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THE MARKOFF-HURWITZ EQUATIONS
OVER NUMBER FIELDS

ARTHUR BARAGAR

ABSTRACT. Let R be an order in a number field K, and
let Ma,n(R) be the set of R-integral solutions to the Markoff-
Hurwitz equation x2

1 + · · · + x2
n = ax1 · · · xn, where a ∈ R,

a �= 0, and n ≥ 3. This set can be expressed as the orbit
of a fundamental set of solutions Fa,n(R) under the action
of a group of automorphisms Aa,n. Hurwitz showed that
Fa,n(Z) is always finite. Silverman showed that Fa,3(R) is
often infinite if the group of units R∗ in R is infinite. In
this paper, we show that if R∗ is infinite and K has a real
imbedding, then Fa,n(R) is either empty or infinite. We also
show that if K is totally complex and n ≥ 6, then Fa,n(R) is
infinite.

Introduction. The Diophantine equation

(1) x2
1 + x2

2 + · · · + x2
n = ax1x2 · · ·xn

with a a nonzero integer and n ≥ 3 is known as a Hurwitz or Markoff-
Hurwitz equation. Such equations were first studied by Hurwitz [7]
who thought of them as generalizations of the Markoff equation

(2) x2 + y2 + z2 = 3xyz,

which was first studied by Markoff [8]. The theory surrounding the
Markoff equation is rich and quite extensive, but the property we are
interested in here is the following: All integer solutions (x, y, z) with
0 < x ≤ y ≤ z can be generated from the fundamental solution (1, 1, 1)
and the branching operations

 
(x, z, 3xz − y)

(x, y, z)
(y, z, 3yz − x).
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This gives the tree of solutions that begins:

 

(1, 5, 13)
(1, 13, 34) · · ·
(5, 13, 194) · · ·

(1, 1, 1) (1, 1, 2) (1, 2, 5)

(2, 5, 29)
(2, 29, 169) · · ·
(5, 29, 433) · · ·

 

 

The set M3,3(Z) of all integer solutions to the Markoff equation is the
set of all triples obtained from the elements of this tree via permutations
of the coordinates and sign changes in pairs. It is not too difficult to
show a similar result for equation (1) when a = n.

Let us be a little more formal. Let Ma,n(Z) denote the set of
nontrivial, i.e., �= �0, integer solutions to equation (1). Let Aa,n be
the group of automorphisms generated by the involution

φ : (x1, x2, . . . , xn) �−→ (x1, x2, . . . , xn−1, ax1x2 · · ·xn−1 − xn),

permutations of the variables, and the map

ψ : (x1, x2, . . . , xn) �−→ (−x1,−x2, x3, . . . , xn),

which changes the sign of the first two components. Then the action of
Aa,n partitions Ma,n(Z). For each Aa,n-orbit of solutions in Ma,n(Z),
let us choose a representative of this orbit and let Fa,n = Fa,n(Z) be
the set of these representatives, so

Ma,n(Z) = Aa,n(Fa,n).

The character of Fa,n has been studied by Hurwitz [7], Herzberg [6],
and myself [1]. One of Hurwitz’s results is the following:

Theorem 0.1 (Hurwitz). The set of fundamental solutions Fa,n to
a Hurwitz equation is finite for every pair (a, n).

This result has an intriguing similarity to a deeper result on elliptic
curves the Mordell-Weil theorem: For any number field K, the set of
K-rational points on an elliptic curve form an Abelian group of finite
rank, see, for example, [12]. An outstanding conjecture holds that for
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any rank r, there are examples of elliptic curves over Q with rank at
least r [9]. The analogous question for Hurwitz equations was answered
in [1]:

Theorem 0.2. The magnitude of Fa,n is unbounded as a and n vary.
That is, for any k > 0, there exists a pair (a, n) such that |Fa,n| ≥ k.

The simplicity of this result suggests that the above comparison is not
fair. In fact, Silverman [11] showed a further divergence between these
two results. There exist number fields K with integer rings OK and
pairs (a, 3) such that the number of Aa,3-orbits of OK -integer points is
infinite. Precisely, he showed:

Theorem 0.3 (Silverman). Let K/Q be a number field, let R ⊂ K be
a finitely generated Z-subalgebra of K, and let a ∈ R, a �= 0. Suppose
that R has the following two properties:

(1) The group R∗ of units in R is infinite.

(2) There exist units u, v ∈ R∗ satisfying u2 + v2 + 1 ≡ 0 (mod aR).

Then for every finite set S ⊂ Ma,3(R),

Ma,3(R) �⊂ Aa,3(S).

In this paper we improve on this result in several ways. We first note
that Silverman’s proof does not extend to the Hurwitz equations with
n > 3, since it relies on a bijection between the Markoff surface and a
torus, and that the proof involves a deep result due to Evertse [5]. In
this paper our first main result is an elementary proof of the following
theorem, which appears in Section 2.

Theorem 2.3. Let K/Q be a number field, let R be an order in K,
let a ∈ R and a �= 0. Suppose K has a real imbedding and K �= Q (so
R∗ is infinite). Then Fa,n(R) is either empty or infinite.

The central idea in this proof is a density argument. We show that
an orbit of a point is discrete, in the topology induced by R, and
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that Ma,n(R) is either empty or it includes a cluster point. Hence, if
Ma,n(R) �= ∅, then there must be an infinite set of orbits in Ma,n(R).

In Section 3 we give an example that demonstrates that it is possible
for Fa,n(R) to be empty.

In Section 4 we give the following complementary result for orders in
totally complex fields.

Theorem 4.2. Suppose R is an order in a totally complex number
field K, a ∈ R, and n ≥ 6. Then Fa,n(R) is infinite.

In the conditions of this theorem, note that we do not require that R∗

be infinite, and in the conclusion, there is no possibility that Fa,n(R)
is empty. The proof exploits properties of orders in totally complex
fields. We also give an example that demonstrates that it is possible
for Fa,n(R) to be empty with R an order in a totally complex field and
R∗ infinite. When R∗ is finite (so K is imaginary quadratic), Silverman
[11] showed that it is possible for Fa,3(R) to be any one of empty, finite
but not empty, or infinite.

1. Orbits in the reals are discrete. Let us begin with a
classical analysis of the Hurwitz equations over the reals. Without
loss of generality, we may assume a > 0. To investigate an Aa,n-
orbit, it is enough to investigate the positive ordered solutions those
solutions �x = (x1, . . . , xn) to equation (1) with 0 < x1 ≤ x2 ≤ · · · ≤
xn. All other solutions in the Aa,n-orbit are derived from these via
permutations and sign changes. Consider the maps φi ∈ Aa,n for
i = 1, . . . , n defined by

φi(�x) = (x1, . . . , x̂i, . . . , xn−1, (ax1 · · ·xn/xi) − xi) ,

where the hat indicates that that component is omitted. If �x is a
positive ordered solution, then so is φi(�x) for i = 1, . . . , n− 1. To see
this, let us look at φi, and suppose xn ≥ x′i = (ax1 · · ·xn/xi) − xi.
Then

ax1 · · ·xn ≤ x2
i + xixn ≤ x2

i + x2
n < x2

1 + · · · + x2
n = ax1 · · ·xn,

which is a contradiction. Thus x′i > xn, so φi(�x) is a positive ordered
solution. This gives these solutions a natural tree structure. Two
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positive ordered solutions �x and �y are connected if there exists an i
such that φi(�x) = �y or �x = φi(�y). We call two connected solutions
neighbors. We define a height h on solutions to equation (1) by

h(�x) = max
i

{|xi|}.

Note that, for a positive ordered solution �x, we have h(�x) = xn. From
a solution �x in the tree of positive ordered solutions, we can go up the
tree (that is, to a solution with larger height) by applying one of the
branching operations φi for i = 1, . . . , n − 1. If we can go down the
tree, then this is achieved by applying φn = φ and the permutation that
suitably reorders the components. If, in a tree, there exists a solution
�x such that h(φ(�x)) ≥ h(�x), then we call this solution the fundamental
solution. Fundamental solutions are unique. In the classical case, it is
clear that they exist, since we cannot descend indefinitely. This is also
true over the reals, though it is not so obvious. It is a corollary of the
following lemma:

Lemma 1.1. Let �x be a positive ordered solution to equation (1) and
suppose h(φn(�x)) < h(�x). Then either φn(�x) is a fundamental solution,
or

h(�x) > h(φn(�x)) +
n− 2
2h(�x)

(a
2

)2/(n−2)

.

Proof. We begin by noting that

x2
1 + · · · + x2

n = ax1 · · ·xn

x2
1 + · · · + x2

n−2 + (xn−1 − xn)2 = (ax1 · · ·xn−2 − 2)xn−1xn

so
ax1 · · ·xn−2 ≥ 2.

Also, by the arithmetic-geometric inequality,

x2
1 + · · · + x2

n−2 ≥ (n− 2)(x1 · · ·xn−2)2/(n−2)

≥ (n− 2)
(

2
a

)2/(n−2)

.
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Since h(φn(�x)) < h(�x), we know

ax1 · · ·xn−1 − xn < xn

ax1 · · ·xn < 2x2
n

x2
1 + · · · + x2

n < 2x2
n

x2
1 + · · · + x2

n−2 + (xn−1 − xn)2 < 2xn(xn − xn−1)

n− 2
2xn

(
2
a

)2/(n−2)

< xn − xn−1.

Finally, if x′n = ax1 · · ·xn−1 − xn > xn−1, then φn(�x) is a positive
ordered solution. But then φn(φn(�x)) = �x, so h(φi(φn(�x))) > h(φn(�x))
for all i. That is φn(�x) is a fundamental solution. Thus, if φn(�x) is not
a fundamental solution, then x′n ≤ xn−1, so h(φn(�x)) = xn−1. Thus,

n− 2
2h(�x)

(
2
a

)2/(n−2)

< xn − xn−1 = h(�x) − h(φn(�x)).

Corollary 1.2. Let �x be a positive ordered solution to equation (1).
Then there exists a fundamental solution �r ∈ Aa,n(�x) and a sequence
of positive ordered solutions �x = �x0, . . . , �xm = �r such that �xi−1 and �xi

are neighbors for i = 1, . . . ,m and

m <
2(h(�x)2)
n− 2

(a
2

)2/(n−2)

+ 1.

Proof. Let �x0, . . . , �xm be any sequence of neighbors with descending
height. Then, by repeatedly applying Lemma 1.1, we get

h(�x) >
n−2

2

(
2
a

)2/(n−2)( 1
h(�x0)

+
1

h(�x1)
+ · · · + 1

h(�xm−2)

)
+h(�xm−1).

Since h(�xi) < h(�x), we get

h(�x) >
n− 2

2

(
2
a

)2/(n−2)
m− 1
h(�x)

+ h(�xm−1)
so

2h(�x)2

n− 2

(a
2

)2/(n−2)

+ 1 > m.
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Thus, m is bounded, so such a sequence cannot continue indefinitely.
That is, there must exist a fundamental solution.

Corollary 1.3. Let �x be a nontrivial solution to equation (1). Then
Aa,n(�x) has no cluster points.

Proof. Suppose Aa,n(�x) has a cluster point �u. Then there exist an
infinite number of elements �y in Aa,n(�x) such that h(�y) < h(�u) + 1.
But, by the previous result, there can be at most

m∑
k=0

(n− 1)k

positive ordered solutions with height less than h(�u) + 1, where

m =
2((h(�u) + 1)2)

n− 2

(a
2

)2/(n−2)

+ 1.

2. Cluster points of solutions over R. Let us begin with a
nontrivial real solution �p to equation (1) and consider the equation

(3) x2 + y2 + p2
3 + · · · + p2

n = ap3 · · · pnxy.

Let us set

A = ap3 · · · pn

B = p2
3 + · · · + p2

n.

Since �p ∈ Rn and n ≥ 3, we know B > 0, and hence, since

(x− y)2 +B = (A− 2)xy,

we get A > 2. Consider the quadratic equation

x2 −Ax+ 1 = 0,

which has real roots since A > 2. Let those roots be ω and ω−1, where
ω > 1. With these definitions, we can rewrite equation (3) as

(4) (x− ωy)(x− ω−1y) = −B.



702 A. BARAGAR

If �p is a solution over an order R in a real number field K, and ω /∈ K,
then we can rewrite equation (4) as a norm equation:

NL/K(x− ωy) = −B,

where L = K[ω]. Let S = R ⊕ ωR. Then S is an order in L. Let S∗

be its group of units, and define

S∗
1 = {u ∈ S∗ : NL/K(u) = 1}.

If u ∈ S∗
1 , then

NL/K(u(x− ωy)) = −B,
so u(x − ωy) = x′ − ωy′ ∈ S gives a new solution (x′, y′) to equa-
tion (3). This gives us a new way of finding more solutions. Our
traditional method is to use the action of the subgroup of Aa,n that
fixes x3, . . . , xn. This action is induced by conjugation in L/K, and
multiplication by −1 and ω ∈ S∗

1 . Thus, our observation is useful only
if rank (S∗

1) ≥ 2.

Theorem 2.1. Suppose R is an order in a number field K, and
K is neither Z nor imaginary quadratic (so R∗ is infinite). Suppose
also that ω2 − Aω + 1 = 0 where A ∈ R and ω /∈ K. Set L = K(ω)
and S = R ⊕ ωR. Finally, suppose every real imbedding τ of K in C
satisfies |τ (A)| > 2. Then

rank (S∗
1) ≥ 2.

Proof. Recall [3, Chapter II.4] that

rank (R∗) = rK + sK − 1
rank (S∗) = rL + sL − 1

where rK , 2sK , rL, and 2sL are the number of real and complex
imbeddings of K and L in C.

We find the rank of S∗
1 by considering

1 −→ S∗
1 ↪→ S∗ NL/K−→ R∗
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from which we get

(5)
rank (S∗

1) ≥ rank (S∗) − rank (R∗)
≥ rL + sL − rK − sK .

Let τ be a real imbedding of K. Since ω2 −Aω + 1 = 0, we know

τ (ω)2 − τ (A)τ (ω) + 1 = 0,

and since τ (A) > 2, we know τ (ω) is real, so the two extensions of τ to
imbeddings of L in C are real. Thus rL = 2rK and sL = 2sK . Hence,

rank (S1∗) = rK + sK = rank (R∗) + 1 ≥ 2.

Let us now use this abundance of units to show that the solutions are
dense.

Theorem 2.2. Suppose R is an order in a number field K and that
R∗ is infinite. Suppose A ∈ R and τ (A) > 2 for all real imbeddings τ
of K in R. Let ω satisfy ω2 −Aω+1 = 0 and suppose ω /∈ K. Finally,
suppose (p1, p2) ∈ R2 is a solution to

(6) x2 + y2 −Axy = −B
where B is in R. Then (p1, p2) is a cluster point of solutions to
equation (6).

Proof. Let
β = p1 − ωp2,

so NL/K(β) = −B. Let u be a unit in S∗
1 . Then uβ = x − ωy where

x, y ∈ R and (x, y) satisfies equation (6). Let us solve for x and y in
terms of u, ū, β, and β̄, where the bar represents conjugation in L over
K. We get:

uβ = x− ωy

ūβ̄ = x− ω̄y = x− ω−1y

x =
ωūβ̄ − ω−1uβ

ω − ω−1

y =
ūβ̄ − uβ

ω − ω−1
.
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We now consider the proximity of (x, y) to (p1, p2). Note that we can
write

p1 =
ωβ̄ − ω−1β

ω − ω−1

p2 =
β̄ − β

ω − ω−1
,

so

|x− p1| =
∣∣∣∣ (ū− 1)ωβ̄ − (u− 1)ω−1β

ω − ω−1

∣∣∣∣
≤

∣∣∣∣ ωβ̄

ω − ω−1

∣∣∣∣ |ū− 1| +
∣∣∣∣ ω−1β

ω − ω−1

∣∣∣∣ |u− 1|

|y − p2| =
∣∣∣∣ (ū− 1)β̄ − (u− 1)β

ω − ω−1

∣∣∣∣
≤

∣∣∣∣ β̄

ω − ω−1

∣∣∣∣ |ū− 1| +
∣∣∣∣ β

ω − ω−1

∣∣∣∣ |u− 1|.

Hence, if |u− 1| and |ū− 1| are small, then (x, y) is close to (p1, p2).

Since rank (S∗
1) ≥ 2, there exist two linearly independent units v1 and

v2 in S∗
1 . That is, vk

1v
l
2 = 1 with k, l ∈ Z if and only if k = l = 0. Let

us write vj = e2πiαj . Then we get kα1 + lα2 +m = 0 with k, l,m ∈ Z if
and only if k = l = m = 0. Hence α1, α2 and 1 are linearly independent
over Q, and the subset of C spanned by α1, α2, and 1 is dense at 0.
Consequently, 1 is a cluster point of S∗

1 .

Further, if u is a unit in S∗
1 , then 1 = NL/K(u) = uū, so ū = u−1.

Hence, if u is close to 1, so |u− 1| is small, then so is u−1. Thus, given
any neighborhood U of (p1, p2) in R2, we can find an infinite set of
units u in S∗

1 so that the (x, y) produced above is in U . Hence (p1, p2)
is a cluster point of the solutions of equation (6) over R.

We are now ready to prove our main result:

Theorem 2.3. Let K/Q be a number field, let R be an order in K,
let a ∈ R and a �= 0. Suppose K has a real imbedding and K �= Q (so
R∗ is infinite). Then Fa,n(R) is either empty or infinite.
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Proof. Suppose equation (1) has a nontrivial solution �p. As before,
consider equation (6) where A = ap3 · · · pn and B = p2

3 + · · · + p2
n.

Then (p1, p2) is a solution to equation (6) and τ (A) > 2 for all real
imbeddings τ of K. Let ω satisfy ω2 −Aω + 1 = 0. If ω /∈ K, then by
Theorem 2.2, �p is a cluster point for solutions to equation (1) over R.

If ω ∈ K, then the factorization

p2
1 + p2

2 −Axy = (p1 − ωp2)(p1 − ω−1p2)

is over R. Let us set β1 = p1 − ωp2 and β2 = p1 − ω−1p2. Then, for
any u ∈ R∗,

(uβ1)(u−1β2) = −B.
Let us set x − ωy = uβ1 and x − ω−1y = u−1β2. Then, solving for x
and y, we get

x =
ωu−1β2 − ω−1uβ1

ω − ω−1

y =
u−1β2 − uβ1

ω − ω−1
.

It is clear that x and y are in K, but they may not be in R. However,
setting u = 1, we get p1 and p2, which are in R, so we know x and y
are in R if u ≡ 1 (mod ω − ω−1). So consider the group

R∗
ω−ω−1 = {u ∈ R∗ : u ≡ 1 (mod ω − ω−1)},

which has finite index in R∗, so has the same rank as R∗. Thus,
rank (R∗

ω−ω−1) ≥ 2 and, as in the proof of Theorem 2.2, (p1, p2) is
a cluster point of the solutions to equation (6) over R. Hence, �p is a
cluster point for the solutions to equation (1) over R.

We are now left with the possibility that rank (R∗) = 1. In this case,
let us assume, without loss of generality, that R∗ is already imbedded
in the reals. Let �p be a positive ordered solution to equation (1) over
R, and consider the equation

(7)
x2 + y2 + z2 + p2

4 + · · · + p2
n = ap4 · · · pnxyz

x2 + y2 + z2 +B′ = A′xyz.
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Then A′, B′ ≥ 0. Let ω(z) satisfy ω(z)2−A′zω(z)+1 = 0. If ω(z) /∈ K
for some z, then we are done, so suppose ω(z) ∈ K for all z. Then
ω(z) ∈ R∗ and ω(z) > 0, since A′z ≥ 0. Since rank (R∗) = 1, there
exists a fundamental solution u ∈ R∗ such that R∗ = {±uk : k ∈ Z}.
Thus,

ω(z) = uk(z)

for some k(z) ∈ Z. Since A′z = ω(z) + ω(z)−1, we get

z =
uk(z) + u−k(z)

A′ .

There are similar formulas for x and y. Given M > 0, we can go far
enough up the tree of solutions, reordered so that pn < x < y < z, such
that x > (M + 1)/A′. Then

uk(x) + u−k(x) > M + 1

uk(x) > M + 1 − u−k(x) > M.

Let us go up one more step, to get x′ = A′yz − x > z. Then

x′ + x = A′yz
uk(x′) + u−k(x′)

A′ +
uk(x) + u−k(x)

A′

= A′u
k(y) + u−k(y)

A′
uk(z) + u−k(z)

A′ uk(x′)

+ u−k(x′) + uk(x) + u−k(x)

= uk(y)+k(z) + uk(y)−k(z) + uk(z)−k(y) + u−k(y)−k(z).

Let us divide through by uk(y)+k(z), to get

uk(x′)−k(y)−k(z)+u−k(x′)−k(y)−k(z)+uk(x)−k(y)−k(z)+u−k(x)−k(y)−k(z)

= 1 + u−2k(z) + u−2k(y) + u−2k(y)−2k(z).

Note that 0 < uk(x)−k(y)−k(z) < u−k(z) < 1/M , and that most of the
other terms are similar, giving us

1 − 3
M

< uk(x′)−k(y)−k(z) < 1 +
3
M
.
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If M is sufficiently large, then we must have

k(x′) − k(y) − k(z) = 0.

Plugging this relation into the formula for x′, and plugging this and the
formulas for y and z into equation (7), we find that most terms cancel,
and we are left with

4 +B′(A′)2 = 0,

which is a contradiction, since B′ ≥ 0. Thus, there must exist a z such
that ω(z) /∈ K, and we are done.

3. An example. For an order R in a number field K, it is not
difficult to find a pair (a, n) so that Ma,n(R) �= ∅. For example, the
Markoff equation (a = n = 3) has the solution (1, 1, 1), and since Z ⊂ R
for all R, we know M3,3(R) �= ∅. Thus, if K has a real imbedding and
R �= Z, then F3,3(R) is infinite.

In the following example, we show the other extreme is also possible.
That is, there exists an order R in a real field K and a pair (a, n) such
that Fa,n(R) is empty.

Theorem 3.1. For an order R in a number field K, the equation

x2 + y2 + z2 = 2xyz

has no solutions, other than �0, over the ring R if there exists γ ∈ R
such that |NK/Q(γ)| = 2 and 2 is unramified in R.

Proof. Since |NK/Q(γ)| = 2 there are two residue classes modulo γR,
and they can be represented by 0 and 1.

Assume (x, y, z), �= �0, is a solution in M2,3(R). Then there exists a
k ≥ 0 such that γk divides x, y and z, but γk+1 does not divide all
three. Note that(

x

γk

)2

+
(
y

γk

)2

+
(
z

γk

)2

= 2γk

(
x

γk

)(
y

γk

) (
z

γk

)
.

So (x1, y1, z1) = [x/(γk), y/(γk), z/(γk)] is a solution in M2γk,3(R) and
(x1, y1, z1) �≡ (0, 0, 0) (mod γR). For convenience, let us drop the
subscripts. Modulo γR, M2γk,3 becomes

x2 + y2 + z2 ≡ 0 (mod γR).
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Clearly, this is only possible if exactly one of {x, y, z} is 0 modulo γR,
since not all three are 0. But then 2xyz ≡ 0 (mod γ2R), since γ divides
2. Hence we get

2 ≡ 0 (mod γ2R).

But 2 is unramified in K/Q, so γ2 does not divide 2. Hence 2 �≡ 0
(mod γ2R), (x, y, z) could not have existed, and M2,3(R) = ∅.

So we need only find an R and γ: Consider γ = (3 +
√

17)/2 in
R = Z[γ] ⊂ K = Q(

√
17). Note that NK/Q(γ) = −2, and since

disc(K/Q) = 17, we know 2 is unramified in R. Hence, by Theorem 3.1,
M2,3(R) is empty.

4. The totally complex case. The imaginary quadratic case for
n = 3 was studied by Silverman [11]. The behavior is similar to the
behavior over Z, and the generalizations to n ≥ 4 are straightforward.

If K is totally complex but not imaginary quadratic, and R is an
order in K, then rank (R∗) ≥ 1. Our analysis in Section 2 is applicable
to this case, though the rank (R∗) = 1 case in the proof of Theorem 2.3
must be modified. The arguments in Section 1 depend on there being
a real imbedding, and it is not clear that the analogous results are even
true for orders in totally complex fields. However, such orders have
unique properties that can be exploited to produce partial results.

Theorem 4.1. Suppose R is an order in a totally complex field K
and suppose a ∈ R. Suppose there exists a solution �r of equation (1)
such that r1 = 0 and �r �= �0. Then Fa,n(R) is infinite.

Proof. This proof uses an idea due to Silverman [11]. Let I(�r) be the
smallest ideal in R that contains all the components of �r. Note that
I(σ�r) = I(�r) for all σ ∈ Aa,n, so I(�r) = I(�x) for all �x ∈ Aa,n(�r). Since
�r �= �0, I(�r) �= 0. Hence, I(�r) �= I(t�r) for any nonzero non unit t ∈ R.
But since r1 = 0, t�r is a solution to equation (1). Since there are an
infinite number of t that generate different ideals I(t�r), and each t�r
produces a different Aa,n-orbit, the set Fa,n(R) must be infinite.
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Note that the above result applies to imaginary quadratic fields too,
so we do not need rank (R∗) ≥ 1. The reader might also notice that the
condition that K is totally complex is not used in the proof. However,
this condition is necessary if there is to exist such an �r. Let us also
note that the theorem is not vacuous, since such an �r exists if i ∈ R.
In fact, if n is large enough, such an �r always exists:

Theorem 4.2. Suppose R is an order in a totally complex number
field K, a ∈ R, and n ≥ 6. Then Fa,n(R) is infinite.

To prove this result, we will use a couple of known results:

Theorem 4.3 (The Hasse-Minkowski theorem [10, Chapter IV]). A
quadratic form f represents 0 if and only if the form fv represents 0
for all valuations v. That is, a quadratic form has a global zero if and
only if f has everywhere a local zero.

Theorem 4.4 [10, Chapter IV]. If fv is a quadratic form of rank at
least 5, and v is a finite valuation, then fv represents zero.

Proof of Theorem 4.2. By Theorem 4.4, the equation

(8) x2
1 + · · · + x2

5 = 0

has a solution at every finite valuation. Since K is totally complex, the
completion at every infinite valuation is C, and equation (8) clearly
has a solution in C. Hence, by Theorem 4.3, there exists a solution
to equation (8) over K. By multiplying through by an appropriate
element of R, we obtain a solution over R. Now, append zeros to this
solution to get a solution �r of equation (1). Then Fa,n(R) is infinite,
by Theorem 4.1.

Note that, if two of the components of �r are zero, then the orbit
Aa,n(�r) is finite. One might consider this to be a bit unsatisfying, but
with a little work, we can derive an infinite orbit.

Lemma 4.5. Suppose R is an order in a totally complex number
field K with rank (R∗) ≥ 1. Then for any nonzero a ∈ R, there exist
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non-zero x, y ∈ R so that

x2 + y2 = a2.

Proof. We first assume i /∈ K. Then let L = K(i), and let S = R[i].
SinceK is totally complex, rank (R∗) = sK−1 and rank (S∗) = 2sK−1,
so rank (S∗

1) ≥ sK = rank (R∗)+1 ≥ 2. Hence there exists a unit ω ∈ S∗
1

so that ω /∈ R, and we can write

ωa = x+ iy

where x, y ∈ R are nonzero. Thus

x2 + y2 = NL/K(ωa)

= a2,

as desired.

If i ∈ K, then choose a unit ω in R∗ such that ω ≡ 1 (mod 2) and
ω �= ±1 or ±i. Now set

x+ iy = ωa

x− iy = ω−1a

so
x2 + y2 = a2,

where

x =
(ω + ω1)a

2

y =
(ω − ω−1)a

2
.

Since ω ≡ 1 (mod 2), both x and y are in R. Also, since ω �= ±1 or ±i
and a �= 0, neither x nor y is zero.

Lemma 4.6. Suppose �r is a solution to equation (1), |r1| ≤ |r2| ≤
· · · ≤ |rn|, r2 �= 0, and |ar2 · · · rn−1| > 2. Then Aa,n(�r) is infinite.
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Proof. Note that

r′1 = ar2 · · · rn − r1

satisfies

|r′1| ≥ |ar2 · · · rn−1||rn| − |r1|
> 2|rn| − |rn| = |rn|.

Thus, the solution �r′ = (r2, . . . , rn, r′1) has height strictly larger than
h(�r) (using the height h(�x) = max{|xi|, i = 1, . . . , n}), and �r′ satisfies
the same conditions. Thus, by repeating this process, we obtain an
infinite chain of solutions to equation (1) in Aa,n(�r).

Given a solution �r �= �0 to equation (1) with two or more components
equal to zero, we can use Lemma 4.5 to obtain a new solution �r′ that has
only one component equal to zero. We can then reorder the components
of this solution and multiply by a suitably large element of R to arrive
at a solution that satisfies the conditions of Lemma 4.6. Thus, if there
exists a solution �r �= �0 with at least one component equal to zero, then
there exists an infinite number of infinite orbits of solutions.

Finally, let us point out that the opposite extreme can occur. That
is, there exists an order R in a totally complex field K and a pair (a, n)
such that a ∈ R, rank (R∗) ≥ 1, and Fa,n(R) = ∅. Let α be a root of

f(x) = x4 + x+ 2.

Set K = Q(α) and let R = OK be the ring of integers in K. Note that
f(x) is irreducible over Q, so [K : Q] = 4. Note that N(α) = 2, the
constant term of f(x). Note also that f(x) > 0 for all x ∈ R, so K is
totally complex and rank (R∗) = 1. Lastly,

disc (K/Q) = NK/Q(f ′(α)) = NK/Q(4α3 + 1) ≡ 1 (mod α),

so α does not divide disc (K/Q). Hence, 2 does not divide disc (K/Q),
so 2 is unramified in K. Now, using Theorem 3.1 with γ = α, we know
F2,3(R) = ∅.
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