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GOING-DOWN IMPLIES GENERALIZED GOING-DOWN

DAVID E. DOBBS AND ANDREW J. HETZEL

ABSTRACT. It is proved that if a unital homomorphism f
of commutative rings satisfies the going-down property GD,
then f also satisfies the infinitistic variant, the generalized
going-down property GGD (that is, f exhibits going-down
behavior for prime ideal chains of arbitrary cardinality).

1. Introduction. All rings considered below are commutative with
identity; all ring homomorphisms are unital. Adapting notation for ring
extensions in [9, p. 28], we let GU, GD, and LO denote the going-up,
going-down and lying-over properties, respectively, for ring homomor-
phisms. As in [5], respectively [6], we let GGD, respectively GGU,
denote the generalized going-down, respectively generalized going-up,
property. Intuitively, GGD, respectively GGU, is the generalization of
the usual GD, respectively GU, property when predicated for chains of
prime ideals of arbitrary cardinality. Evidently, GGD ⇒ GD, respec-
tively GGU ⇒ GU, and it is natural to ask if the converse is valid.
A partial converse was obtained in [2, Remark (a)], respectively [2,
Theorem], where it was shown that GD ⇒ GGD, respectively GU ⇒
GGU, for ring extensions A ⊆ B such that each chain of prime ide-
als of A is well-ordered by reverse inclusion, respectively by inclusion.
Subsequently, [5] identified many other contexts in which GD ⇒ GGD.
Additional positive evidence appeared in [3, Theorem 2.4], in which
the implications GD ⇒ GGD and GU ⇒ GGU were shown to hold for
ring homomorphisms satisfying the strong going-between property SGB
(a lifting property for chains that had been introduced by G. Picavet
in [11]). It was also shown that SGB is equivalent to its infinitistic
variant, GSGB [3, Corollary 2.3]. Then, at a conference in Venice in
June 2002, Kang and Oh announced that GU ⇒ GGU for unital ring
extensions; it then follows via standard homomorphism theorems that
GU ⇒ GGU for arbitrary ring homomorphisms. We have benefited
from access to the Kang-Oh result [8, Corollary 12] in preprint form.
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Indeed, the main purpose of this note is to resolve the nature of GGD
by proving that GD ⇒ GGD for arbitrary ring homomorphisms.

The proof of Theorem 2.2 shows, in effect, that the implications GD
⇒ GGD and GU ⇒ GGU are logically equivalent. The main agent
that we use in establishing Theorem 2.2 is the connection between
the Zariski topology and the flat topology, as in [4]. An interesting
characterization of the flat topology identifies it as the result of applying
the “opposite-order topology” of Hochster [7, Proposition 8] to the
Zariski topology, cf. also [10, p. 88], [4, Remark 2.3 (a)]. However,
order does not determine spectral topologies except in special cases,
cf. [7, pp. 57 58], and so one needs a mixture of order-theoretic and
topological reasoning to pass between going-down behavior and going-
up behavior. The passage is effected in the proof of Theorem 2.2,
with the key technical step isolated in Lemma 2.1 (c). For the sake of
completeness, Lemma 2.1 contains ample supporting material on the
flat topology.

We next summarize some notational conventions. Let A be a ring.
Then X := Spec (A) describes the set of all prime ideals of A; and
XF denotes the topological space in which the set X is endowed with
the flat topology, as described in Lemma 2.1 (a). Following [1], we
let V (I) := VA(I) := {P ∈ X | I ⊆ P} for any ideal I of A;
Xg := {P ∈ X | g /∈ P} for any g ∈ A; and af : Spec (B) → Spec (A)
the canonical function, Q �→ f−1(Q), for any ring homomorphism
f : A → B. As in [7], a spectral space is a topological space that is
homeomorphic to Spec (A), endowed with the Zariski topology, for some
ring A; and a spectral map is a continuous function between spectral
spaces for which the inverse image of each quasi-compact open set of
the codomain is quasi-compact in the domain.

2. Results. We begin by collecting some elementary but useful facts
about the flat topology. Lemma 2.1 (c) is needed for the key step in
the proof of Theorem 2.2. Although Lemma 2.1 (c) may be known, its
proof is included for lack of a convenient reference.

Lemma 2.1. (a) Let A be a ring and X := Spec (A). Then the sets
of the form Xg, where g ∈ A, form a subbasis for the closed sets of XF .
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(b) Let A be a ring and X := Spec (A). Then the quasi-compact open
sets of XF are the sets of the form ∪V (Ii), where {Ii} is a finite set of
finitely generated ideals of A.

(c) Let f : A → B be a ring homomorphism, with X := Spec (A) and
Y := Spec (B). Then af : YF → XF is a spectral map.

Proof. (a) According to [4, Theorem 2.2], the flat topology on X
is the coarsest topology on X for which Xg is closed for each g ∈ A.
Thus, the typical closed set in XF is the intersection of arbitrarily many
sets of the form Xg1 ∪ · · · ∪ Xgn

, for gi ∈ A, and we have inferred a
reformulation of the assertion.

(b) By [4, Theorem 2.2], the typical open set U in XF is of the form
U = ∪V (Ii), where {Ii} is a set of finitely generated ideals of A. As
each V (Ii) is open in XF , it follows that if U is quasi-compact in XF ,
the open subcover of U by {V (Ii)} has a finite subcover, thus yielding
finitely many indexes i1, . . . , in such that U = V (Ii1) ∪ · · · ∪ V (Iin

).
Conversely, to show that any such finite union is quasi-compact in XF ,
we need only consider the case n = 1, for the union of finitely many
quasi-compact subsets is necessarily quasi-compact. We shall show, in
fact, that if I is any ideal of A, then V (I) is quasi-compact in XF .

Consider the ring A := A/I, the set Z := Spec (A), and the bijection
σ : VA(I)F → ZF , given by σ(Q) = Q/I for all Q ∈ V (I). (The
notation VA(I)F refers to the subspace topology inherited by VA(I)
from XF .) It is enough to show that σ is a homeomorphism, for ZF

is quasi-compact, cf. [7, Proposition 8], [4, Remark 2.3 (a)]. Thus, it
suffices to prove that σ sends the typical basic closed set K in VA(I)F

to the typical basic closed set L in ZF .

Now, by (a) and the definition of the subspace topology, K =
VA(I) ∩ (∪Xgi

), where {gi} is a finite subset of A. On the other hand,
[4, Theorem 2.2] allows us to write L = Z\VA(

∑
Ahi), for some finite

set {hi} ⊆ A. For each i, write hi = gi + I, with gi ∈ A. By [1, (2)
p. 98], L = Z\ ∩ VA(Ahi) = ∪(Z\VA(Ahi)) = ∪Zhi

. To show that
σ(K) = L, it suffices (since σ commutes with unions) to observe that
σ(VA(I) ∩ Xgi

) = {Q/I ∈ Z | Q ∈ X, I ⊆ Q, gi /∈ Q} = {Q ∈ Z | hi /∈
Q} = Zhi

, for each i.

(c) Recall, cf. [7, Proposition 8], [10, p. 88], [4, Remark 2.3 (a)],
that YF and XF are spectral spaces. Moreover, it is easy to see that
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af : YF → XF is continuous, cf. [4, Remark 2.3 (e)]. Thus, it remains
to show that if U is a quasi-compact open set in XF , then (af)−1(U)
is a quasi-compact subset of YF . As (af)−1 commutes with unions,
(b) permits us to assume that U = V (I), where I =

∑
Agi for some

finite set {gi} ⊆ A. Put hi := f(gi) ∈ B. It now suffices to repeat the
essential calculation in the proof of [1, Proposition 13, p. 101]. Indeed,
observe that

(af)−1(U) =
{
Q ∈ Y | (af)(Q) ∈ VA

( ∑
Agi

)}

=
{
Q ∈ Y |

∑
Agi ⊆ f−1(Q)

}

= {Q ∈ Y | f(gi) ∈ Q for all i} = VB

( ∑
Bhi

)
,

which is quasi-compact by (b). The proof is complete.

We next present our main result.

Theorem 2.2. Let f : A → B be a ring homomorphism. Then f
satisfies GGD if and only if f satisfies GD.

Proof. The “only if” assertion is trivial. Conversely, assume that
f satisfies GD. Let C := {Pα | α ∈ I} be an increasing chain in
X := Spec (A); that is, Pα ⊆ Pβ whenever α ≤ β in I. Let P ∈ X be
such that Pα ⊆ P for all α ∈ I; let Q ∈ Y := Spec (B) be such that
f−1(Q) = P . Our task is to find an increasing chain D := {Qα | α ∈ I}
in Y such that f−1(Qα) = Pα and Qα ⊆ Q for each α ∈ I.

First, we reduce to the case in which f also satisfies LO. To do so,
replace f : A → B with the canonically induced ring homomorphism
AP → BQ. Of course, the latter map satisfies LO since A → B
satisfies GD and Q lies over P , cf. [9, Exercise 38, p. 45]; moreover,
AP → BQ evidently inherits GD from A → B. If we show that a
suitable increasing chain E in Spec (BQ) covers {Pα | α ∈ I}, then it
suffices to take D to be the canonical chain in Y that is the image of
E . By abus de langage, we replace (A, B) with (AP , BQ) and, thus,
suppose henceforth that f satisfies (GD and) LO.

By Lemma 2.1 (c), af : YF → XF is a spectral map. Since f
satisfies LO, af is also surjective. Thus, a realization result of Hochster
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[7, Theorem 6 (a)] yields a ring homomorphism g : C → D such
that, when Spec (C) and Spec (D) are each endowed with the Zariski
topology, one has homeomorphims h1 : XF → Spec (C) and h2 : YF →
Spec (D) satisfying (ag) ◦ h2 = h1 ◦ (af).

Recall from [7, p. 53] that any T0-topological space Z has an intrinsic
partial order ≤Z defined as follows: for u, v ∈ Z, u ≤Z v ⇔ v is in the
closure of {u}. (For instance, if Z = Spec (R) with the usual Zariski
topology, then ≤Z is just inclusion, ⊆, on Z.) It follows easily that
any homeomorphism of spectral spaces induces an order isomorphism
of posets. We claim that it now follows that g : C → D satisfies GU.
To prove this claim, we need only observe that “going-up” behavior is
exhibited (with respect to ≤YF

and ≤XF
) in af : YF → XF ; and this,

in turn, follows from the hypothesis that f satisfies GD, in view of the
fact [7, Proposition 8] that the intrinsic partial order ≤YF

, respectively
≤XF

, is the opposite of the Zariski-induced intrinsic partial order on
Y , respectively X.

Observe that {Pα} is a decreasing chain with respect to ≤XF
; that

is, Pα ≥XF
Pβ whenever α ≤ β in I. Hence, {h1(Pα) | α ∈ I} forms a

decreasing chain in Spec (C); in particular, h1(Pα) ⊇ h1(Pβ) ⊇ h1(P )
whenever α ≤ β in I. Moreover, since g satisfies GU, the result of
Kang-Oh [8, Corollary 12] that was mentioned in the Introduction
ensures that g satisfies GGU. Therefore, there exists a decreasing
chain {Wα | α ∈ I} in Spec (D) such that g−1(Wα) = h1(Pα)
and Wα ⊇ h2(Q) for each α ∈ I. Using the homeomorphism h−1

2 ,
we may construct the chain {h−1

2 (Wα) | α ∈ I}. Observe that
(af)(h−1

2 (Wα)) = (h−1
1 ◦ (ag))(Wα) = Pα for each α ∈ I; since

≤YF
is ⊇, that h−1

2 (Wα) ⊆ Q for each α ∈ I; and, similarly, that
h−1

2 (Wα) ⊆ h−1
2 (Wβ) whenever α ≤ β in I. Therefore, it suffices to

take E := {h−1
2 (Wα) | α ∈ I}, viewed as a chain in Y .
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