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SPACES OF GENERALIZED TYPE Hμ,
SPACES OF TYPE S AND THE
HANKEL TRANSFORMATION

I. MARRERO

ABSTRACT. In this paper, membership in the spaces of
type Hμ, as introduced by Betancor and the author, is char-
acterized by symmetric decay conditions on a function and
on its Hankel transform, and on a function and its deriva-
tives. This is applied to obtain intrinsic descriptions of the
even functions in the Gelfand-Shilov spaces of type S.

1. Introduction. The space Hμ, μ ∈ R, introduced by Zemanian,
consists of all those smooth, complex-valued functions ϕ = ϕ(x),
x ∈ I =]0,∞[, such that

(1.1) γμ
k,m(ϕ) = sup

x∈I
|xk(x−1D)mx−μ−1/2ϕ(x)| < +∞, k,m ∈ N0.

When endowed with the topology generated by the system of semi-
norms {γμ

k,m}k,m∈N0 , Hμ becomes a Fréchet space where the Hankel
transformation

(hμϕ)(x) =
∫ ∞

0

(xt)1/2Jμ(xt)ϕ(t) dt, x ∈ I

is an automorphism, provided that μ ≥ −1/2; here, Jμ denotes the
Bessel function of the first kind and order μ [17, Chapter 5]. Thus
the space Hμ behaves with respect to the Hankel transformation as the
Schwartz space S with respect to the Fourier transformation.

Inspired by the work of Gelfand and Shilov [10] on the Fourier
transformation and the spaces of type S (Sα, Sβ and Sβ

α) various
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authors, through different approaches, have tried to design specific
analogues in the realm of the Hankel transformation [8, 11 13].
Betancor and the author [4] introduced new spaces of type Hμ which
overcame a deficiency of previous constructions. Namely, we proved
that the Hankel transformation is an isomorphism between the spaces
introduced, thus yielding a complete analogy to the spaces of type
S, which bear the property that the Fourier transformation is an
isomorphism from Sα onto Sα and from Sβ

α onto Sα
β . Van Eijndhoven

and van Berkel [16] had established, by entirely different means, that
the Hankel-type transformation

(Hμϕ)(x) =
∫ ∞

0

(xt)−μJμ(xt)ϕ(t)x2μ+1 dt, x ∈ I

is an isomorphism from the spaces Seα, respectively Seβ
α, onto the

spaces Seα, respectively Seα
β , consisting of all the even functions in the

corresponding spaces of type S. However, these spaces lacked a simple
intrinsic description.

Van Eijndhoven [14] and Chung, Chung and Kim [5, 6] have given
symmetric characterizations for S and the spaces of type S in terms of
the decay at infinity of a function and of its Fourier transform.

Closely connected with these, characterizations for the same spaces
involving growth conditions on a function and boundedness of its
derivatives separately have been found by Chung, Chung and Kim
[5, 6]; an alternative proof of such a characterization for S is due to
Chung, Kim and Lee [7]. The Zemanian space Hμ has been similarly
characterized by Betancor [1].

Motivated by [1] and [6], in Section 2 below we give symmetric
characterizations for the spaces of generalized type Hμ, Definition 2.1,
in terms of the decay at infinity of a function and of its hμ-transform. In
[16], from a completely different approach, analogous descriptions were
obtained for the even functions in the spaces of type S with respect to
the Hμ-transformation. A comparison of our results with those in [16]
reveals that, when μ ≥ −1/2,

Hμ = xμ+1/2Se

(Se the space of all even functions in S) in the following sense:
if ψ ∈ Se, then the function ϕ(x) = ψ(x) (x ∈ I) is such that
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xμ+1/2ϕ(x) ∈ Hμ and, conversely, for every ϕ ∈ Hμ the even extension
of ψ(x) = x−μ−1/2ϕ(x) (x ∈ I) up to R lies in S. Although this
particular result is not new, see [15, Corollary 4.8] and the remarks
following it, our approach allows us to show that, interestingly enough,
the same relationship holds between the spaces of type Hμ introduced
in [4] and the spaces of type Se discussed in [16], thus providing an
intrinsic description of the latter. This is done in Section 3.

Throughout this paper, unless otherwise stated, we shall assume
μ ≥ −1/2. The set of positive integers will be denoted by N, while
N0 = N ∪ {0}. For k ∈ N we shall write Tμ,k = Nμ+k−1 · · ·Nμ,
where Nμ = xμ+1/2Dx−μ−1/2; for k = 0, Tμ,k will be the identity
operator. Also, I will stand for the positive real axis, and C will denote
a positive constant, depending only on the opportune subscripts, if any,
not necessarily the same at each occurrence. We shall represent by ‖·‖ι

the usual norm of the Lebesgue space Lι(I), where ι = 2,∞.

2. Characterization of the spaces of generalized type Hμ.
First of all, following the spirit of the spaces of type Hμ introduced by
Betancor and the author [4], we define the spaces of generalized type
Hμ.

Definition 2.1. Given sequences {Mp}p∈N0 and {Np}p∈N0 of
positive numbers, the spaces Hμ,Mp

, HNp
μ , and HNp

μ,Mp
, consist of all

those smooth, complex-valued functions ϕ = ϕ(x), x ∈ I, such that,
respectively, ∥∥∥xk−1/2Tμ,mϕ(x)

∥∥∥
∞

≤ CmA
kMk,∥∥∥xk−1/2Tμ,mϕ(x)

∥∥∥
∞

≤ CkB
mNm,

and ∥∥∥xk−1/2Tμ,mϕ(x)
∥∥∥
∞

≤ CAkBmMkNm

for some A,B > 0 and all k,m ∈ N0.

Some notation and terminology are in order. For each sequence
{Mp}p∈N0 of positive numbers, its associated function M = M(ρ) is
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defined as

M(ρ) = sup
p∈N0

log
(
ρp

Mp

)
, ρ ∈ I.

The set S consists of all those sequences {Mp}p∈N0 of positive
numbers such that M0 = 1, satisfying the following two properties:

(M.1) (logarithmic convexity). M2
p ≤ CMp−1Mp+1, p ∈ N.

(M.2) (stability under ultradifferential operators). There exist R,H >
0 such that

Mp+q ≤ RHp+qMpMq, p, q ∈ N0.

Also, given two sequences {Mp}p∈N0 and {Np}p∈N0 of positive numbers
satisfying (M.1), we write Mp ⊂ Np if there are constants L,C > 0 such
that Mp ≤ CLpNp, p ∈ N0.

Examples of members of S are the Gevrey sequences {(p!)α}p∈N0 ,
{ppα}p∈N0 , and {Γ(1 + pα)}p∈N0 , with α > 0. Here the convention is
made that ppα = 1 when p = 0. The choices Mp = ppα, Np = ppβ

(α, β > 0, p ∈ N0) result in the spaces Hμ,α, Hβ
μ and Hβ

μ,α of type Hμ

discussed in [4]. All the theory developed in [4] can be seen to hold,
mutatis mutandis, for the spaces of generalized type Hμ whose defining
sequences belong to S.

Let us recall other descriptions of the Zemanian space Hμ, different
from that given in the introduction.

Proposition 2.2. For ϕ ∈ C∞(I), the following are equivalent:

(i) ϕ ∈ Hμ.

(ii) For every k,m ∈ N0,
∥∥xkTμ,mϕ(x)

∥∥
2
< +∞.

(iii) For each k,m ∈ N0,
∥∥xkTμ,mϕ(x)

∥∥
∞ < +∞.

Proof. This can be inferred from [2, Theorem 3.3] and [3, Proposition
2.15].

An alternative L∞-norm description as well as an L2-norm descrip-
tion of HNp

μ,Mp
is given by the following analogue of Proposition 2.2.
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Proposition 2.3. Let {Mp}p∈N0 , {Np}p∈N0 be two sequences of
positive numbers with the property (M.2). The space HNp

μ,Mp
consists of

all those ϕ ∈ Hμ satisfying∥∥xkTμ,mϕ(x)
∥∥

ι
≤ CAkBmMkNm, k,m ∈ N0

for some A,B > 0, where either ι = 2 or ι = ∞.

Proof. Let ϕ ∈ Hμ, and let k,m ∈ N0. The argument in the proof of
[4, Proposition 2.1.6] shows that

∥∥xkTμ,mϕ(x)
∥∥

2
≤ C

{∥∥∥xk−1/2Tμ,mϕ(x)
∥∥∥
∞

+
∥∥∥x(k+2)−1/2Tμ,mϕ(x)

∥∥∥
∞

}
,∥∥∥xk−1/2Tμ,mϕ(x)

∥∥∥
∞

≤ C
{∥∥xkTμ,mϕ(x)

∥∥
2

+
∥∥xkTμ,m+2ϕ(x)

∥∥
2

}
.

A slight modification of this argument combined with that in the proof
of [4, Proposition 2.1.1] gives∥∥xkTμ,mϕ(x)

∥∥
2
≤ C

{∥∥xkTμ,mϕ(x)
∥∥
∞ +

∥∥xk+2Tμ,mϕ(x)
∥∥
∞

}
,∥∥xkTμ,mϕ(x)

∥∥
∞ ≤ C

{∥∥∥xk−1/2Tμ,mϕ(x)
∥∥∥
∞

+
∥∥∥x(k+1)−1/2Tμ,mϕ(x)

∥∥∥
∞

}
.

Under (M.2), this yields easily the desired result.

Condition (iii) in Proposition 2.2 can be relaxed in the terms stated in
part (ii) of Proposition 2.4 below, as shown by Betancor [1, Proposition
1]. Furthermore, a characterization for Hμ through symmetric decay
conditions on a function and on its Hankel transform can be given.

Proposition 2.4. For ϕ ∈ C∞(I), the following are equivalent:

(i) ϕ ∈ Hμ.

(ii) For every k ∈ N0,∥∥xkϕ(x)
∥∥
∞ < +∞ and ‖Tμ,kϕ‖∞ < +∞.
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(iii) For each k ∈ N0, there holds∥∥xkϕ(x)
∥∥
∞ < +∞ and

∥∥xk(hμϕ)(x)
∥∥
∞ < +∞.

Proof. We only need to show the equivalence between (i) and (iii).

That (i) implies (iii) is straightforward from Proposition 2.2 and
the fact that hμ is an automorphism of Hμ [17, Theorem 5.4-1].
Conversely, assume ϕ ∈ C∞(I) satisfies (iii). If k ∈ N0, then
gk(x) = (−x)k(hμϕ)(x), x ∈ I, is integrable on I with respect to
the weight xμ+1/2. Moreover, (iii) implies that gk is integrable on I
as well. An induction procedure on the basis of [17, Equation 5.4-
(2)] then shows that (hμ+kgk)(x) = Tμ,kϕ(x), with ‖Tμ,kϕ‖∞ < +∞,
k ∈ N0. This completes the proof.

Next we establish an analogue of Proposition 2.4 for the spaces of
generalized type Hμ. In the proof of Theorem 2.5, Ai, Bj , i, j ∈ N, will
denote suitable positive constants.

Theorem 2.5. Let {Mp}p∈N0 , {Np}p∈N0 be sequences in S such
that MpNp ⊃ p!, and let ϕ ∈ C∞(I). The following are equivalent:

(i) ϕ ∈ HNp

μ,Mp
.

(ii) There exist A,B > 0 such that∥∥xkϕ(x)
∥∥
∞ ≤ CAkMk, ‖Tμ,mϕ‖∞ ≤ CBmNm

for all k,m ∈ N0.

(iii) There exist A,B > 0 such that∥∥xkϕ(x)
∥∥
∞ ≤ CAkMk, ‖xm(hμϕ)(x)‖∞ ≤ CBmNm

whenever k,m ∈ N0.

(iv) There exist a, b > 0 such that

‖exp{M(ax)}ϕ(x)‖∞ < +∞, ‖exp{N(bx)}(hμϕ)(x)‖∞ < +∞,

where M = M(ρ) and N = N(ρ) are the associated functions of the
sequences {Mp}p∈N0 and {Np}p∈N0 , respectively.
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Proof. From Proposition 2.3 and the identity hμ(HNp

μ,Mp
) = HMp

μ,Np
,

cf. [4, Proposition 3.2.2], it is apparent that (i) implies both (ii) and
(iii). The equivalence between (iii) and (iv) is also clear.

Let us prove that (ii) implies (i). If ϕ satisfies (ii) then ϕ ∈ Hμ,
by Proposition 2.4. Hence, we only need to show that ϕ satisfies the
L2-norm estimate in Proposition 2.3. First of all, we observe that

∥∥xkϕ(x)
∥∥

2
=

{∫ ∞

0

∣∣xk(1 + x2)ϕ(x)
∣∣2 dx

(1 + x2)2

}1/2

≤ C
∥∥xk(1 + x2)ϕ(x)

∥∥
∞

≤ C
{∥∥xkϕ(x)

∥∥
∞ +

∥∥xk+2ϕ(x)
∥∥
∞

}
≤ C

{
AkMk +Ak+2Mk+2

}
≤ CAk

1Mk, k ∈ N0.

Now we proceed by induction. Let m ∈ N and assume that∥∥xkTμ,nϕ(x)
∥∥

2
≤ CAkBnMkNn whenever k, n ∈ N0, 0 ≤ n ≤ m − 1,

for some A,B > 0. We want to prove that
∥∥xkTμ,mϕ(x)

∥∥
2

≤
CÃkB̃mMkNm for certain Ã, B̃ > 0 and all k ∈ N0.

To this end, let k ∈ N, with 2k ≥ m. An integration by parts yields

(2.1)
∥∥xkTμ,mϕ(x)

∥∥2

2

=
∫ ∞

0

x2kTμ,mϕ(x)Tμ,mϕ(x) dx

=
∫ ∞

0

[
(x−1D)mx−μ−1/2ϕ(x)

] [
x2k+m+μ+1/2Tμ,mϕ(x)

]
dx

=
∣∣∣∣
∫ ∞

0

[
(Dx−1)mx2k+m+μ+1/2Tμ,mϕ(x)

]
x−μ−1/2ϕ(x) dx

∣∣∣∣ .
In this computation we have taken into account the fact that

(2.2)[
(x−1D)jx2k+m+μ−1/2Tμ,mϕ(x)

] [
(x−1D)m−j−1x−μ−1/2ϕ(x)

]∣∣∣x→+∞
x→0+

= 0
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when j ∈ N0, 0 ≤ j ≤ m−1. To check this, let j ∈ N0, 0 ≤ j ≤ m−1.
By the Leibniz rule,

(2.3)

[
(x−1D)jx2k+m+μ−1/2Tμ,mϕ(x)

] [
(x−1D)m−j−1x−μ−1/2ϕ(x)

]

=
j∑

i=0

aix
2(k+m+μ−i)

[
(x−1D)m+j−ix−μ−1/2ϕ(x)

]

×
[
(x−1D)m−j−1x−μ−1/2ϕ(x)

]

=
j∑

i=0

aix
2k−i [Tμ,m+j−iϕ(x)]

[
Tμ,m−j−1ϕ(x)

]

for some ai ∈ R, with i ∈ N0, 0 ≤ i ≤ j. Since ϕ ∈ Hμ, Proposition 2.2
yields (2.2) as a consequence of (2.3).

Again by the Leibniz rule,

(2.4)

[
(Dx−1)mx2k+m+μ+1/2Tμ,mϕ(x)

]
x−μ−1/2ϕ(x)

=
m∑

j=0

(
m

j

)
2j(k +m+ μ)

· · · (k +m+ μ− j + 1)x2k−jϕ(x)Tμ,2m−jϕ(x).

After plugging (2.4) into (2.1), bearing in mind that {Mp}p∈N0 ∈ S,
{Np}p∈N0 ∈ S, and MpNp ⊃ p!, we may write

∥∥xkTμ,mϕ(x)
∥∥2

2
≤

m∑
j=0

(
m

j

)
2j(k +m+ μ) · · · (k +m+ μ− j + 1)

×
∫ ∞

0

∣∣x2k−jϕ(x)
∣∣ |Tμ,2m−jϕ(x)| dx

≤ C

m∑
j=0

(
m

j

)(
k +m+ μ

j

)
j!2j ‖Tμ,2m−jϕ‖∞

× {∥∥x2k−jϕ(x)
∥∥
∞ +

∥∥x2k−j+2ϕ(x)
∥∥
∞

}
(2.5)
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≤ C
m∑

j=0

(
m

j

)(
k +m+ μ

j

)
j!2jB2m−jN2m−j

× (
A2k−jM2k−j +A2k−j+2M2k−j+2

)
≤ C

m∑
j=0

(
m

j

)(
k +m+ μ

j

)
j!2jA2k−jB2m−j

×M2k−jN2m−j

(
1 +RA2H2k−j+2M2

)
≤ CA2k

2 B2m
2 M2kN2m

m∑
j=0

(
m

j

)(
k +m+ μ

j

)
j!

MjNj

≤ CA2k
3 B2m

3 M2
kN

2
m, k ∈ N, 2k ≥ m.

On the other hand, if k ∈ N and 2k < m, then (2.2) holds for
j ∈ N0, 0 ≤ j ≤ 2k− 1, because ϕ ∈ Hμ. Integrate by parts, apply the
Leibniz rule, use the induction hypotheses and take into account that
{Mp}p∈N0 ∈ S, {Np}p∈N0 ∈ S, and MpNp ⊃ p!, to obtain

(2.6)

∥∥xkTμ,mϕ(x)
∥∥2

2
≤

2k∑
j=0

(
2k
j

)(
k +m+ μ

j

)
j!2j

×
∫ ∞

0

∣∣x2k−jTμ,m−2kϕ(x)
∣∣ |Tμ,m+2k−jϕ(x)| dx

≤ C

2k∑
j=0

(
2k
j

)(
k +m+ μ

j

)
j!2j ‖Tμ,m+2k−jϕ‖∞

×{∥∥x2k−jTμ,m−2kϕ(x)
∥∥

2
+

∥∥x2k−j+2Tμ,m−2kϕ(x)
∥∥

2

}
≤ C

2k∑
j=0

(
2k
j

)(
k +m+ μ

j

)
j!2jA2k−jBm+2k−jBm−2k

×M2k−jNm+2k−jNm−2k

(
1+RA2H2k−j+2M2

)
≤ CA2k

4 B2m
4 M2kN

2
m

2k∑
j=0

(
2k
j

)(
k +m+ μ

j

)
j!

MjNj

≤ CA2k
5 B2m

5 M2
kN

2
m, k ∈ N, 2k < m.
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The case k = 0 remains to be discussed. Given r ∈ N, n ∈ N0 and
x ∈ I, one has

[xrTμ,nϕ(x)]2

=
∫ x

0

D [trTμ,nϕ(t)]2 dt

=
∫ x

0

2trTμ,nϕ(t)
{
(r+n+μ+1/2) tr−1Tμ,nϕ(t)+trTμ,n+1ϕ(t)

}
dt.

Hence

(2.7)

‖xrTμ,nϕ(x)‖2
∞ ≤ C

{
(r + n+ μ+ 1/2) ‖xrTμ,nϕ(x)‖2

× ∥∥xr−1Tμ,nϕ(x)
∥∥

2
+‖Tμ,n+1ϕ‖∞

× [∥∥x2rTμ,nϕ(x)
∥∥

2
+

∥∥x2r+1Tμ,nϕ(x)
∥∥

2

]}
whenever r ∈ N and n ∈ N0. Particularizing (2.7) for r = 2 and
n = m, by means of (2.5) and (2.6) we find that

(2.8)

∥∥x2Tμ,mϕ(x)
∥∥2

∞ ≤ {
Pm

∥∥x2Tμ,mϕ(x)
∥∥

2
‖xTμ,mϕ(x)‖2

+ C ‖Tμ,m+1ϕ‖∞ × [∥∥x4Tμ,mϕ(x)
∥∥

2

+
∥∥x5Tμ,mϕ(x)

∥∥
2

]}
≤ CB2m

6 N2
m

for some P > 0. Finally, upon multiplying and dividing the integrand
in ‖Tμ,mϕ‖2 by (1 + x2)2 and using (2.8) we arrive at

(2.9)
‖Tμ,mϕ‖2 ≤ C

{‖Tμ,mϕ‖∞ +
∥∥x2Tμ,mϕ(x)

∥∥
∞

}
≤ CBm

7 Nm.

From (2.5), (2.6) and (2.9) the desired conclusion follows.

To complete the proof, we shall establish that (iii) implies (i). Under
(iii), ϕ ∈ Hμ, by Proposition 2.4, and hence hμϕ ∈ Hμ [17, Theorem
5.4-1]. The assumption that

‖xm(hμϕ)(x)‖∞ ≤ CBmNm, m ∈ N0,
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gives
|(hμϕ)(x)| ≤ C exp

{
−N

( x
B

)}
, x ∈ I,

where N = N(ρ) is the associated function of {Np}p∈N0 . From the
integral representation

Jν(z) =
1
π

∫ π

0

cos(z sinx− νx) dx− sin(νπ)
π

∫ ∞

0

e−(z sinh γ+νγ)dγ,

z ∈ I,

[9, Equation (9), p. 17], it follows that supz∈I |Jν(z)| ≤ C, with C > 0
independent of ν ≥ 0. Using [17, Equation 5.4-(12)] and the fact that
{Np}p∈N0 ∈ S we may write∣∣∣x−1/2Tμ,mϕ(x)

∣∣∣ =
∣∣∣x−1/2Tμ,m (hμ (hμϕ) (y)) (x)

∣∣∣
=

∣∣∣x−1/2hμ+m (ym(hμϕ)(y)) (x)
∣∣∣

=
∣∣∣∣
∫ ∞

0

Jμ+m(xy)ym+1/2(hμϕ)(y) dy
∣∣∣∣

≤ C

∫ ∞

0

ym+1/2 exp
{
−N

( y
B

)}
dy

≤ C

∫ ∞

0

ym(1 + y) exp
{
−N

( y
B

)}
dy

≤ C

{∥∥∥y2m exp
{
−N

( y
B

)}∥∥∥1/2

∞
+

∥∥y2m+2

× exp
{
−N

( y
B

)}∥∥∥1/2

∞

} ∫ ∞

0

exp
{
−N (y/B)

2

}
dy

≤ C
(
BmN

1/2
2m +Bm+1N

1/2
2m+2

)
≤ CBm

8 Nm, x ∈ I, m ∈ N,

where C > 0 does not depend on m ∈ N. A corresponding bound is
easily obtained for m = 0. Now it suffices to argue by induction exactly
as in the proof that (ii) implies (i), this time taking as a starting point
the estimates ∥∥xkϕ(x)

∥∥
∞ ≤ CAkMk,∥∥∥x−1/2Tμ,mϕ(x)

∥∥∥
∞

≤ CBmNm, k,m ∈ N0.
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Thus we are done.

Remark 2.6. If {Mp}p∈N0 ∈ S and {Np}p∈N0 ∈ S, the techniques
used in Theorem 2.5 allow to give similar characterizations for the
spaces Hμ,Mp

and HNp
μ .

By [10, Equation IV.2.1-(3)], particularizing Mk = kkα, Nm = mmβ

(α, β > 0, k,m ∈ N0) yields as a corollary of Theorem 2.5 the next
characterization for the spaces Hβ

μ,α introduced in [4], provided that
α+ β ≥ 1; analogous results can be obtained for Hμ,α and Hβ

μ.

Corollary 2.7. Let α, β > 0, α+ β ≥ 1. Then ϕ ∈ Hβ
μ,α if and only

if there exist positive constants a, b such that

∥∥∥exp
{
ax1/α

}
ϕ(x)

∥∥∥
∞
< +∞,

∥∥∥exp
{
bx1/β

}
(hμϕ)(x)

∥∥∥
∞
< +∞.

3. The even functions in the spaces of type S. We conclude
by proving that the spaces Hμ and xμ+1/2Se coincide, and similarly
for the spaces Hβ

μ,α and xμ+1/2Seβ
α, α, β > 0, α+ β ≥ 1.

Proposition 3.1. The identity Hμ = xμ+1/2Se holds.

Proof. It is known [16, Theorem 2.1] that an even function ψ ∈
C∞(R) belongs to Se if and only if

(3.1)
∥∥xkψ(x)

∥∥
∞ < +∞,

∥∥xk(Hμψ)(x)
∥∥
∞ < +∞, k ∈ N0,

where Hμ denotes the Hankel-type transformation

(Hμψ)(x) =
∫ ∞

0

(xt)−μJμ(xt)ψ(t)t2μ+1 dt, x ∈ I.

Observe that

(3.2) (Hμψ)(x) = x−μ−1/2hμ(tμ+1/2ψ(t))(x), x ∈ I,
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so that (3.1) is equivalent to

(3.3)

∥∥∥xk−μ−1/2(xμ+1/2ψ(x))
∥∥∥
∞
< +∞,∥∥∥xk−μ−1/2hμ(tμ+1/2ψ(t))(x)

∥∥∥
∞
< +∞,

k ∈ N0.

We claim that (3.3) holds if and only if

(3.4)

∥∥∥xk(xμ+1/2ψ(x))
∥∥∥
∞
< +∞,∥∥∥xkhμ(tμ+1/2ψ(t))(x)

∥∥∥
∞
< +∞, k ∈ N0,

a condition in turn equivalent to the fact that xμ+1/2ψ(x) ∈ Hμ, by
Proposition 2.4.

Indeed, if (3.3) is satisfied then so is (3.4), because to every k ∈ N0

there corresponds r ∈ N0 such that xk+μ+1/2 ≤ (1 + x2)r (x ∈ I).
Conversely, assume that ψ satisfies (3.4) and let ϕ(x) = xμ+1/2ψ(x) ∈
Hμ. Then hμϕ ∈ Hμ as well, and (3.3) can be immediately deduced
from (1.1).

Theorem 3.2. For α, β > 0, α+ β ≥ 1, we have

Hβ
μ,α = xμ+1/2Seβ

α.

Proof. By [16, Theorem 2.5], an even function ψ ∈ C∞(R) belongs
to Seβ

α if and only if there exist a, b > 0 such that

∥∥∥exp
{
ax1/α

}
ψ(x)

∥∥∥
∞
< +∞,

∥∥∥exp
{
bx1/β

}
(Hμψ)(x)

∥∥∥
∞
< +∞,

where Hμ is related to hμ by (3.2). By [10, Equation IV.2.1-(3)], this
means that some A,B > 0 are such that

(3.5)

∥∥xkψ(x)
∥∥
∞ ≤ CAkkkα

‖xm(Hμψ)(x)‖∞ ≤ CBmmmβ,
k,m ∈ N0.
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Condition (3.5) is equivalent to

(3.6)

∥∥∥xk−μ−1/2(xμ+1/2ψ(x))
∥∥∥
∞

≤ CAkkkα∥∥∥xm−μ−1/2hμ(tμ+1/2ψ(t))(x)
∥∥∥
∞

≤ CBmmmβ,
k,m ∈ N0.

Note that (3.6) suffices for ϕ(x) = xμ+1/2ψ(x), x ∈ I, to lie in Hβ
μ,α.

Indeed, the same reason why (3.4) follows from (3.3) also proves

(3.7)

∥∥xkϕ(x)
∥∥
∞ ≤ CAkkkα

‖xm(hμϕ)(x)‖∞ ≤ CBmmmβ ,
k,m ∈ N0,

so that ϕ ∈ Hβ
μ,α, by Theorem 2.5.

Conversely, assume ϕ ∈ Hβ
μ,α, and let ψ(x) = x−μ−1/2ϕ(x), x ∈ I.

Then

∥∥xkTμ,mϕ(x)
∥∥
∞ =

∥∥∥xm+k+μ+1/2(x−1D)mψ(x)
∥∥∥
∞

≤ CAkBmkkαmmβ,

k,m ∈ N0,

by Proposition 2.3. Using [17, Equation 5.4-(12)], it is easy to see that

‖xmTμ,k(hμϕ)(x)‖∞ =
∥∥∥xm+k+μ+1/2(x−1D)k(Hμψ)(x)

∥∥∥
∞

≤ CÃkB̃mkkαmmβ, k,m ∈ N0.

In particular, ∥∥∥xk+μ+1/2ψ(x)
∥∥∥
∞

≤ CAkkkα,∥∥∥xm+μ+1/2(Hμψ)(x)
∥∥∥
∞

≤ CB̃mmmβ , k,m ∈ N0.

Now

∣∣xkψ(x)
∣∣ =

∣∣∣x−μ−1/2(xk+μ+1/2ψ(x))
∣∣∣

≤
∣∣∣xk+μ+1/2ψ(x)

∣∣∣ ≤ CAkkkα, k ∈ N0, x ≥ 1,
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whence
sup
x≥1

∣∣∣exp
{
ax1/α

}
ψ(x)

∣∣∣ < +∞

for some a > 0. As

sup
0<x<1

∣∣∣exp
{
ax1/α

}
ψ(x)

∣∣∣ < +∞,

we obtain ∥∥∥exp
{
ax1/α

}
ψ(x)

∥∥∥
∞
< +∞.

Similarly, it can be proven that there exists b > 0 for which∥∥∥exp
{
bx1/β

}
(Hμψ)(x)

∥∥∥
∞
< +∞.

From [16, Theorem 2.5] we conclude that ψ ∈ Seβ
α.

Remark 3.3. If α, β > 0, corresponding results can be obtained con-
necting the space Hμ,α, respectively Hβ

μ, to the space Seα, respectively
Seβ.
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