]. Two types K1 and K2 are orthogonal if M1 ⊥ M2 for all
M1 ∈ K1 and all M2 ∈ K2, and this happens if and only if K1∧K2 = 0.
We define a maximal set of pairwise orthogonal types to be any family
{Ki : i ∈ I} of types Ki such that ∨i∈IKi = 1 and Ki ∧ Kj = 0 when
i �= j. The notation N ≤t M and N ≤e M denote type and essential
submodules of M .

1. 2-decomposable modules and existence of type decompo-
sitions. The two decompositions mentioned in the beginning of the
introduction are both type decompositions. Every type decomposition
M = ⊕i∈IMi gives a maximal set {c(M)}∪ {d(Mi) : i ∈ I} of pairwise
orthogonal types such that Mi ∈ d(Mi), for i ∈ I, and (0) ∈ c(M).
Conversely, any decomposition M = ⊕i∈IMi where {Ki : i ∈ I} is a
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maximal set of pairwise orthogonal types and Mi ∈ Ki, i ∈ I, is a type
decomposition. So, the study of type decompositions of modules could
be started with the following definition.

Definition 1.1. A module M is called n-decomposable if, for any
maximal set {Ki : i = 1, · · · , n} of pairwise orthogonal types, M has a
decomposition M = ⊕n

i=1Mi where Mi ∈ Ki. The module M is called
finitely decomposable if M is n-decomposable for every positive integer
n. If M has a decomposition M = ⊕i∈IMi with Mi ∈ Ki for every
countable maximal set, respectively every maximal set, {Ki : i ∈ I} of
pairwise orthogonal types, then we say M is countably decomposable,
respectively fully decomposable.

Theorem 1.2. The following are equivalent for a module M :

(1) M is 2-decomposable.

(2) Every submodule of M has a type complement Q in M such that
Q is a direct summand of M .

(3) Every type submodule of M has a (type) complement Q in M such
that Q is a direct summand of M .

Proof. (1) ⇒ (2). Let N be a submodule of M and let K = d(N).
By (1), M has a decomposition M = M1 ⊕ M2 where M1 ∈ K and
M2 ∈ c(K). It follows that M2 is a type complement of N in M .

(2) ⇒ (3). It is clear because the complements of a type submodule
N in M are precisely the type complements of N in M .

(3) ⇒ (1). Let K1,K2 be types such that K1∨K2 = 1 and K1∧K2 = 0.
Let N be a type submodule of M of type K1. By hypothesis M = P⊕Q
where P ≤ M and N ⊕ Q ≤e M . Thus, N is essentially embeddable
in M/Q ∼= P . So, P ∈ K1. Since N is a type submodule, N ∩ Q = 0
implies N ⊥ Q. It follows that Q ∈ c(K1) = K2 since N is a type
submodule of type K1.

A module is called TS if every type submodule is a direct summand
[12]. A module M is said to satisfy (C11) if every submodule of M
has a complement Q in M such that Q is a direct summand of M
[10]. Clearly, TS-modules and modules satisfying (C11) all are 2-



86 J. DAUNS AND Y. ZHOU

decomposable. Later we will give examples of 2-decomposable modules
which are neither TS nor (C11).

Theorem 1.3. Any direct sum of 2-decomposable modules is 2-
decomposable. In particular, any direct sum of atomic modules is 2-
decomposable.

Proof. Let M = ⊕i∈IMi where each Mi is 2-decomposable. Let K
be a natural class. Then, for each i, Mi = Xi ⊕ Yi where Xi ∈ K and
Yi ∈ c(K). Let X = ⊕i∈IXi and Y = ⊕i∈IYi. Then M = X ⊕ Y
and X ∈ K and Y ∈ c(K). Thus, M is 2-decomposable. For the last
statement, note that every atomic module is 2-decomposable.

Let Z(M) ⊆ Z2(M) be the singular and second singular submodules
of M and let M̂ denote the injective hull of M . A submodule N of M
is fully invariant if f(N) ⊆ N for all f ∈ End (M).

Theorem 1.4. The following are equivalent for a module M :

(1) M is 2-decomposable.

(2) M = Z2(M) ⊕ K where Z2(M) is 2-decomposable and K is
nonsingular TS.

(3) For some fully invariant type submodule F of M , M = F ⊕ K
where F and K both are 2-decomposable.

(4) For every fully invariant type submodule F of M , M = F ⊕ K
where F and K both are 2-decomposable.

Proof. (1) ⇒ (4). Suppose M is 2-decomposable and F is a fully
invariant type submodule of M . Then M = X ⊕ Y where X ∈ d(F )
and Y ∈ c(F ). Since F is fully invariant, F = (F ∩X)⊕ (F ∩Y ). Since
Y ⊥ F , F ∩ Y = 0, and so F ⊆ X. It follows that F = X since F is a
type submodule of type d(F ). Thus, we have M = F ⊕K with K = Y
orthogonal to F .

To see F is 2-decomposable, let F be a natural class. We let A
be a type submodule of F of type F . Since M is 2-decomposable,
M = M1 ⊕ M2 where M1 ∈ d(A) ⊆ F and M2 ∈ c(A). Since A ⊥ M2,
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M2 ∈ c(F). Since F ≤ M is fully invariant, F = (F ∩M1)⊕ (F ∩M2),
where F ∩ M1 ∈ F and F ∩ M2 ∈ c(F). So, F is 2-decomposable.

To prove that K is 2-decomposable, let F be a natural class. We let
B be a type submodule of K of type F . Since M is 2-decomposable,
M = N1 ⊕ N2 where N1 ∈ d(B) and N2 ∈ c(B). Since F ≤ M is fully
invariant, we have F = (F ∩ N1) ⊕ (F ∩ N2). We claim F ∩ N1 = 0.
If not, there exist 0 �= C1 ≤ F ∩ N1 and 0 �= C2 ≤ B ≤ K with
C1

∼= C2, contradicting that F ⊥ K. Hence F = F ∩ N2. Thus,
N2 = F ⊕ (N2 ∩ K) and M = N1 ⊕ F ⊕ (N2 ∩ K). Let π be the
projection of M onto K along F . Then N1⊕F = π(N1)⊕F . It follows
that M = π(N1)⊕F ⊕ (N2 ∩K) and so K = π(N1)⊕ (N2 ∩K). Since
π(N1) ∼= K/(N2 ∩ K) ∼= (K + N2)/N2 ↪→ N1, we see that π(N1) ∈ F .
Since N2 ∈ c(B), N2 ∩ K ∈ c(F). Thus, K is 2-decomposable.

(4) ⇒ (2). Since Z2(M) is a fully invariant type submodule of M , by
(4), M = Z2(M) ⊕ K where both Z2(M) and K are 2-decomposable.
Since K is nonsingular, K is TS, by Example 2.2 (1).

(2) ⇒ (3). Obvious.

(3) ⇒ (1). By Theorem 1.3.

Part 1 of the next corollary follows from Theorem 1.4 (2) and [12,
Corollaries 15.1 15.3]. Two modules M1 and M2 are parallel, written
M1‖M2, if every nonzero submodule of M1 is not orthogonal to M2 and
every nonzero submodule of M2 is not orthogonal to M1. For example,
as Z-modules, Z2 ⊕ Z4, Z2 and Z4 all are parallel. See [6, Definition
1.30] for the superspectivity of modules.

Corollary 1.5. (1) A module M is 2-decomposable if and only if
M = A⊕B ⊕C ⊕D⊕E with a Goldie torsion 2-decomposable module
A, a nonsingular TS-module B having essential socle, a nonsingular
socle-free TS-module C having an essential submodule which is a direct
sum of uniform submodules, a nonsingular TS-module D containing no
uniform submodules and having an essential submodule which is a direct
sum of atomic submodules, and a nonsingular TS-module E containing
no atomic submodules.

(2) The decomposition of M above is unique up to superspectivity.
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Proof. We only need to prove (2). Suppose M = A′⊕B′⊕C ′⊕D′⊕E′

is another decomposition as described in (1). Then A = Z2(M) = A′.
Let M = B ⊕ X. Then Z2(M) = Z2(X) ⊆ X. Since C ′ ⊕ D′ ⊕ E′

is nonsingular and orthogonal to B, it follows from [11, Lemma 3.1]
applied to the projection π : M = B⊕X → B with π(C ′⊕D′⊕E′) = 0
that C ′ ⊕ D′ ⊕ E′ ⊆ X. This gives that M = B′ + X. Since X ⊥ B
and B′‖B, we have X ⊥ B′. It follows that M = B′ ⊕X. Similarly we
see that M = B′ ⊕ Y implies M = B ⊕ Y . So, B′ is superspective to
B. The same arguments show that C ′, D′ and E′ are superspective to
C, D and E respectively.

A 2-decomposable module M that does not satisfy either of (C11)
and TS can be given as follows.

Example 1.6. Let R = Z ∝ (Z2 ⊕ Z2) be the trivial extension of Z
and the Z-module Z2 ⊕ Z2, i.e., R =

{( n x

0 n

)
: n ∈ Z, x ∈ Z2 ⊕ Z2

}
be the subring of the formal triangular matrix ring

(
Z Z2⊕Z2

0 Z

)
.

Let I0 =
{(

2n 0

0 2n

)
: n ∈ Z

}
, I =

{(
4n 0

0 4n

)
: n ∈ Z

}
and J ={(

0 x

0 0

)
: x ∈ Z2 ⊕ Z2

}
. Set M = M1 ⊕ M2 where M1 = R/I and

M2 = R/J . Note that U is an essential (right) ideal of R if and only if
U = V ⊕ J for some 0 �= V ⊆ I0. It follows that J = Z(R) = Z2(R).
Thus, M2 is nonsingular uniform. M1 = R/I contains an essential
submodule (I0 + J)/I ∼= (I0/I) ⊕ J . Note that I0/I is embeddable
in J . This shows that (I0 + J)/I is singular and atomic. It follows
that M1 is Goldie torsion and atomic. Therefore, by Theorem 1.2,
M is 2-decomposable. To prove that M is not TS, we only need to
show that M1 is not M2-injective because of [12, Proposition 14]. Con-
sider f : (I + J)/J → R/I given by

(
4n 0

0 4n

)
+ J �→

(
2n 0

0 2n

)
+ I.

Then f is a well-defined R-homomorphism. Suppose f extends to a
homomorphism g : R/J → R/I. Write g(1R + J) =

( m x

0 m

)
+ I.

Then
(

2 0

0 2

)
+ I = f(41R + J) = g(41R + J) = g(1R + J)41R =( m x

0 m

) (
4 0

0 4

)
+I = 0+I = 0̄. This is a contradiction. So, M1 is not M2-

injective. To see M does not satisfy (C11), let N = [(K +I)/I]⊕(R/J)
where K =

{(
0 x

0 0

)
: x ∈ (0) ⊕ Z2

}
. Suppose M satisfies (C11). Then
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there exists a complement P of N in M such that P is a direct sum-
mand of M . Clearly P �= 0. Since P ∩M2 = 0, we have P ↪→ M1. This
shows that P is Goldie torsion. So, P ⊆ M1 and thus P is a direct
summand of M1. But it is easy to see that M1 is indecomposable, so it
must be P = M1. It follows that (K + I)/I ⊆ N ∩ P , a contradiction.
So, M does not satisfy (C11).

Before giving more decomposition results of 2-decomposable modules,
we point out here that the proof of the uniqueness of [12, Proposition
11] has a gap and a proper statement of [12, Proposition 11] should
be Proposition 1.7. We recall some definitions from [6, Definitions
1.24 and 1.32]. A module D is directly finite if D is not isomorphic
to a proper direct summand of itself. A module P is purely infinite if
P ∼= P ⊕ P . A module M is said to satisfy (T3) if, whenever M1 and
M2 are type submodules as well as direct summands of M such that
M1 ⊕ M2 is essential in M , then M = M1 ⊕ M2 [12, p. 86].

Proposition 1.7. Let M be a TS-module with (T3). Then M has a
decomposition, unique up to superspectivity, M = D⊕P , where D and
D̂ are directly finite, P̂ is purely infinite, and D ⊥ P .

Proof. See the next proposition.

The next two propositions extend the above result and [12, Proposi-
tion 13] from TS-modules to 2-decomposable modules.

Proposition 1.8. Every 2-decomposable module M has a decomposi-
tion M = D⊕P , where D and D̂ are directly finite, P̂ is purely infinite,
and D ⊥ P . If in addition M satisfies (T3), then the decomposition is
unique up to superspectivity.

Proof. Let F = {X : X(ℵ0) ↪→ M} and K = c(F). Then M = D ⊕ P

where D ∈ K and P ∈ c(K) = c(c(F)) = d(F). Then D and D̂ are
directly finite by [6, Lemma 1.26], D ⊥ P and P̂ ∈ d(F). By [6,
Theorem 1.35], P̂ = E1 ⊕ E2 where E1 is directly finite, E2 is purely
infinite and E1 ⊥ E2. We prove E1 = 0 and hence P̂ = E2 is purely
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infinite. If E1 �= 0 then, since E1 ∈ d(F), there exists 0 �= X ⊆ E1 such
that X ∈ F . Thus, X(ℵ0) ∼= N ≤ M for some N . Since N ∈ d(F),
D ⊥ N . It follows that N is embeddable in P . Since E1 ⊥ E2,
N ⊥ E2. This implies that X(ℵ0) ∼= N is embeddable in E1. Thus,
E1 is not directly finite by [6, Proposition 1.27], a contradiction. So,
E1 = 0.

Let M = D1 ⊕ P1 where D1 and D̂1 are directly finite, P̂1 is purely
finite and D1 ⊥ P1. Then we have M̂ = D̂ ⊕ P̂ = D̂1 ⊕ P̂1. By the
uniqueness of [6, Theorem 1.35], D̂ ∼= D̂1 and P̂ ∼= P̂1. Thus, D1 ∈ c(F)
and P1 ∈ d(F). Now the uniqueness follows from [12, Lemma 6].

A module M1 is square free if X ⊕X �↪→ M1 for any nonzero module
X, while a module M2 is square full if, for any 0 �= N ≤ M2, we have
X ⊕ X ↪→ M2 for some 0 �= X ≤ N , see [6, Definitions 2.34 and 2.35].

Proposition 1.9. The module M is square free if and only if every
complement submodule of M is a type submodule.

Proof. Suppose that M is not square free. Then there exist submod-
ules A and B of M such that 0 �= A ∼= B and A ∩ B = 0. For any
complement closure Ac of A in M , Ac ∩ B = 0 and B embeds in Ac.
So, Ac is not a type submodule of M .

Suppose that there exists a complement submodule N of M such that
N is not a type submodule. Then there exists a proper extension P of
N in M such that N‖P . Since N is a complement submodule of M ,
N ∩X = 0 for some nonzero submodule X of P . Since N‖P , X and N
have nonzero isomorphic submodules, and thus M is not square free.

Proposition 1.10. Every 2-decomposable module M has a decom-
position M = M1 ⊕M2, where M1 is square free, M2 is square full and
M1 ⊥ M2. If in addition M satisfies (T3), the decomposition is unique
up to superspectivity.

Proof. The proof of [12, Proposition 13] works.
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There exist 2-decomposable modules satisfying (T3) but not TS.

Example 1.11. Let M be the Z-module Zp ⊕Q where p is a prime
number. Then, by [10, Example 4.2], any submodule isomorphic to
a direct summand of M is a direct summand of M . Thus, for direct
summands M1, M2 of M with M1 ∩ M2 = 0, M1 ⊕ M2 is a direct
summand of M , see [6, Proposition 2.2]. So, M satisfies (T3). But
Z2(M) = Zp is not Q-injective. Thus, M is not TS by [12, Proposition
14], but M is 2-decomposable by Theorem 1.3.

A module M has finite type dimension n, notation: t.dim(M) = n,
if there exists an essential type direct sum A1 ⊕ A2 ⊕ · · · ⊕ An ≤e M
of atomic submodules Ai ⊆ M . In this case such an n is uniquely
determined, see [11, Definition 1.1] and [12, p. 91]. From now on, for
a module M , the annihilator of any m ∈ M is denoted by m⊥ = {r ∈
R : mr = 0}.

Theorem 1.12. The following hold for a module M .

(1) If every type direct summand of M is 2-decomposable, then M
is finitely decomposable. In particular, every TS-module is finitely
decomposable.

(2) Suppose that for any chain m⊥
1 ⊆ m⊥

2 ⊆ · · · of right ideals, where
mi ∈ M , t.dim [⊕∞

i=1R/m⊥
i ] < ∞.

(a) If every type direct summand of M is 2-decomposable, then M is
countably decomposable.

(b) M is fully decomposable if and only if M is a direct sum of atomic
modules.

(c) If M is TS, then M is fully decomposable.

Proof. Let I = {1 < 2 < . . . < n < . . . } ⊆ {i : 1 ≤ i <
ω}. By induction assume that for some 0 ≤ j < ω we have that
M = (⊕j

i=1Mi) ⊕ Nj , where Mi is a type submodule of M of type
Ki and (⊕j

i=1Mi) ⊥ Nj . Then Nj is a type submodule of M . By
hypothesis, Nj is 2-decomposable. Thus, Nj = Mj+1 ⊕ Nj+1, where
Mj+1 ∈ Kj+1, Nj+1 ∈ c(Kj+1). Then, by [12, Lemma 1], Mj+1 is a
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type submodule of M of type Kj+1. Thus again M = (⊕j+1
i=1Mi)⊕Nj+1

with (⊕j+1
i=1Mi) ⊥ Nj+1.

(1) If the index set is the finite set {1, . . . , n}, take j = n. Since
∨i≤nKi = 1, Nn+1 = 0, and so M = ⊕n

i=1Mi. The last statement
follows because every type direct summand of a TS-module is TS [12,
Lemma 4].

(2) We first note that, by the proof of [12, Proposition 18], it follows
from our assumption that every local type summand of M , i.e., a direct
sum ⊕i∈IXi in M with all Xi type submodules such that ⊕i∈F Xi is a
summand of M for any finite subset F of I, is a type submodule.

(a) Let I = {i : 1 ≤ i < ω}. Then by induction, ⊕i<ωMi ⊕ C ≤e M
for some C ≤ M , where Mi is a type submodule of M of type Ki, and
(⊕i<ωMi) ⊥ C. This shows that Ki ∧d(C) = 0 for all i < ω. Since any
complete Boolean lattice satisfies a limited infinite distributive law,
d(C) = d(C) ∧ (∨i<ωKi) = ∨i<ω(d(C) ∧ Ki) = 0, from which we
conclude that also C = 0. Next, by the note above, the local type
summand ⊕i<ωMi ≤e M is a type submodule, and hence in particular,
a complement submodule. Hence M = ⊕i<ωMi.

(b) Suppose that M = ⊕t∈T Xt where all Xt are atomic modules. Let
{Ki : i ∈ I} be a maximal set of pairwise orthogonal types. Note that
each Xt is in some unique Ki. For each i ∈ I, let Ni = ⊕{Xt : t ∈ T and
Xt ∈ Ki} or Ni = 0 if no Xt is in Ki. Then Ni ∈ Ki and M = ⊕i∈INi.
So, M is fully decomposable.

Suppose that M is fully decomposable. The hypothesis implies
that every nonzero submodule of M contains an atomic submodule.
So, there exists a family {Xi : i ∈ I} of atomic submodules of M
such that Xi ⊥ Xj if i �= j ∈ I and X = ⊕i∈IXi ≤e M . Then
{c(X)}∪ {d(Xi) : i ∈ I} is a maximal set of pairwise orthogonal types,
and thus M = P ⊕ (⊕i∈IMi) where P ∈ c(X) and Mi ∈ d(Xi). It must
be that P = 0 and all Mi are atomic.

(c) Note that every local type summand of M is a direct summand.
If M is TS, then, by [12, Proposition 16], M = ⊕i∈IMi where each Mi

is not a type direct sum of two nonzero submodules. Each Mi is still
TS, so it must be atomic.
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A ring R is said to satisfy (right) t-acc if, for any ascending chain
I1 ⊆ I2 ⊆ · · · ⊆ In ⊆ · · · of right ideals, t.dim(⊕iR/Ii) < ∞. The
rings satisfying t-acc were characterized in [12]. The next theorem
gives some new characterizations of these rings.

Theorem 1.13. The following are equivalent for a ring R:

(1) R satisfies t-acc.

(2) Every module whose type direct summands are 2-decomposable is
countably decomposable.

(3) Every TS-module is fully (or countably) decomposable.

(4) Every injective module is fully (or countably) decomposable.

Proof. (1) ⇒ (2) + (3) + (4). By Theorem 1.12.

(3) ⇒ (4). Obvious.

(2) ⇒ (1) and (4) ⇒ (1). Suppose that every injective module is
countably decomposable. By [12, Theorem 22], it suffices to show
that, for any set {Ei : i ∈ I} of pairwise orthogonal injective modules,
⊕i∈IEi is injective. By [6, Theorem 1.7], we can assume that I is a
countable set. Let E = E(⊕i∈IEi). Then {c(E)} ∪ {d(Ei) : i ∈ I}
is a countable maximal set of pairwise orthogonal types. Since E is
countably decomposable, E = A ⊕ (⊕i∈IAi) where A ∈ c(E) and
Ai ∈ d(Ei). It must be that A = 0. So E = Ai ⊕ (⊕j �=iAj) and
⊕j �=iAj ∈ c(Ei) = c(d(Ei)). On the other hand, E = Ei ⊕ Bi for some
Bi. Because Ei ⊥ Ej whenever i �= j in I, Ei ⊥ Bi and so Bi ∈ c(Ei).
Thus, we have E = Ei ⊕Bi = Ai ⊕ (⊕j �=iAj) where Ei, Ai ∈ d(Ei) and
Bi,⊕j �=iAj ∈ c(Ei). By [12, Lemma 6], Ei is perspective to Ai. Thus,
Ei

∼= Ai for all i ∈ I. It follows that ⊕i∈IEi
∼= ⊕i∈IAi = E is injective.

By Theorem 1.13, for any ring R without t-acc, there exists a
finitely decomposable R-module which is not countably decomposable.
We do not know if every 2-decomposable module is always finitely
decomposable and if every countably decomposable module is always
fully decomposable. But if R = Z or a commutative Dedekind domain,
every 2-decomposable module is always fully decomposable as the next
theorem shows.
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Theorem 1.14. For R = Z, the following are equivalent for an
abelian group M :

(1) M is 2-decomposable.

(2) M is fully decomposable.

(3) M is a direct sum of a torsion abelian group and a torsion free
abelian group.

(4) Every direct summand of M is 2-decomposable.

Proof. (1) ⇒ (3). By Theorem 1.4.

(3) ⇒ (2). Note that every torsion free abelian group is atomic
and every torsion abelian group is a direct sum of atomic modules.
Then, if (3) holds, M is a direct sum of atomic modules. By 2(b) of
Theorem 1.12, M is fully decomposable.

(2) ⇒ (1) and (4) ⇒ (1). Obvious.

(3) ⇒ (4). Write M = A ⊕ B where A is torsion and B is torsion
free. Let N be any direct summand of M . Write M = N ⊕ N ′. Since
Z2(M) ≤ M is fully invariant, Z2(M) = [Z2(M)∩N ]⊕ [Z2(M)∩N ′] =
Z2(N) ⊕ Z2(N ′). Thus N = N ∩ [Z2(N) ⊕ Z2(N ′) ⊕ K] = Z2(N) ⊕
{N ∩ [Z2(N ′)⊕K]}, where the last summand is torsion free. Thus, N
satisfies (3). By the equivalence (1) ⇔ (3), B is 2-decomposable.

The next proposition gives a partial answer to the question of when
a direct sum of atomic modules is TS. For any M = ⊕i∈IMi and any
j ∈ I, set M(I − j) = ⊕{Mi : i ∈ I, i �= j}.

Proposition 1.5. Let 0 �= N ≤t M = ⊕i∈IMi be any type
submodule where all Mi, i ∈ I are atomic and, for all j ∈ I,
HomR( ̂M(I − j), M̂j) = 0. Then N = ⊕{Mi : i ∈ I, Mi ⊆ N}.

Proof. Define I(0) = {i ∈ I : Mi ⊆ N} ⊆ I(1) = {i ∈ I | πiN �= 0}.
Note that ⊕i∈I(0)Mi ⊆ N ⊆ ⊕i∈I(1)Mi. It suffices to prove that for
any j ∈ I(1), j ∈ I(0) so that I(0) = I(1). Choose the notation so that
j = 1 and let K = M(I − 1). Then M = M1 ⊕ K and M̂ = M̂1 ⊕ K̂.
Let π : M̂ −→ M̂1 and ρ : M̂ −→ K̂ be the corresponding projections.
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Take C ≤ N with (N ∩ M1) ⊕ (N ∩ K) ⊕ C ≤e N . Note that
K∩C = K∩N∩C = 0 and M1∩C = M1∩N∩C = 0, so ker(π)∩C = 0
and ker(p) ∩ C = 0. Thus C ∼= πC ∼= pC. It follows that C ∈ d(M1)
and C ∈ d(K). But since M1 ⊥ K, and C ∈ d(M1) ∩ d(K) = {(0)},
C = 0. Thus (N ∩ M1) ⊕ (N ∩ K) ≤e N .

Case 1. N ∩ M1 = 0. Thus also N ∩ M̂1 = 0. From (N ∩ M1) ⊕
(N ∩ K) ≤e N we get that N ∩ K ≤e N . For n, n′ ∈ N , if pn = pn′,
then p(n− n′) = 0, n− n′ ∈ N ∩ M̂1 = 0, or n = n′. Consequently the
restriction p|N : N → K, n �→ pn is monic. Let g be the monic inverse
map g : p(N) → N , where g(pn) = n. Define ϕ = πg. Thus there exists
a map ϕ̂ : K̂ → M̂1 that extends ϕ. If p(N) = 0, then N ⊆ M̂1, and
hence N ⊆ N ∩ M̂1 = 0. So let p(N) �= 0, in which case gp(N) = N . If
π|N : N → M̂1 is not zero, then ϕ(pN) = π(gp(N)) = πN �= 0. Hence
0 �= ϕ̂ ∈ HomR(K̂, M̂1) = 0 contradicts the hypothesis. Therefore
π(N) = 0, which contradicts that 1 ∈ I(1).

Case 2. N ∩M1 �= 0. If (N ∩M1)⊕D ≤ M1 with D nonzero, then by
the atomicity of M1, N∩M1 and D have a common nonzero isomorphic
submodule. But since N + D = N ⊕ D, it follows that N ⊥ D, and
this is a contradiction. So, N ∩ M1 ≤e M1. Form N ⊆ N̂ ⊆ M̂ , and
since N ∩M1 ⊂ N , choose some injective hull of N ∩M1 inside N̂ , i.e.,
M̂1

∼= ̂N ∩ M1 ⊆ N̂ . Since M̂1 < M̂ is fully invariant by the hypothesis,
M̂ contains a unique injective hull of M1, i.e., M̂1 = ̂N ∩ M1 ⊆ N̂ .
Since N < M is a complement, and since N ≤e N̂ ∩ M , necessarily
N = N̂ ∩ M . Since also M̂1 ∩ M = M1, we get that

M̂1 ⊆ N̂ =⇒ M ∩ M̂1 ⊆ M ∩ N̂ ⇐⇒ M1 ⊆ N.

Thus 1 ∈ I(0). Consequently I(0) = I(1).

We conclude this section by proving a type analogue of a result of
Müller and Rizvi in [7].

Theorem 1.16. If every type direct summand of M is 2-decomposable,
then M has a decomposition M = M1 ⊕ M2, where M1 is essential
over a type direct sum ⊕i∈INi of atomic type summands of M and
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M2 contains no atomic submodules. Moreover, if in addition M sat-
isfies the condition that, for any two type direct summands A and B
with A ∩ B = 0, A ⊕ B is a direct summand of M , then the decom-
position is unique in the sense that if M has another decomposition
M = M ′

1 ⊕ M ′
2, where M ′

1 is essential over a type direct sum ⊕j∈JN ′
j

of atomic type summands of M and M ′
2 contains no atomic submod-

ules, then M1
∼= M ′

1, M2
∼= M ′

2 and there is a bijection θ : I → J such
that Ni

∼= N ′
θ(i) for all i ∈ I.

Proof. The existence: Let K be the class of the modules containing
no atomic submodules. Then K is a natural class and c(K) is the class
of the modules N such that every nonzero submodule of N contains
an atomic submodule. Thus, there exists M1 ∈ c(K) and M2 ∈ K such
that M = M1⊕M2. It follows that M1 contains an essential submodule
X = ⊕i∈IXi where each Xi is atomic. Without loss of generality, we
may assume that Xi ⊥ Xj for all i �= j in I. By the hypothesis, M1 is
2-decomposable. For each k ∈ I, let Zk = ⊕{Xi : i ∈ I, i �= k}. Then,
by Theorem 1.2, there exists a type complement Nk of Zk in M1 such
that Nk is a summand of M1 (and hence of M). Since Xk ⊕Zk ≤e M1,
it can easily be proved that Nk‖Xk. So, Nk is an atomic type summand
of M and ⊕i∈INi is a type direct sum. To see that ⊕i∈INi is essential
in M1, let (⊕i∈INi)∩Y = 0 where Y is a submodule of M1. Since each
Ni is a type submodule, Y ⊥ Ni for all i ∈ I. Thus, Y ⊥ Xi for all
i ∈ I. It follows that Y ⊥ (⊕i∈IXi) and so Y ∩ (⊕i∈IXi) = 0. Since
⊕i∈IXi is essential in M1, we have Y = 0.

The uniqueness: Suppose M ′
1, M

′
2 and ⊕j∈JN ′

j are as assumed above.
Since M is a 2-decomposable module satisfying (T3), by [12, Lemma
6], M1

∼= M ′
1 and M2

∼= M ′
2. Note that both type direct sums ⊕i∈INi

and ⊕j∈JN ′
j are essential in M1 and all Ni, N

′
j are atomic. It follows

that, for each i ∈ I, there exists a unique ji ∈ J such that Ni‖N ′
ji

,
and, for each j ∈ J , there exists a unique ij ∈ I such that N ′

j‖Nij
.

Then θ : I −→ J defined by θ(i) = ji is a bijection. Since Ni and N ′
θ(i)

both are type summands of M1, write M1 = Ni ⊕ A = N ′
θ(i) ⊕ B with

Ni ⊥ A and N ′
θ(i) ⊥ B. Then Ni and N ′

θ(i) are in d(Ni) and A, B are
in c(Ni). By [12, Lemma 6], Ni

∼= N ′
θ(i).
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2. UTC-modules and uniqueness of type decompositions. If
M = ⊕i∈IMi where each Mi ∈ Ki and {Ki : i ∈ I} is a maximal set of
pairwise orthogonal types, then each Mi is a type submodule of M of
type Ki. Thus, an obvious sufficient condition for this decomposition to
be unique is that M has a unique type submodule of type K for every
natural class K. This observation leads us to introduce and study UTC-
modules. A partial homomorphism from M to N is a homomorphism
from a submodule of M to N .

Theorem 2.1. The following are equivalent for a module M :

(1) M has a unique type submodule of type K for every natural class
K.

(2) For every natural class K, Σ{X ⊆ M : X ∈ K} ∈ K, i.e., M has
a largest submodule in K.

(3) Every submodule has a unique type closure in M .

(4) For any nonzero submodule N of M , if C1 �= C2 are two closures
of N in M then there exists 0 �= X ⊆ C1 + C2 such that C1 ∩ X = 0
and X ↪→ N .

(5) There does not exist an R-module X and a proper essential
submodule Y of X such that X ⊥ (X/Y ) and X ⊕ (X/Y ) embeds
in M .

(6) Every partial endomorphism f : A −→ M with f(A) ⊥ A, ker(f)
is a complement submodule of A.

Proof. (1) ⇔ (2). It is obvious.

(2) ⇒ (3). Let N be a submodule of M and K = d(N). Then K is a
natural class. For any type closure N tc of N in M , we have N tc ∈ K.
Thus N tc ⊆ P where P = Σ{X ⊆ M : X ∈ K} ∈ K. By the definition
of N tc, P = N tc. Therefore, P is the only type closure of N in M .

(3) ⇒ (4). Suppose that a nonzero submodule N of M has closures
C1 �= C2 in M . Let K = d(N) and P = C1 + C2. Then N ≤e C1 and
N ≤e C2. It is easy to see that Ctc

1 and Ctc
2 are type closures of N in

M . By (3), Ctc
1 = Ctc

2 . So, P ⊆ Ctc
1 ∈ K. Since C1 �= C2, C1 ∩ A = 0

for some 0 �= A ⊆ P . Then A ∈ K. It follows that X ↪→ N for some
0 �= X ⊆ A. Thus, (4) is proved.
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(4) ⇒ (2). Let K be a natural class. To show (2), it suffices to show
that for any submodules X and Y of M , if X and Y are in K then
so is X + Y . By Zorn’s lemma, there exists a submodule P maximal
with respect to X ⊆ P ∈ K and a submodule Q maximal with respect
to Y ⊆ Q ∈ K. Then P and Q are complement submodules of M ,
P ∩ Q ≤e P and P ∩ Q ≤e Q. So, P and Q both are closures of
P ∩ Q in M . If P �= Q, by (4), there exists 0 �= X ⊆ P + Q such that
P ∩ X = 0 and X ↪→ P ∩ Q. Then X ∈ K and P ⊂ P ⊕ X ∈ K, a
contradiction. So P = Q and thus X + Y ⊆ P ∈ K.

(5) ⇒ (1). Suppose (1) does not hold. Then there exist type
submodules T1 �= T2 of M of type K for a natural class K. It follows
that T1 ∩ T2 �= 0, T1 ∩ T2 ≤e Ti for i = 1, 2, and T1 ∩ T2 is not
essential in T1 + T2. Thus, there exists 0 �= A ⊆ T1 + T2 such that
T1 ∩ T2 ∩ A = 0. It follows that Ti ∩ A = 0 for i = 1, 2. Since
each Ti is a type submodule of M , we have Ti ⊥ A. We see that
A = A/(T1 ∩ A) ∼= (A + T1)/T1 ⊆ (T2 + T1)/T1

∼= T2/(T1 ∩ T2). Then
A ∼= B/(T1∩T2) for some B with T1∩T2 ≤e B ⊆ T2. Note that B ⊥ A,
and so B ∩ A = 0 and B ⊕ A ⊆ M .

(3) ⇒ (5). Suppose there exists an embedding X ⊕ (X/Y ) α→ M
where Y is a proper essential submodule of X and X ⊥ (X/Y ). Take
x ∈ X but x /∈ Y and let m1 = α(x) and m2 = α(x+Y ). Then m1R ⊥
m2R. To see this, let m1aR ∼= m2bR for some a, b ∈ R. It follows that
α(xaR) ∼= α((x + Y )bR). This gives that xaR ∼= (x + Y )bR. It must
be xaR = 0 since X ⊥ (X/Y ). So, m1aR = 0. Thus, m1R ⊥ m2R.
Moreover, m⊥

1 ⊆ m⊥
2 and m⊥

2 /m⊥
1 ≤e R/m⊥

1 . We next prove m2 = 0,
which gives a contradiction. Define β : m1R → m2R by β(m1r) = m2r,
r ∈ R. Then β is a homomorphism and ker (β) = m1m

⊥
2 . Let L be a

type closure of ker (β) in m1R. Define f : m1R → m1R ⊕ m2R (⊆ M)
by f(x) = x + β(x), x ∈ m1R. Then f is a monomorphism. Since L
is a type closure of ker (β) in m1R, f(ker (β)) is parallel to f(L). This
gives that ker (β) is parallel to f(L). Let Ltc and f(L)tc be the type
closures of L and f(L) in M respectively. Then both Ltc and f(L)tc

are type closures of ker (β) in M . By (3), Ltc = f(L)tc. It follows that
L + f(L) is a parallel extension of L. Note L is a type submodule of
m1R. Since m1R ⊥ m2R, L is a type submodule of m1R⊕m2R. This
implies that L = L+f(L), i.e., f(L) ⊆ L. It follows that β(L) ⊆ L.
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Since m1R ⊥ m2R, we have β(L) = 0. Thus, Ker(β) = L is a
type submodule of m1R. Since m1R/ker (β) ∼= m2R, the fact that
m1R ⊥ m2R implies that ker (β) = m1R. Hence m2 = β(m1) = 0.

(6) ⇒ (5). Suppose (5) does not hold. Then there exists 0 �= X
and a proper essential submodule Y of X such that X ⊥ (X/Y ) and

X ⊕ (X/Y )
h
↪→ M and π : X → X/Y the quotient map. Let A = h(X)

and f = h◦π ◦h−1. Then f : A −→ M is well defined, f(A) = h(X/Y )
and ker (f) = h(Y ). So, ker (f) is not a complement submodule of A,
but f(A) ⊥ A.

(5) ⇒ (6). Suppose there exists f : A → M such that f(A) ⊥ A,
but ker (f) is not a complement submodule of A. Replacing A by a
complement closure of ker (f) in A, we can assume without loss of
generality that ker (f) is properly essential in A. Note that f(A)∩A =
0, and thus A ⊕ [A/ker (f)] ↪→ M . So, (5) fails to hold.

A module M is called a UTC-module (UTC for unique type closure)
if M satisfies any of the equivalent conditions in Theorem 2.1.

Example 2.2. (1) All nonsingular modules are UTC.

(2) A module is a UC-module if every submodule has a unique
complement closure [9]. All UC-modules are UTC.

(3) All atomic modules are UTC.

(4) For R = Z, an abelian group M is UTC if and only if either
M is torsion, or M is torsion free. This can easily be verified using
Theorem 2.1 (5).

Theorem 2.1 (6) shows that submodules of a UTC-module are UTC.
Next, using ideas of Camillo and Zelmanowitz in [1], we determine
when an essential extension of a UTC-module is UTC, and when a
type direct sum of UTC-modules is UTC. For a submodule X of M , if
X is itself a UTC-module then X is called a UTC-submodule.

Proposition 2.3. Let Mi be an ascending chain of UTC-submodules
of M . Then ∪Mi is a UTC-submodule. In particular, every module
contains maximal UTC-submodules.
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Proof. Suppose that ∪Mi is not UTC. Then there exists a partial
homomorphism f : A → ∪Mi such that f(A) ⊥ A but ker(f) is not a
complement submodule of A. We can assume that ker(f) is properly
essential in A. Take a ∈ A but a /∈ ker(f). Then f(a) ∈ Mi for some
i. Let A′ = ker(f) + aR. Thus f : A′ → Mi is such that f(A′) ⊥ A′

and ker(f) is not a complement submodule of A′. So, Mi is not UTC.

The next example shows that an essential extension of a UTC-module
may not be UTC.

Example 2.4. Let M = ⊕∞
i=1Z/piZ where pi is the ith prime

number. Let R = {(nx
0n) : n ∈ Z, x ∈ M}. R is a ring under the usual

addition and multiplication of matrices, and Soc (R) = {(0x
00) : x ∈ M}

is essential in RR. Since Soc (RR) is semi-simple, it is clearly UTC. To
see RR is not UTC, let N = ⊕i≥2Z/piZ, A = {(nx

0n) : n ∈ 2Z, x ∈ N}
and B = {(nx

0n) : n ∈ 4Z, x ∈ N}. Then A and B are R-modules,
A ⊥ (A/B) and A ⊕ (A/B) embeds in RR.

For a module M , define ϕt(M) = {X ≤ M̂ : for Y ≤ X and
f ∈ End (M̂), f(Y ) ⊥ Y and f(Y ∩ M) = 0 implies f(Y ) = 0}. As in
[1, p. 253], define ϕ(M) = {X ≤ M̂ : for Y ≤ X and f ∈ End (M̂),
f(Y ) ∩ Y = 0 and f(Y ∩ M) = 0 implies f(Y ) = 0}.

Theorem 2.5. For a module M , the following hold.

(1) M ∈ ϕ(M) ⊆ ϕt(M).

(2) ϕt(M) has maximal elements.

(3) If M is UTC, then every X ∈ ϕt(M) is UTC.

(4) If X ≤e M̂ and X /∈ ϕt(M) then X is not UTC.

Proof. The proof of [1, Theorem 8] works.

The next result is the type analogue of [1, Theorem 13] which gives
a sufficient and necessary condition for a direct sum of modules to be
UC.
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Theorem 2.6. Let M = ⊕i∈IMi where Mi ⊥ Mj whenever i �= j.
Then M is UTC if and only if each Mi is UTC and every partial
homomorphism between two distinct Mi is zero.

Proof. “⇒.” For any h : Ai −→ Mj where Ai ≤ Mi and i �= j, we
have Ai ⊥ h(Ai). By Theorem 2.1, ker(h) is a complement submodule
of Ai. Let Bi be a complement of ker(h) in Ai. Thus, Bi is isomorphic
to an essential submodule of Ai/ ker(h) which embeds in Mj . Since
Mi ⊥ Mj , it must be that Ai/ ker(h) = 0̄, i.e., h = 0.

“⇐.” By Proposition 2.3, it suffices to show that M is UTC whenever
|I| < ∞. We proceed by induction on |I|.

Case 1. |I| = 2, i.e., M = M1 ⊕ M2. Let A ⊆ M and f : A → M
be a homomorphism with f(A) ⊥ A. We need to show that ker(f)
is a complement submodule of A by Theorem 2.1. Replacing A by a
complement closure of ker(f) in A, we may assume that ker(f) ≤e A.
We want to show that f = 0. Let πi be the projection of M onto Mi,
i = 1, 2.

Subcase 1. π1f(A) = 0, i.e., f(A) ⊆ M2. The map f : A∩M2 −→ M2

has an essential kernel ker(f) ∩ M2. Since M2 is UTC, it must be
f(A ∩ M2) = 0 by Theorem 2.1. So, there is a natural epimorphism
A/A ∩ M2 −→ A/ ker(f) → 0 with A/ ker(f) ↪→ M2. But, there is a
monomorphism A/A ∩ M2

π̄
↪→ M1 where π̄(ā) = π1(a), a ∈ A. Since

every partial homomorphism from M1 to M2 is zero, A/ ker(f) = 0̄,
and so f = 0. Similarly, f = 0 if π2(A) = 0.

Subcase 2. π1f(A) �= 0 and π2f(A) �= 0. Thus, either π1f(A)∩A �≤e

π1f(A) or π2f(A) ∩ A �≤e π2f(A), for otherwise, A ∩ [(π1f(A) ⊕
π2f(A)] ≤e (π1f(A)⊕ π2f(A) which leads A∩ f(A) �= 0, contradicting
A ⊥ f(A). So, we may assume π1f(A) ∩ A �≤e π1f(A). Thus,
[π1f(A)∩A]∩Y0 = 0 for some 0 �= Y0 ⊆ π1f(A). Let A0 = (π1f)−1(Y0)
and then π1f |A0 : A0 −→ Y0 gives a partial homomorphism from M to
M2. Clearly the kernel of π1f |A0 is ker(f) which is essential in A0. By
Subcase 1, π1f |A0 = 0. Thus, Y0 = 0, a contradiction.
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Case 2. |I| = n > 2. Then M = ⊕n
i=1Mi. By the induction

hypothesis, Z = ⊕n
i=2Mi is UTC. Then M = M1 ⊕ Z with M1 ⊥ Z,

and every partial homomorphism from M1 to Z is zero. Next we prove
every partial homomorphism from Z to M1 is zero, and thus the claim
follows from Case 1.

Let B ⊆ Z and g : B → M1 be a homomorphism. We prove g = 0
by induction on n. Suppose g �= 0. Since Z ⊥ M1, ker(g) is not a
complement submodule of B. Replacing B by a complement closure of
ker(g) in B, we may assume ker(g) ≤e B. Let W = ⊕n

i=3Mi and π be
the projection of Z onto M2. By induction hypothesis, the restriction of
g on A∩W is zero. Thus, g(B∩W ) = 0 and so there is an epimorphism
B/B ∩ W → B/ ker(g) −→ 0 with B/ ker(g) ↪→ M1. But there is a
monomorphism B/B∩W

π̄
↪→ M2 where π̄(b̄) = π(b), b ∈ B. Since every

partial homomorphism from M2 to M1 is zero, B/ ker(g) = 0̄, and so
g = 0. The proof is complete.

Note that Z ⊕ Z2 is not UTC though Z,Z2 are UTC and Z ⊥ Z2.
For a UTC-module M , if M is 2-decomposable, then M is TS because
any type submodule of M is the unique type closure of its unique type
complement in M and hence is a direct summand of M . If N is a
submodule of a UTC-module M such that N is fully invariant in M̂
(equivalently, N is quasi-injective), then N has a unique complement
closure, in M , which is a type submodule of M , by Theorem 2.1. Next,
we are back to type decompositions of modules.

Definition 2.7 [3]. We use X ⊆⊕ Y to mean that X is a direct
summand of module Y . Let E be an injective module. Then E is said
to be abelian if E = P1⊕P2⊕V with P1

∼= P2 implies P1 = P2 = 0. The
module E is of type I if for all 0 �= N ⊆⊕ E, there exists 0 �= X ⊆⊕ N
such that X is abelian. Next the module E is of type III if for all
0 �= N ⊆⊕ E, P ∼= P ⊕P for some 0 �= P ⊆⊕ N . Lastly, E is of type II
provided that for all 0 �= N ⊆⊕ E, N is not abelian, and there exists
0 �= X ⊆⊕ N such that P �∼= P ⊕ P for all 0 �= P ⊆⊕ X.

A module M is said to be of type I, respectively type II or type III,
if and only if M̂ is of type I, respectively type II or type III.
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Let I1, respectively I2 or I3, be the class of all R-modules of type I,
respectively type II or type III. Then, by [3], I1, I2, I3 form a maximal
set of pairwise orthogonal types.

Corollary 2.8. Every 2-decomposable module M has a decompo-
sition M = M1 ⊕ M2 where M1 contains an essential direct sum of
uniform submodules and M2 contains no uniform submodules. The de-
composition is unique if M is in addition UTC.

Proof. Let K be the class of all modules containing an essential
direct sum of uniform submodules. Then K is a natural class and c(K)
is the class of all modules containing no uniform submodules. Since
M is 2-decomposable and UTC, the existence and uniqueness of the
decomposition follow.

Corollary 2.9. Every finitely decomposable module M has a decom-
position M = M1 ⊕ M2 ⊕ M3 with M1 ∈ I1, M2 ∈ I2 and M3 ∈ I3.
The decomposition is unique if M is in addition UTC.
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