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ANALYTIC FUNCTIONS WITH H p -DERIVATIVE

DANIEL GIRELA AND MARÍA AUXILIADORA MÁRQUEZ

ABSTRACT. For f an analytic function in the unit disc ∆,
the following results are well known:

(1) If f ′ ∈ Hp with 0 < p < 1 then f ∈ Hp/(1−p).

(2) If f ′ ∈ H1, then f belongs to the disc algebra.

(3) If f ′ ∈ Hp with 1 < p < ∞, then f belongs to the
Lipschitz space Λα with α = (p − 1)/p.

Both (1) and (2) have been shown to be sharp in a strong
sense. We prove constructively that (3) is also very strongly
sharp.

In spite of what we have just said, Aleman and Cima
have recently obtained an improvement of (1) showing that a
certain condition which is weaker than the condition f ′ ∈ Hp,
0 < p < 1, is enough to conclude that f ∈ Hp/(1−p). In this
paper we also obtain the analogues of this for p ≥ 1.

1. Introduction and main results. Let ∆ denote the unit disc
{z ∈ C : |z| < 1} and T the unit circle {ξ ∈ C : |ξ| = 1}. For 0 ≤ r < 1
and f analytic in ∆, we set

Mp(r, f) =
(

1
2π

∫ π

−π

|f(reiθ)|p dθ

)1/p

, if 0 < p < ∞,

M∞(r, f) = max
|z|=r

|f(z)|.

For 0 < p ≤ ∞ the Hardy space Hp consists of those functions f ,
analytic in ∆, for which

‖f‖Hp
def= sup

0≤r<1
Mp(r, f) < ∞.

There are a good number of classical and well-known results showing
that the condition f ′ ∈ Hp for a certain value of p implies that the
function f belongs to a certain space of analytic functions.
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Ciencia y Tecnoloǵıa, Spain” (BFM2001-1736) and by a grant from “La Junta de
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First, we recall the following result due to Hardy and Littlewood, see
[6, Theorem 5.12].

Theorem A. Let f be a function which is analytic in ∆. If 0 < p < 1
and f ′ ∈ Hp then f ∈ Hq, where q = p/(1 − p).

Taking f ′(z) = (1 − z)ε−1/p for small ε > 0 we see that for each
value of p ∈ (0, 1) the index q is best possible. In [14] we proved that
Theorem A is sharp in a much stronger sense.

Theorem A can be extended to p = 1. Indeed, a result of Privalov [6,
Theorem 3.11] implies that

(1.1)
f ′ ∈ H1 =⇒ f ∈ A ⊂ H∞

where, as usual, A denotes the disc algebra formed by all functions
which are analytic in ∆ and have a continuous extension to ∆. This
result has also been shown to be sharp, see [4, 9, 10, 17] and [13].

Now we consider functions f which are analytic in ∆ whose derivative
f ′ belongs to Hp for some p > 1. In this case the function f belongs
to a certain Lipschitz space.

If f is a function which is analytic in ∆ and has a nontangential limit
f(eiθ) at almost every eiθ ∈ T, we define

ωp(t; f) = sup
0<|h|≤t

(
1
2π

∫ π

−π

|f(ei(θ+h)) − f(eiθ)|p dθ

)1/p

,

t > 0, if 1 ≤ p < ∞,

ω∞(t; f) = sup
0<|h|≤t

(
ess. sup
θ∈[−π,π]

|f(ei(θ+h)) − f(eiθ)|
)

, t > 0.

Then ωp(. , f) is the integral modulus of continuity of order p of the
boundary values f(eiθ) of f . Given 1 ≤ p ≤ ∞ and 0 < α ≤ 1, the
mean Lipschitz space Λp

α is defined as

Λp
α = {f ∈ Hp : ωp(t; f) = O(tα), as t → 0}.
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A theorem of Hardy and Littlewood [15], see also Chapter 5 of [6],
asserts that for 1 ≤ p ≤ ∞ and 0 < α ≤ 1, we have

(1.2)

Λp
α =

{
f analytic in ∆ : Mp(r, f ′) = O

(
1

(1 − r)1−α

)
, as r → 1

}
.

If p = ∞ we write Λα instead of Λ∞
α . Thus, a function f which is

analytic in ∆ belongs to Λα if and only if it has a continuous extension
to the closed unit disc ∆ and its boundary values satisfy a Lipschitz
condition or order α.

Hardy and Littlewood also proved the following result.

Theorem B. Let f be a function which is analytic in ∆. If
1 < p ≤ ∞ and f ′ ∈ Hp then f ∈ Λα, where α = 1 − 1/p.

Our first goal in this paper is to show that Theorem B is also sharp
in a very strong sense. In order to do this we shall use the following
generalization of the mean Lipschitz spaces Λp

α which occurs frequently
in the literature. If ω : [0, π] → [0,∞) is a continuous and increasing
function with ω(0) = 0 and w(t) > 0 if 0 < t ≤ π, then, for 1 ≤ p ≤ ∞,
the mean Lipschitz space Λ(p, ω) consists of those functions f ∈ Hp

which satisfy
ωp(t; f) = O

(
(ω(t)

)
, as t → 0.

Let us notice that taking 0 < α ≤ 1 and ω(t) = tα, we have

(1.3) Λp
α = Λ(p, tα), 1 ≤ p ≤ ∞, 0 < α ≤ 1.

The question of finding conditions on ω so that it is possible to obtain
results on the spaces Λ(p, ω) analogous to those proved by Hardy and
Littlewood for the spaces Λp

α has been studied by several authors, see
e.g., [5] and [16]. If ω : [0, π] → [0,∞) is a continuous and increasing
function with ω(0) = 0 and w(t) > 0 if 0 < t ≤ π, we say that ω
satisfies the Dini condition or that ω is a Dini-weight if there exists a
positive constant C such that

(1.4)
∫ t

0

ω(s)
s

ds ≤ Cω(t), 0 < t < π,
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and we say that ω satisfies the condition b1 or that ω ∈ b1 if there exists
a positive constant C such that

(1.5)
∫ π

t

ω(s)
s2

ds ≤ C
ω(t)

t
, 0 < t < π.

Note that if 0 < α < 1 then ω(t) = tα is a Dini and b1 weight.

Blasco and Soares de Souza obtained in [5] the following extension of
(1.2).

Theorem C. Let 1 ≤ p ≤ ∞ and let ω : [0, π] → [0,∞) be a
continuous and increasing function with ω(0) = 0 and w(t) > 0 if
0 < t ≤ π. If ω is a Dini-weight and satisfies the condition b1, then
(1.6)

Λ(p, ω) =
{

f analytic in ∆ : Mp(r, f ′) = O
(

ω(1−r)
1−r

)
, as r → 1

}
.

Now let 1 < p < ∞ and α = 1 − 1/p, and observe that, using (1.2)
and (1.3), one can write Theorem B in the form

f ∈ Λp
1 = Λ(p, t) =⇒ f ∈ Λα,

or, equivalently,

(1.7) Λ(p, t) ⊂ Λα.

Our first result in this paper asserts that this is sharp.

Theorem 1. Let 1 < p < ∞ and α = 1− 1/p. If ω : [0, π] → [0,∞)
is a continuous and increasing function with ω(0) = 0 and w(t) > 0 if
0 < t ≤ π, such that ω is a Dini-weight, satisfies the condition b1 and

(1.8) lim sup
δ→0

ω(δ)
δ

= ∞,

then there exists a function f ∈ Λ(p, ω) such that f /∈ Λα.

The proof of this result will be presented in Section 2.
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Even though, as we noticed above, Theorem A is sharp in a very
strong sense, Aleman and Cima have recently proved in [1] an extension
of this result as follows.

If 0 < p < ∞ and p1, p2 are positive numbers such that 1/p =
1/p1 + 1/p2, then given g ∈ Hp, g can be written in the form

g = Bh = Bhp/p1hp/p2 ,

where B is the Blaschke product with the same zeros as g and h ∈ Hp.
Then, setting g1 = Bhp/p1 and g2 = hp/p2 we see that g can be factored
as

(1.9) g = g1g2, with g1 ∈ Hp1 , g2 ∈ Hp2 .

Using Hölder’s inequality one can easily see that any function which
can be written in this way belongs to Hp. Thus, we have

Lemma 1.1. If 0 < p < ∞ and p1, p2 are positive numbers such
that 1/p = 1/p1 + 1/p2, then Hp = Hp1 · Hp2 .

Now, as is well known, see, e.g., the lemma on page 36 of [6], if
g2 ∈ Hp2 then

(1.10) M∞(r, g2) = O
(

1
(1 − r)1/p2

)
, as r → 1,

but the class of functions which are subject to this growth restriction
is much larger than Hp2 . Using this fact and Lemma 1.1, we see that
the following result due to Aleman and Cima [1] is an improvement of
Theorem A.

Theorem D. Let 0 < p < 1 and p1 > 0, p2 > 1 be such that
1/p = 1/p1 + 1/p2. Let f be an analytic function in ∆ such that f ′

can be factored in the form f ′ = g1g2 where g1 ∈ Hp1 and g2 is an
analytic function in ∆ which satisfies (1.10). Then f ∈ Hq, where
q = p/(1 − p).
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Since (1.1) is a natural extension of Theorem A to p = 1, it is natural
to ask whether the condition
(1.11)

f ′ = g1g2 with g1 ∈ Hp1 , g2 satisfying (1.10) and 1 =
1
p1

+
1
p2

implies that f ∈ H∞ or not. We shall see that the answer to this
question is negative.

Theorem 2. Let p1 and p2 be positive numbers with 1 = 1/p1+1/p2.
Then there exists a function f which is analytic and unbounded in ∆
such that its derivative f ′ can be factored in the form f ′ = g1g2 where
g1 ∈ Hp1 and g2 is an analytic function in ∆ which satisfies (1.10).

However, we can prove that (1.11) implies that f belongs to the
space V MOA. Let us recall that BMOA is the space of all functions
f in H1 whose boundary values have bounded mean oscillation, see
[3, 8] or [11], and V MOA is the subspace of BMOA which consists
of all functions f ∈ H1 whose boundary values have vanishing mean
oscillation. It is well known that H∞ ⊂ BMOA, and A ⊂ V MOA.
We have

Theorem 3. Let p1 and p2 be positive numbers with 1 = 1/p1+1/p2.
Let f be an analytic function in ∆ such that f ′ = g1g2 where g1 ∈ Hp1

and g2 is an analytic function in ∆ which satisfies (1.10). Then
f ∈ V MOA.

The proofs of Theorems 2 and 3 will be presented in Section 3 where
we shall also see that an analogue of Theorem D for p > 1 can be
trivially obtained.

2. A proof of Theorem 1 and some complementary results.
Before embarking into the proof of Theorem 1, let us remark that
analytic functions given by power series with Hadamard gaps are often
useful to construct examples of functions which show that a certain
result is sharp. So, it is natural to ask whether it is possible to prove
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Theorem 1 using a power series with Hadamard gaps or not. The
answer is negative. Indeed, let p, α and ω be as in Theorem 1, and
suppose that w is smaller than tα, in the sense that

(2.1) ω(t) = O(tα), as t → 0.

Suppose that there exists a function f ∈ Λ(p, ω) such that f /∈ Λα, and
f is given by a power series

f(z) =
∞∑

k=0

akznk

having Hadamard gaps, that is,

nk+1

nk
≥ λ > 1, for k = 1, 2, . . . .

Then, see Theorem 1 of [12], the condition f ∈ Λ(p, ω) is equivalent to

ak = O
(

ω

(
1
nk

))
, as k → ∞,

which, with (2.1), implies that

ak = O
(

1
nα

k

)
, as k → ∞.

This implies that f ∈ Λα, see [7] or [12], which leads to a contradiction.

Proof of Theorem 1. Let p, α and ω be as in Theorem 1, and set

f(z) =
∫ π

0

ω(t)
t(1 + t − z)1/p

dt, z ∈ ∆.

Then f is an analytic function in ∆, and

f ′(z) =
1
p

∫ π

0

ω(t)
t(1 + t − z)1+1/p

dt, z ∈ ∆.

Take r, with 0 < r < 1, and denote by C a positive constant which
does not depend on r, and can be different at each appearance. Using



524 D. GIRELA AND M.A. MÁRQUEZ

Minkowski’s inequality and the fact that for each γ > 1 there exists a
constant c > 0, which only depends on γ, such that

1
2π

∫ π

−π

dθ

|1 − reiθ|γ ≤ c

(1 − r)γ−1
, 0 < r < 1,

we have

Mp(r, f ′) =
(

1
2π

∫ π

−π

|f ′(reiθ)|p dθ

)1/p

≤ C

(
1
2π

∫ π

−π

(∫ π

0

ω(t)
t|1 + t − reiθ|1+1/p

dt

)p

dθ

)1/p

≤ C

∫ π

0

(
1
2π

∫ π

−π

(
ω(t)

t|1 + t − reiθ|1+1/p

)p

dθ

)1/p

dt

= C

∫ π

0

ω(t)
t

(
1
2π

∫ π

−π

dθ

|1 + t − reiθ|p+1

)1/p

dt

= C

∫ π

0

ω(t)
t

(
1
2π

∫ π

−π

dθ

|1 − (r/(1 + t))eiθ|p+1

)1/p

× 1
(1 + t)1+1/p

dt

≤ C

∫ π

0

ω(t)
t

(
C(

1 − (r/(1 + t))
)p
)1/p

1
1 + t

dt

= C

∫ π

0

ω(t)
t(1 + t − r)

dt

= C

∫ 1−r

0

ω(t)
t(1 + t − r)

dt + C

∫ π

1−r

ω(t)
t(1 + t − r)

dt.

Now, ω is a Dini-weight, so using (1.4), we obtain∫ 1−r

0

ω(t)
t(1 + t − r)

dt ≤ 1
1 − r

∫ 1−r

0

ω(t)
t

dt ≤ C
ω(1 − r)

1 − r
.

Also, ω satisfies the condition b1 and then, using (1.5), we see that∫ π

1−r

ω(t)
t(1 + t − r)

dt =
∫ π

1−r

ω(t)
t2

t

1 + t − r
dt ≤

∫ π

1−r

ω(t)
t2

dt

≤ C
ω(1 − r)

1 − r
.
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Thus, we have proved that

Mp(r, f ′) ≤ C
ω(1 − r)

1 − r
, 0 < r < 1,

which, using Theorem C, gives f ∈ Λ(p, ω).

Now, given r with 0 < r < 1, bearing in mind that ω is increasing
and using the trivial inequality

1 + t − r ≤ 3(1 − r) if 1 − r ≤ t ≤ 2(1 − r),

we deduce that

f ′(r) = C

∫ π

0

ω(t)
t(1 + t − r)1+1/p

dt

≥ C

∫ 2(1−r)

1−r

ω(t)
t(1 + t − r)1+1/p

dt

≥ Cω(1 − r)
∫ 2(1−r)

1−r

dt

t(1 + t − r)1+1/p

≥ Cω(1 − r)
1

(1 − r)1+1/p

∫ 2(1−r)

1−r

dt

t

= C
ω(1 − r)

(1 − r)1+1/p
log 2,

that is,

f ′(r) ≥ C
ω(1 − r)

(1 − r)1+1/p
,

which implies that

(1 − r)1/pf ′(r) ≥ C
ω(1 − r)

1 − r
.

Then, using (1.8), we obtain

sup
0<r<1

(1 − r)1/pf ′(r) = ∞.

Hence,

M∞(r, f ′) 	= O
(

1
(1 − r)1−α

)
, as r → 1,
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which, using (1.2) for p = ∞, yields f /∈ Λα. This finishes the proof.

3. Results related to Theorem D. In this section we shall prove
Theorems 2 and 3 but, before doing so, it is worth noticing that the
condition p2 > 1 is really needed in Theorem D. Indeed, set

g1(z) = 1, g2(z) =
∞∑

k=1

2kz2k−1, f(z) =
∞∑

k=1

z2k

, (z ∈ ∆).

Then f ′ = g1g2. Clearly, g1 ∈ Hp1 for every p1 > 0. On the other hand,
since f is given by a power series with Hadamard gaps and bounded
coefficients, f is a Bloch function [2], that is,

M∞(r, f ′) = O
(

1
1 − r

)
, as r → 1.

Since g2 = f ′, it follows that M∞(r, g2) = O(1/1 − r), as r → 1, and
hence g2 satisfies (1.10) for every p2 ∈ (0, 1]. However, it is well known
that f does not belong to any of the Hardy spaces.

Proof of Theorem 2. Let p1 and p2 be positive numbers with
1 = 1/p1 + 1/p2. Take α with 0 < α < 1 and such that p1α > 1,
and let

g1(z) =
1

(1 − z)1/p1

(
1
z log 1

1−z

)α , g2(z) =
1

(1 − z)1/p2
.

Let f be the primitive of g1g2 with f(0) = 0. Using Exercise 3 in
Chapter 1 of [6], we easily see that g1 ∈ Hp1 , and it is clear that g2

satisfies (1.10). Now, for 0 < r < 1, we have

f ′(r) = g1(r)g2(r) =
1

(1 − r)
(

1
r log 1

1−r

)α ,

and then
f(r) =

∫ r

0

1

(1 − ρ)
(

1
ρ log 1

1−ρ

)α dρ,
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which tends to infinity when r tends to 1. Hence, f /∈ H∞. This
finishes the proof.

In order to prove Theorem 3 we shall use the characterization of
V MOA in terms of Carleson measures, see, e.g., Theorem 6.6 of [11]:

If θ ∈ R and 0 < h ≤ 1, the Carleson cube S(θ, h) is defined by

(3.1) S(θ, h) = {z = reit ∈ ∆ : 1 − h ≤ r < 1, θ < t < θ + h}.
If f is an analytic function in ∆, then f ∈ V MOA if and only if the
Borel measure in ∆ defined by

(3.2) dµf (z) = (1 − |z|2)|f ′(z)|2 dx dy

satisfies that

(3.3)
µf (S(θ, h))

h
−→ 0, as h → 0, uniformly in θ.

Proof of Theorem 3. Let p1, p2, f , g1 and g2 be as in Theorem 3.
Let µf be the Borel measure in ∆ defined in (3.2), Take θ ∈ R and
0 < h ≤ 1. Let C be a positive constant which may be different at each
occurrence. Then, using (3.2), we have

(3.4)

µf (S(θ, h)) =
∫∫

S(θ,h)

(1 − |z|2)|f ′(z)|2 dx dy

=
∫ 1

1−h

∫ θ+h

θ

r(1 − r2)|f ′(reit)|2 dt dr

≤ C

∫ 1

1−h

∫ θ+h

θ

(1 − r)|f ′(reit)|2 dt dr

= C

∫ 1

1−h

∫ θ+h

θ

(1 − r)|g1(reit)|2|g2(reit)|2 dt dr

≤ C

∫ 1

1−h

(1 − r)
(

1
(1 − r)1/p2

)2 ∫ θ+h

θ

|g1(reit)|2 dt dr

= C

∫ 1

1−h

1
(1 − r)2/p2−1

∫ θ+h

θ

|g1(reit)|2 dt dr.
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First, suppose p1 ≤ 2. Then, using that

g1 ∈ Hp1 =⇒ M∞(r, g1) = O
(

1
(1 − r)1/p1

)
, as r → 1,

we deduce

µf (S(θ, h))

≤ C

∫ 1

1−h

1
(1 − r)2/p2−1

∫ θ+h

θ

|g1(reit)|p1 |g1(reit)|2−p1 dt dr

≤ C

∫ 1

1−h

1
(1 − r)2/p2−1

∫ θ+h

θ

|g1(reit)|p1

(
1

(1−r)1/p1

)2−p1

dt dr

= C

∫ 1

1−h

∫ θ+h

θ

|g1(reit)|p1 dt dr.

Take ε > 0. Using the fact that g1 ∈ Hp1 , it is easy to see that there
exists δ ∈ (0, 1) such that

∫ θ+h

θ

|g1(reit)|p1 dt < ε, θ ∈ R, 1 − h < r < 1, 0 < h < δ.

Then, we have

µf (S(θ, h)) < Cε h, for every θ, if 0 < h < δ.

Consequently, we have shown that f satisfies (3.3) and, hence, f ∈
V MOA.

Suppose now that p1 > 2. Then, using (3.4) and Hölder’s inequality,
we obtain

µf (S(θ, h)) ≤ C

∫ 1

1−h

(1−r)1−2/p2

(∫ θ+h

θ

|g1(reit)|p1 dt

)2/p1

h1−2/p1 dr.

Take ε > 0. Since g1 ∈ Hp1 , it is easy to see that there exists δ ∈ (0, 1)
such that

(∫ θ+h

θ

|g1(reit)|p1 dt

)2/p1

< ε, θ ∈ R, 1−h < r < 1, 0 < h < δ.
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Then we have, for every θ ∈ R and 0 < h < δ,

µf (S(θ, h)) ≤ C

∫ 1

1−h

(1 − r)1−2/p2 ε h1−2/p1 dr

= Cε h1−2/p1 h2−2/p2 = Cε h.

Hence, also in this case we have that f satisfies (3.3) or, equivalently,
that f ∈ V MOA.

Finally let us notice that it is trivial to obtain an analogue of
Theorem D for p > 1. In fact, we have

If 1 < p < ∞ and p1, p2 are positive numbers with 1/p = 1/p1+1/p2,
and f is an analytic function in ∆ such that f ′ = g1g2, where g1 and
g2 are analytic functions in ∆ satisfying that

M∞(r, gj) = O
(

1
(1 − r)1/pj

)
, as r → 1, j = 1, 2,

then f ∈ Λα, where α = 1 − 1/p.

Indeed, if this is the case then M∞(r, f ′) = O(1/(1 − r)1/p), as r → 1
which, by (1.2), is equivalent to f ∈ Λ1−1/p.
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Departamento de Análisis Matemático, Facultad de Ciencias, Universi-
dad de Málaga, 29071 Málaga, Spain
E-mail address: girela@uma.es
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