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CLASSIFICATION OF 3-DIMENSIONAL
ISOLATED RATIONAL HYPERSURFACE

SINGULARITIES WITH C∗-ACTION

STEPHEN S.-T. YAU AND YUNG YU

1. Introduction. In [2] Artin first introduced the definition of ra-
tional surface singularity. He classified all rational surface singularities
embeddable in C3. These are precisely those Du Val singularities in
C3 defined by one of the following polynomial equations:

An : x2 + y2 + zn+1, for n ≥ 1
Dn : x2 + y2z + zn−1, for n ≥ 4
E6 : x2 + y3 + z4

E7 : x2 + y3 + yz3

E8 : x2 + y3 + z5.

It is well known that any canonical singularity, i.e., singularity that
occurs in a canonical model of a surface of general type, is analytically
isomorphic to one of the rational double points listed above.

In [3] Burns defined higher dimensional rational singularity as follows.
Let (V, p) be an n-dimensional isolated singularity. Let π : M → V be
a resolution of singularity. And p is said to be a rational singularity
if Riπ∗OM = 0 for 1 ≤ i ≤ n − 1. In [14], Yau shows for Gorenstein
singularity that it is sufficient to require Rn−1π∗OM = 0. He [14]
proves that Rn−1π∗OM

∼= H0(V −{p}, Ωn)/L2(V −{p}, Ωn) where Ωn

is the sheaf of germs of holomorphic n-forms and L2(V − {p}, Ωn) is
the space of holomorphic n forms on V − {p} which are L2-integrable.
The geometric genus pg of the singularity (V, p) is defined to be

pg := dimRn−1π∗OM = dim H0(V − {p}, Ωn)/L2(V − {p}, Ωn).

It turns out that pg is an important invariant of (V, p).
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In [16], we give algebraic classification of rational CR structures
on the topological 5-sphere with transversal holomorphic S1-action in
C4. Here, algebraic classification of compact strongly pseudoconvex
CR manifolds X means classification up to algebraic equivalence, i.e.,
roughly up to isomorphism of the normalization of the complex analytic
variety V which has X as boundary. The problem is intimately
related to the study of three dimensional isolated rational weighted
homogeneous hypersurface singularities with link homeomorphic to S5.
For this, we need the classification of three-dimensional isolated rational
hypersurface singularities with a C∗-action. This list is only available
at the home page of one of us. Since there is a desire for a complete
list of this classification, cf. Theorem 3.3, we decided to publish it for
the convenience of readers.

The idea of our proof is very easy. If h(z0, z1, z2, z3) is a weighted
homogeneous polynomial in C4 and V = {z ∈ C4 : h(z) = 0} has
an isolated singularity at the origin, then Kouchnirenko [6] and Orlik-
Randell [9] observed that V can be deformed into one of the 19 classes of
weighted homogeneous singularities listed in Section 2 while keeping the
differential structure of the link KV := S7∩V constant. We prove that
the above deformation is actually a deformation that preserves weights
and embedded topological type. By a theorem of Merle-Teissier [8], the
geometric genus pg of the singularity can be expressed in terms of its
weights. The MAPLE program [4] helps us to finish the classification.
In fact, if we use the similar method as above, we can also classify the
weighted homogenous rational surface singularities embeddable in C3,
which are exactly the An, Dn, E6, E7, and E8 singularities described
above.

In Section 2, we shall give a classification (up to deformation which
preserves weights) of weighted homogeneous polynomials of four vari-
ables with isolated singularity at the origin. This list was obtained
first by Kouchnirenko [6] and Orlik-Randell [9], see also [5], indepen-
dently. In Section 3, we classify all three-dimensional isolated rational
hypersurface singularities with C∗-action.

2. Classification of weighted homogeneous polynomials in
four variables with isolated singularity at the origin. Orlik and
Wagreich [10] and Arnold [1] showed that if h(z0, z1, z2) is a weighted
homogeneous polynomial in C3 and V = {z ∈ C3 : h(z) = 0} has an
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isolated singularity at the origin, then V can be deformed into one of
the seven classes of weighted homogeneous singularities (Table 1) while
keeping the differential structure of the link KV := S5 ∩ V constant.
Let (w0, w1, w2) = (wt(z0), wt(z1), wt(z2)) be the weight type and μ
the Milnor number.

Recall that two isolated hypersurface singularities (V, 0), (W, 0) in
Cn+1 are said to have the same topological type if (Cn+1, V, 0) is
homeomorphic to (Cn+1, W, 0), cf., [13].

In [11], we prove that the above deformation is actually a deformation
that preserves weights and embedded topological type. Therefore any
weighted homogeneous singularity has the same topological type of one
of the seven classes above.

If h(z0, z1, z2, z3) is a weighted homogeneous polynomial in C4 and
V = {z ∈ C4 : h(z) = 0} has an isolated singularity at the origin, then
Kouchnirenko [6] and Orlik and Randell [9] observed that V can be
deformed into one of the following 19 classes of weighted homogeneous
singularities (Table 2) while keeping the differential structure of the
link KV := S7 ∩ V constant. Let wi = wt(zi) and μ be the Milnor
number. The meaning of the linear forms α(x, y, z, w) in the list will
be explained later, cf., the proof of Theorem 3.3.

Theorem 2.1. Suppose h(z0, z1, z2, z3) is a polynomial and Vk =
{(z0, z1, z2, z3) ∈ C4 : h(z0, z1, z2, z3) = 0} has an isolated singularity
at 0. Then h(z0, z1, z2, z3) = f(z0, z1, z2, z3)+g(z0, z1, z2, z3) where f is
one of the 19 classes above with only an isolated singularity at 0 and f
and g have no monomial in common. If h is weighted homogeneous of
type (w0, w1, w2, w3), then so are f and g. Let Vf = {(z0, z1, z2, z3) ∈
C4 : f(z0, z1, z2, z3) = 0}, and let

Kf = Vf ∩ S7, Kh = Vh ∩ S7.

Then Kf is equivariantly diffeomorphic to Kh.

Proof. If none of the monomials in {za0
0 , za0

0 z1, z
a0
0 z2, z

a0
0 z3} ap-

pears in h(z0, z1, z2, z3), then ∂h
∂zj

(z0, 0, 0, 0) = 0, 0 ≤ j ≤ 3.
This contradicts the fact that h has an isolated singularity at 0.
Therefore, one of the monomials in {za0

0 , za0
0 z1, z

a0
0 z2, z

a0
0 z3} appears

in h. Similarly one of the monomials in each of the following
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sets appears in h : {z0z
a1
1 , za1

1 , za1
1 z2, z

a1
1 z3}, {z0z

a2
2 , z1z

a2
2 , za2

2 , za2
2 z3},

{z0z
a3
3 , z1z

a3
3 , z2z

a3
3 , za3

3 }. Taking a monomial from each of the 4 sets
above, we get 256 polynomials. One can check that these 256 polyno-
mials are equivalent to one of the 19 classes above up to permutation
of coordinates. Notice that in Type VIII, for example, the monomial
zp
2zq

3 is added to make sure that f has an isolated singularity at 0. Ob-
viously if h is weighted homogeneous of type (w0, w1, w2, w3), then so
are f and g.

The proof of Theorem 3.1.4 in [10] shows that Kf is equivariantly
diffeomorphic to Kh.

We shall use the theory developed in [11] and [12] to show that (Vf , 0)
and (Vh, 0) have the same embedded topological type.

Definition. Given a real manifold B of dimension m and a family
{(Mt, Nt) : t ∈ B, Nt is a closed submanifold of a compact differen-
tiable manifold Mt}, we say that (Mt, Nt) depends C∞ on t and that
{(Mt, Nt) : t ∈ B} is a C∞ family of compact manifolds with submani-
folds, if there is a C∞ manifold M, a closed submanifold N and a C∞

map w from M onto B such that w̄ := w|N is also a C∞ map from N
onto B satisfying the following conditions

(i) Mt = w−1(t) ⊇ Nt = w̄−1(t).

(ii) The rank of the Jacobian of w, respectively w̄, is equal to m at
every point of M, respectively N .

Theorem 2.2 (e.g. [11]). Let ((M,N ), (w, w̄)) be a C∞ family
of compact manifolds with submanifolds, with B connected. Then
(Mt, Nt) = (w−1(t), w̄−1(t)) is diffeomorphic to (Mt0 , Nt0) for any
t, t0 ∈ B.

Now we fix weights (w0, . . . , wn) with wi ≥ 2. Suppose that there
is a weighted homogeneous polynomial f(z0, . . . , zn) with the weights
(w0, . . . , wn) such that f has an isolated singularity at the origin. Let
Δ be the intersection of the plane

n∑
i=0

xi

wi
= 1
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with the first quadrant of Rn+1. Let C[Δ] = {f ∈ C[z0, . . . , zn] :
supp f ⊂ Δ} where supp f = {(d0, . . . , dn) ∈ Rn+1 : zd0

0 zd1
1 · · · zdn

n

occurs in f}. Let N be the number of the integer points which are in
Δ. There is a canonical correspondence between C[Δ] and CN . Thus
we may introduce a Zariski topology on C[Δ].

Theorem 2.3. Notation as above. Let

U = {f ∈ C[Δ] : f has an isolated singularity at the origin }

Then U is a nonempty Zariski open set of C[Δ].

The proof of the previous theorem as well as the following theorem is
the same as those of Theorem 3.4 and Theorem 3.5 in [11], respectively.

Theorem 2.4. Suppose that f(z0, . . . , zn) and g(z0, . . . , zn) are
weighted homogeneous polynomials with the same weights (w0, w1, . . . ,
wn). If the variety V of f and the variety W of g have an isolated sin-
gularity at the origin, then (Cn+1, V, 0) is homeomorphically equivalent
to (Cn+1, W, 0).

Corollary 2.5. Suppose that h(z0, z1, z2, z3) is a weighted homoge-
neous polynomial with weights (w0, w1, w2, w3) and the variety h−1(0)
has an isolated singularity at the origin. Then h = f + g where f and
g have no monomials in common, f is one of the 19 classes above and
f and g are weighted homogeneous of type (w0, w1, w2, w3).

Moreover h−1(0) and f−1(0) have the same embedded topological type.

3. Three-dimensional isolated rational hypersurface singu-
larities with C∗-action.

Definition 3.1. Let (V, 0) be an n-dimensional variety with isolated
singularity at 0. The geometric genus pg(V, 0) of the singularity
is defined to be dim Hn−1(M,O) where M is a resolution of the
singularity (V, 0). (V, 0) is called a rational singularity if pg(V, 0) = 0.
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Proposition 3.1 [10]. Suppose V ⊆ Cn+1 is an irreducible analytic
variety, σ is a C∗-action leaving V invariant,

σ(t, (z0, . . . , zn)) = (tq0z0, . . . , tqnzn)

and qi > 0 for all i. Then V is algebraic and the ideal of polynomials
in C[z0, . . . , zn] vanishing on V is generated by weighted homogeneous
polynomials.

Let f(z0, . . . , zn) be a germ of an analytic function at the origin
such that f(0) = 0. Suppose that f has an isolated critical point at the
origin. f can be developed in a convergent Taylor series

∑
λ aλzλ where

zλ = zλ0
0 · · · zλn

n . Recall that the Newton boundary Γ(f) of f is the
union of compact faces of Γ+(f) where Γ+(f) is the convex hull of the
union of the subsets {λ + (R+)n+1} for λ such that aλ �= 0. Finally,
let Γ−(f), the Newton polyhedron of f , be the cone over Γ(f) with
vertex at 0. For any closed face Δ of Γ(f), we associate the polynomial
fΔ(z) =

∑
λ∈Δ aλzλ. We say that f is nondegenerate if fΔ has no

critical point in (C∗)n+1 for any Δ ∈ Γ(f) where C∗ = C − {0}. The
following theorem was proved by Merle and Teissier.

Theorem 3.2 [8]. Let (V, 0) be an isolated hypersurface singularity
defined by a nondegenerate holomorphic function f : (Cn+1, 0) →
(C, 0). Then the geometric genus pg(V, 0) = #{p ∈ Zn+1 ∩ Γ−(f) :
p is positive}.

Now we are ready to give the classification of three-dimensional
isolated rational hypersurface singularities with C∗-action.

Theorem 3.3. Let (V, 0) be a three-dimensional isolated rational
hypersurface singularity with C∗-action. Then (V, 0) is defined by a
weighted homogeneous polynomial of one of the 19 cases of Table 2
such that the corresponding linear form α satisfies α(x, y, z, w) =
1. An explicit tabulation of the solutions of α(x, y, z, w) = 1 for
all cases is given in the online preprint at the Mathematics ArXiv,
math. AG/0303302.
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Proof. In view of Corollary 2.5 and Theorem 3.2, it is clear that an
isolated rational hypersurface singularity with C∗-action is defined by
one of the 19 types in Section 2 with pg = 0. The equations of the Γ−
hyperplanes of these 19 types are respectively given by α(x, y, z, w) = 1
in Table 2.

In order to find all hypersurfaces among these 19 types with pg = 0,
we only need to find all solutions of α(1, 1, 1, 1) > 1 among these
19 types. We have used the MAPLE program [4] to perform the
computations. The solutions are listed in the online preprint of the
theorem.

Remark. The lists in (VIII), (XIII), (XIV), (XVI), (XVII) in Theo-
rem 3.3 may be reduced slightly by change of coordinates.

Acknowledgments. We thank the referee for a careful reading of
this paper and many valuable suggestions of revising the paper.
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6. A.G. Kouchnirenko, Polyèdres de Newton et nombres de Milnor, Invent. Math.
32 (1976), 1 31.

7. H.S. Luk, S.S.-T. Yau and Y. Yu, Algebraic classification and obstructions to
embedding of strongly pseudoconvex compact 3-dimensional CR manifolds in C3,
Math. Nachr. 170 (1994), 183 200.

8. M. Merle and B. Teissier, Conditions d’adjonction d’aprés Du Val, Séminaire
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