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EXPANSIONS OF PRIME IDEALS

P. MALCOLMSON AND F. OKOH

ABSTRACT. When R is an integral domain and S a finitely
generated extension of R we investigate the finiteness of the
set of prime elements of R that become units in S and the
finiteness of the set of prime ideals of R that expand to a
given ideal of S. To this end we introduce the notions of
GD(1) domains and GD(2) domains. An integral domain
is a GD(1), respectively, GD(2), domain if every non-zero
element in R is contained in only finitely many principal
prime ideals, respectively, prime ideals. We determine when
these properties are inherited by subrings, quotient rings,
polynomial rings, and power series rings; in this respect GD(1)
domains behave like unique factorization domains. A corollary
is that if A is an affine (commutative) algebra over a field k,
then any field between A and k is algebraic over k. This
generalizes the Nullstellensatz. We show that extensions
of unique factorization domains studied by Samuel, D.D.
Anderson, D.F. Anderson, Zafrullah and many others are
proper subclasses of the class of GD(1) domains.

1. Introduction. Let R be an integral domain, and let S be a
finitely generated ring extension of R. Thus S = R[X1, . . . , Xn]/I,
where I is a constant-free ideal in the polynomial ring R[X1, . . . , Xn],
i.e., I ∩ R = {0}. Our first question is whether the set of (non-
associated) prime elements in R that become units in S is finite. For
instance, if R = Z, the ring of integers, and I = 〈p1p2 . . . pkX − 1〉,
where p1, . . . , pk are distinct primes, then only these primes become
units in Z[X]/I, while Z[X1, . . . , Xn, . . . ]/〈nXn − 1 : n = 1, 2, . . . 〉 is
isomorphic to the field of rational numbers, Q.

The canonical embedding of R into S results in a map

φ : SpecS −→ SpecR

defined by φ(P ) = P ∩ R for all proper prime ideals P of S.

By [12, Lemma 6D(2)], φ(SpecS) is dense in Spec R. When R is a
Dedekind domain (so that every nonzero ideal is contained in only a
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finite number of prime ideals of R), we deduce from the denseness and
Chevalley’s theorem on constructible sets, [12, Theorem 6], that only
finitely many prime ideals in R become the unit ideal in S.

In order to obtain similar conclusions for integral domains without
any chain conditions, we introduce the notions of robustness, for n = 1,
and ℵ0-robustness, for n arbitrary, to specify that only a finite number
of prime elements in R become units in S. We also introduce the
concept of a GD(1) domain, in which every non-zero element lies in only
finitely many principal prime ideals. In a Krull domain as defined in
[11] every nonzero element is contained in only finitely many principal
prime ideals. Thus Krull domains are GD(1) domains. The concept of
a GD(1) domain also ties this paper to the many papers dealing with
extensions of unique factorization domains; see [1, 2] for references. We
show that GD(1) domains include all the extensions in [1] as proper
classes.

The second question that we deal with generalizes the first. The setup
is the same but this time we ask whether the equation

PR[X1, . . . , Xn] + I = J

where J ⊇ I is an ideal of R[X1, . . . , Xn] has only finitely many
solutions, P . To deal with the question we introduce the notions of
super-robustness (limiting the solutions) and GD(2) domains in which
every non-zero element is contained in only finitely many prime ideals.
In a Dedekind domain every nonzero element is contained in only a
finite number of prime ideals; see [9, Theorem 3.16]. Hence, a Dedekind
domain is GD(2). We give examples of GD(2) domains that are not
Dedekind.

If P is a prime ideal in a GD(2) domain, then clearly R/P is also
GD(2). We show that the analogous statement for GD(1) domains is
false. While a polynomial ring over a GD(1) domain is shown to be
GD(1), we prove that R[X] is a GD(2) domain if and only if R is a
field. Neither class is closed under subrings and power series.

We note that the hypotheses in all the results in this paper do not
include any chain conditions on the integral domain R.
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Notation.

• R stands for an integral domain.

• R[X] is the polynomial ring in the variable X.

• I is a constant-free ideal in R[X], i.e, I ∩ R = {0}.

1. GD(1) domains and robustness. The most important lemma
for this paper is a known result.

Lemma 1.1. Let J be an ideal of R[X] with J ∩ R = {0}. Then
there is a polynomial f(X) in J and an element a in R such that for
every g(X) in J there is a positive integer m and a polynomial q(X)
in R[X] with amg(X) = f(X)q(X).

Proof. If J = {0} the statement is obvious, so assume J �= {0}. Since
J ∩ R = {0}, we may choose a non-zero polynomial f(X) in J with
deg f(X) = n ≥ 1 as small as possible. The leading coefficient of f(X)
is the required a of the lemma. Let g(X) ∈ J . The division algorithm
in R[a−1][X] gives

(1) g(X) = f(X)q1(X) + r1(X)

where r1(X) = 0 or deg r1(X) < deg f(X). Multiply (1) by a large
enough positive power of a to obtain amg(X) = f(X)q(X) + r(X) in
R[X]. Since r(X) ∈ J the choice of f(X) forces r(X) to be 0.

Definitions 1.2 (a). An integral domain R is a GD(1) domain if
every non-zero element in R is contained in only finitely many principal
prime ideals of R.

(b) For a constant-free ideal I of R[X], we say that R is I-robust if
only finitely many prime elements of R become units in R[X]/I. We
say R is robust if it is I-robust for every constant-free ideal I.

These definitions make sense for a wider class of rings. However, for
integral domains the concepts coincide, as we now show.

Proposition 1.3. An integral domain R is robust if and only if it
is a GD(1) domain.
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Proof. Suppose R is GD(1), and let I be a constant-free ideal in R[X].
Let f(x) ∈ R[X] and a ∈ R be as in Lemma 1.1. Now suppose p ∈ R
is a prime element which is a unit in R[X]/I. Then pg(X) − 1 ∈ I for
some polynomial g(X) ∈ R[X]. From Lemma 1.1, there exist q ∈ R[X]
and integer m > 0 such that

(2) am(pg(X) − 1) = f(X)q(X).

Considering (2) modp gives

(3) −am ≡ f(X)q(X) mod P

where P is the prime ideal in R generated by p. We may consider (3)
as an equation in (R/P )[X]. If q(X) = 0 in (R/P )[X], then am ∈ P .
Hence, a ∈ P and p divides a. On the other hand, if q(X) �= 0 in
(R/P )[X], then f(X) is a constant in (R/P )[X]. Since deg f(X) ≥ 1
this implies that a ∈ P . Since R is GD(1), this implies that only finitely
many primes become units in R[X]/I, i.e., R is robust.

Suppose that R is not GD(1). Then there is a non-zero element a in
R in infinitely many principal prime ideals P of R. Let 〈aX − 1〉 be
the ideal of R[X] generated by aX − 1. If a ∈ P = 〈p〉, then p divides
a. Hence, p becomes a unit in R[X]/〈aX − 1〉. Thus R is not robust.

Proposition 1.3 allows us to use robust and GD(1) interchangeably.
The latter is more amenable for proofs while the former is more
euphonious for the statement of results. In that respect the next
proposition is typical.

Proposition 1.4. An integral domain R is robust if and only if
R[X] is robust.

Proof. If R[X] is GD(1), so is R because a principal prime ideal in R
generates a principal prime ideal in R[X].

Suppose that R is GD(1). There are two classes of principal prime
ideals in R[X]: those generated by prime elements of R and those
generated by nonconstant prime elements of R[X]. If 0 �= a ∈ R, then
a is contained in only finitely many principal prime ideals of the first
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kind because R is GD(1). Let f(X) = a0 + a1X + · · · + anXn, n ≥ 1,
be in 〈p〉, where p is a prime element in R. Then an ∈ 〈p〉. Since R is
GD(1), f(X) is in only finitely many principal prime ideals of the first
kind.

Suppose p1, p2, . . . , pk are nonconstant, nonassociate prime elements
of R[X] such that f(X) ∈ 〈pi〉, for each i = 1, 2, . . . , k. Then, since
〈p1p2 . . . pk〉 = 〈p1〉∩〈p2〉∩· · ·∩〈pk〉, it follows that there exists q ∈ R[X]
such that f(X) = p1p2 · · · pkqk. Since k cannot exceed the degree of
f(X), R[X] is GD(1).

We now give examples of GD(1) domains and the relationship of
GD(1) domains to other classes of integral domains.

In [2] an integral domain R is called a bounded factorization domain
(BFD) if every element in R is a product of a finite number of
irreducible elements in R and, for each non-zero element x of R, there is
a positive integer N(x) such that, whenever x = x1 · · ·xn is a product
of irreducible elements of R, then n ≤ N(x). A Noetherian domain is
a BFD, see [1, Proposition 2.2].

Proposition 1.5. A bounded factorization domain is robust.

Proof. Let x be a non-zero element of a BFD, R. Then x cannot
be divisible by more than N(x) distinct prime elements. For, if x is
divisible by r distinct primes pi (for i = 1, 2, . . . , r), with r ≥ N(x)+1,
then x = p1p2 · · · pra for some a in R. Since a is a product of
irreducibles, and the pi are irreducible, we have contradicted N(x) < r.
Hence, R is GD(1).

The converse of Proposition 1.5 is not true. To see this, let R be a
valuation domain whose maximal ideal is not principal (e.g., a union of
power series rings over a field in variables t1/2n

for all positive integers
n). Proposition 1.6 of [7] shows that there are only a finite number of
principal prime ideals, so that R is robust. On the other hand, such
an R has no irreducible elements and hence is not BFD. (For if x ∈ R
is irreducible, then let m be a nonzero element in the maximal ideal.
Since ideals are linearly ordered, mR ⊆ xR by irreducibility. Hence x
generates the maximal ideal, a contradiction.)
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GD(1) domains need not be idf nor FFD. An integral domain R is a
finite factorization domain (FFD) if every non-zero element in R has
only a finite number of non-associate divisors, while R is irreducible
divisor finite (idf) if every non-zero element has only a finite number
of non-associate irreducible divisors. Therefore idf domains and FFD’s
are GD(1). A Krull domain is FFD, by Example 3 or Theorem 2, both
in [2]. We will see in Proposition 2.11 that a GD(1) domain need not
be idf nor FFD.

Examples 1.6. Non-noetherian robust rings. (1) Let R be a UFD;
then R[X1, . . . , Xn, . . . ] is a UFD, hence robust.

(2) As noted above, a Krull domain is robust. The integral closure
of a noetherian domain need not be noetherian but it is Krull; see [14,
Theorem 33.10].

(3) There are non-noetherian domains with only finitely many prime
ideals; see [7, Exercise 8, p. 13 and Proposition 1.7]. Such domains are
trivially GD(1).

(4) A valuation domain whose maximal ideal is not principal has
no irreducible elements, as in the discussion following Proposition 1.5.
Hence it is not noetherian and is vacuously GD(1).

All arrows lead to GD(1). A GD(1) domain can be alternatively
described as prime divisor finite (pdf). The comments since Proposi-
tion 1.5 put pdf at the extreme right of the chart on page 2 of [1] and
no arrow goes out of GD(1).

Since the class of robust domains is so inclusive, it is necessary to
give examples of non-robust domains.

We recall that a Jacobson ring is a commutative ring with identity in
which every prime ideal is an intersection of maximal ideals. (Here we
follow Bourbaki, rather than many authors, for example [11] and [13],
who use the term Hilbert.) The class of Jacobson rings is closed under
quotients and polynomial rings, see [11]. In particular, polynomial
rings in several variables over principal ideal domains are Jacobson.
However, an ascending union of Jacobson rings need not be Jacobson.
A domain with non-zero Jacobson radical cannot be a Jacobson ring.
Thus Z2, the localization of Z at the prime 2, is not Jacobson. But it
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is an ascending union of Ak where Ak is the ring generated over Z by
{

1
3
, . . . ,

1
2k + 1

}
.

Each Ak is a quotient of the Jacobson ring Z[X1, . . . , Xk].

The following result is a consequence of [11, Theorem 147], but the
proof below is brief.

Lemma 1.7. Let A be a Jacobson ring. Then a prime ideal P of
A that is not maximal is contained in infinitely many maximal ideals
of A.

Proof. Let P = ∩j∈JMj , where each Mj is a maximal ideal of R
containing P . Since P is not maximal, J has at least two members. If
J were finite, then the Chinese remainder theorem gives

(4) R/P ∼=
∐
j∈J

(R/Mj).

Since the righthand side of (4) is not an integral domain, (4) gives a
contradiction. Hence J is an infinite set.

Examples 1.8. Examples of non-robust rings. 1. The following
result is proved in [13]: If D is a PID with infinitely many prime ideals
with K as its quotient field, then R = D+XK[X] is a Jacobson domain
in which every maximal ideal is principal. Since XK[X] is a prime ideal
that is not maximal then by Lemma 1.8, X is contained in infinitely
many maximal ideals. Thus R is not GD(1). Hence R is not robust,
by Proposition 1.3.

2. Let A be an integral domain. Let R = A[X0, X1, X2, . . . , Y1, Y2,
. . . ]. Let I be the ideal generated by {Xi −Xi+1Yi+1 : i = 0, 1, 2, . . . }.
Consider the sequence of rings R0 = R[X0], R1 = R[X1, Y1], R2 =
R[X2, Y1, Y2], Rn = R[Xn, Y1, Y2, . . . , Yn] with Ri ⊂ Ri+1 via Xi =
Xi+1Yi+1. Here we are dealing with an ascending union of polynomial
rings (with a non-standard embedding). This shows that R/I is an
integral domain and that the coset X0 + I is contained in the infinitely
many prime ideals 〈Yi + I〉, i = 1, 2, . . . . Hence R/I is not robust.
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Corollary 1.9. (a) If P is a prime ideal of a robust ring R, R/P
need not be robust.

(b) A subring of a robust domain need not be robust.

Proof. (a) Choose the coefficient ring A of Example 1.8.2 to be a
UFD. Then by Example 1.6.1, the ring R of Example 1.8.2 is robust
with a quotient that is a domain and non-robust.

(b) The non-robust example in Example 1.8.1 is a subring of the
robust domain K[X]. In this case both rings have the same field of
quotients, that is, K[X] is an overring of D + XK[X].

We shall need some lemmas in order to deal with robustness and
power series rings.

Lemma 1.10. Let S = R[[X]]. Let p, b ∈ S, and let the constant
term of p be p0 �= 0. Then p divides b in S if and only if for every
element q ∈ S with b − pq having lowest order term ckXk with k ≥ 0,
we must have p0 divides ck in R.

Proof. Starting with q = 0, the assumption p0 divides ck allows us
to obtain each term of the quotient by induction on k. Conversely, if
b = pr in S, then for each q we get b− pq = p(r − q). The lowest order
term ckXk of b − pq must therefore have p0 divides ck.

Lemma 1.11. If the constant term p0 of a series p in S = R[[X]]
is a nonzero prime element in R, then p is a prime element in R[[X]].

Proof. Let b and c be two elements of S neither of which is divisible
by p in S. Then by Lemma 1.10, there must exist elements of S, q for
b and r for c, such that b− pq has lowest order term d0X

k with d0 not
divisible by p0, and c − pr has lowest order term e0X

m with e0 not
divisible by p0. Then (b−pq)(c−pr) has lowest order term d0e0X

k+m,
not divisible by p0. But (b− pq)(c− pr) = bc− p(qc + br − pqr). Thus,
by Lemma 1.10, p does not divide bc.
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We now adapt the second example of a non-robust ring to show that
R robust does not imply that R[[X]] is robust.

Proposition 1.12. Let R be the ring generated over Z by variables
Xi, i = 0, 1, . . . , and Y , with relations Xi = Y Xi+1, i = 0, 1, . . . . Let
S = R[[t]] be the power series ring over R. Then R is robust while S
is not robust.

Proof. By Lemma 1.11, Y + nt is a prime element of S for every
integer n. Each of these is a divisor of X0, since X0 = (Y + nt)(X1 −
nX2t + n2X3t

2 − n3X4t
3 + · · · ). If m �= n, then Y + mt and Y + nt

are not associates in S, since Y + nt = (Y + mt)(1 + kt + · · · ) implies
n = m + kY , which is not solvable in R. Thus S is not robust.

Let a be a nonzero element of R that is not a unit. Factor it
uniquely into primes in the smallest subring Z[Xi, Y ] ⊂ R in which
it lies. We will show that these are the only primes dividing a in
R. If a prime element p in Z[Xi, Y ] factors in Z[Xk, Y ], k > i, then
using Xk−1 = Y Xk a sufficiently high power Y m of Y results in a
factorization of Y mp in Z[Xi, Y ]. Uniqueness of factorization in the
latter ring implies that p remains irreducible in Z[Xk, Y ].

We now extend the above concepts to polynomials in more than one
variable, R[X] = R[X1 . . . , Xn]. Let I be a constant-free ideal in R[X].
We say that R is I-n-robust if only finitely many prime elements of R
become units in R[X]/I. If n is fixed and R is I-n-robust for every
constant-free ideal I in R[X], we say that R is n-robust. If R is n-
robust for every positive integer n, we say that R is ℵ0-robust.

The next lemma is well-known (see, e.g., [14, 10.5]): we use it to
prove that robust already implies ℵ0-robust.

Lemma 1.13. Let R1 ⊆ R2 be an integral extension of rings, and
suppose that x ∈ R1 has an inverse y ∈ R2; then y ∈ R1.

Proof. Let y satisfy the monic polynomial yn +r1y
n−1 + · · ·+rn−1y+

rn = 0, where ri ∈ R1. Multiplying this equation by xn−1 yields
y + (r1 + r2x + · · · + rnxn−1) = 0. Thus, y ∈ R1.
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Theorem 1.14. An integral domain R is a GD(1) domain if and
only if it is ℵ0-robust.

Proof. Suppose that R is GD(1); we have to show that if I is a
constant-free ideal in S = R[X1, . . . , Xn], then only finitely many prime
elements of R become units in S/I. The proof is by induction on n,
and Proposition 1.3 starts the induction.

Suppose that I ∩ R[Xi] �= {0} for each i ∈ {1, 2, . . . , n}. Let fi

be the polynomial of least positive degree in I ∩ R[Xi] with leading
coefficient ai. Applying the division algorithm to each fi leads to the
conclusion that S/I is finitely generated as a module over T = R[a−1],
where a = a1a2 · · · an. Since I ∩ R = {0}, R embeds in S/I and we
have that (S/I)[a−1] is an integral extension of T . If p ∈ R is a prime
and becomes a unit in S/I, then 1/p ∈ T , by Lemma 1.13. Then
1/p = r/am for some r ∈ R and m ≥ 0. Multiplying this equation by a
suitable power of a leads to the conclusion that p divides a in R. Since
R is GD(1) we conclude that only finitely many non-associated prime
elements become units in S/I.

Suppose that I ∩ R[Xi] = {0} for some i, say i = 1 by relabeling.
Then S = (R[X1])[X2, . . . , Xn]. By Proposition 1.4, R[X1] is robust.
Hence by the induction hypothesis, only finitely many prime elements in
R[X1] become units in S/I. Since prime elements in R remain prime in
R[X1], we deduce that only finitely many prime elements of R become
units in S/I, i.e., that R is ℵ0-robust.

Zariski’s version of the Nullstellensatz states that a field which is
finitely generated as an algebra over a subfield is algebraic over that
subfield [8, p. 31]. The following is a generalization.

Corollary 1.15. Let A be an affine (commutative) algebra over a
field k, and let F be a field over k which is contained in A. Then F
is algebraic over k.

Proof. If not, then F contains k[x] for some x transcendental over
k. The algebra A is finitely generated over k[x], and k[x] is ℵ0-robust.
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Hence, only finitely many primes of k[x] become units in A. But k[x]
has infinitely many primes, all of which are units in F , a contradiction.

Remark 1.16. A consequence of the results in this section is that the
field of rational numbers Q cannot be contained in a finitely generated
commutative ring extension of Z, since Z is GD(1). Non-commutative
analogues of our results would be useful in the implementation of some
ideas of Makar-Limanov (private communication, by analogy with [10])
on studying skew fields of characteristic zero by specializing to finite
characteristic.

2. GD(2) domains and super-robustness. In addition to
Lemma 1.13 we shall need the following result.

Lemma 2.1. Suppose C ⊆ D is an inclusion of rings with D integral
over C. Suppose P is a prime ideal of C and J is an ideal of D with
PD = J . Then J ∩ C = P .

Proof. By the lying over theorem (see [5, Proposition 4.15]) there is
a prime ideal Q of D with Q ∩ C = P . Since PD ⊆ Q and PD = J ,
we have that J ⊆ Q. From J ∩ C ⊆ Q ∩C = P and J ∩ C ⊇ P we get
J ∩ C = P .

Definitions 2.2. (a) An integral domain R is a GD(2) domain if
every non-zero element in R is contained in only finitely many prime
ideals of R.

(b) Let J be an ideal of R[X] that contains a constant-free ideal I.
We shall say that R is I-super-robust with respect to J if the set of
prime ideals, P , of R that satisfy

(5) PR[X] + I = J

is finite. If R is I-super-robust with respect to every ideal J of R[X]
that contains I we say that R is I-super-robust, while R is super-robust
if it is I-super-robust for every constant-free ideal I of R[X].
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Proposition 2.3. An integral domain R is super-robust if and only
if it is a GD(2) domain.

Proof. Suppose that R is a GD(2) domain. We want to show that R
is super-robust. Let I be a constant-free ideal in R[X], and let J be an
ideal of R[X] containing I. Recall the element a of Lemma 1.1. Since
R is GD(2), there are only finitely many prime ideals P that contain
a.

Now let P be a prime ideal of R that satisfies (5) with a �∈ P . Let
c ∈ J ∩ R. If c = 0, then c ∈ P . Otherwise from (5) we get that
c = p(X)+b for some p(X) ∈ PR[X] and some b ∈ I. Using Lemma 1.1
and its notation, we get that amc = amp(X) + f(X)q(X). Reducing
mod P leads to amc ∈ P as in the proof of Proposition 1.3. Since a /∈ P ,
we get that c ∈ P . Since P ⊆ J ∩ R, we have proved that J ∩ R = P .
Thus there is only one P satisfying (5) with a /∈ P . We conclude that
R is super-robust.

Suppose R is not GD(2). Then there is a non-zero element a of R that
is contained in infinitely many prime ideals of R. Let I be any prime
ideal of R[X] that contains aX − 1. (Note that aX − 1 is irreducible
but not necessarily prime.) Let P be a prime ideal of R that contains
a. Then PR[X] + I = R[X] because 1 = aX + (1 − aX). Therefore R
is not super-robust.

Proposition 2.4 is in contrast to Proposition 1.4.

Proposition 2.4. The polynomial ring R[X] is super-robust if and
only if R is a field.

Proof. If R is a field, then R[X] is GD(2), hence super-robust by
Proposition 2.3. If R is not a field, then it has a non-zero prime ideal,
P . By Theorem 36 of [11], there are infinitely many prime ideals of
R[X] lying over the prime ideal PR[X]. Hence any non-zero element
of P is contained in infinitely many prime ideals of R[X].

It follows from Proposition 2.4 that the property of super-robustness
is not closed under subrings nor polynomial extensions. This is in
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contrast to the properties of BFD, FFD, and UFD, which are closed
under polynomial extensions, see [1, Propositions 2.6, 5.3].

Corollary 2.5. A bounded factorization domain, even a UFD, need
not be super-robust.

Example 2.6. Example 1.6.3 is also a non-noetherian example of a
super-robust domain.

Proposition 2.7 below gives an even more interesting example of a
super-robust ring. The ring R = R + XC[X] ⊂ C[X] is one of the
examples of an integral domain that is not FFD, see [2]: think of R
as the set of complex polynomials, f(X), with f(0) real. Thus the
imaginary number i is not in R. For each real number r the element
(r + i)X divides X2. Since 1/(r + i) /∈ R, X2 has infinitely many
non-associated divisors. Hence R is neither idf nor FFD.

We shall now show that R is a GD(2) domain. First note that
the ideal 〈X〉 is properly contained in XC[X] because iX is not in
〈X〉. Also no element of XC[X] is a prime element because Xf(X)
divides (iXf(X))(iXf(X)) but Xf(X) does not divide iXf(X). Let
P ⊆ XC[X] be a prime ideal of R. If X ∈ P , then (Xi)(Xi) ∈ P .
Hence Xi ∈ P . Thus P = XC[X]. Assume that X �∈ P . Thus
there is an element 0 �= Xnf(X) ∈ P , where f(X) = λ + Xg(X),
0 �= λ ∈ C, n ≥ 1, and g(X) �= 0. We cannot say a priori that f(X)
is in R. Write λ−1f(X) = 1 + λ−1Xg(X). Then (λ−1X)(Xnf(X)) =
Xn+1(1 + Xλ−1g(X)). Since 1 + Xλ−1g(X) is in R and X /∈ P ,
1 + Xλ−1g(X) is in P . But no such element is in XC[X]. Hence
X ∈ P and Xi ∈ P . Thus P = XC[X]. Therefore, XC[X] is a prime
ideal with no prime elements. Every element in R of the form Xf(X),
f(X) �= 0, is contained only in the prime ideal, XC[X].

We shall now determine the other prime ideals of R. Given any non-
zero complex number α the ideal 〈1 − α−1X〉 is a maximal ideal of R,
since the evaluation map φα : R → C defined by φα(f(X)) = f(α) is
onto C. Certainly 〈1 − α−1X〉 ⊆ Ker φα. Suppose f(X) ∈ Kerφα.
Then for appropriate polynomials, f(X) = (1− α−1X)(amXm + · · ·+
a1X + a0) in C[X]. Since f(X) ∈ R, a0 is real. Thus f(X) ∈
〈1 − α−1X〉. Hence 〈1 − α−1X〉 is a maximal ideal in R. Any prime
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ideal, P , of R not contained in XC[X] has an element of the form
r + Xf(X), where r �= 0, f(X) �= 0.

An element in R is of the form x = r + Xf(X) where r is some
non-zero real number, and f(X) in C[X] is non-zero. This element x
factorizes in C[X] and in R as r(1−α−1

1 X) · · · (1−α−1
k X). Any prime

ideal, P , of R not in XC[X] contains an element of the form r+Xf(X),
where r �= 0, f(X) �= 0. From the above argument we conclude that
P = 〈1−α−1X〉 for some complex number α. Moreover x is contained
in only finitely many prime ideals, viz., 〈1−α−1

j X〉, j = 1, . . . , k. Thus
R is GD(2).

We summarize the above discussion in Proposition 2.7.

Proposition 2.7. The ring of complex polynomials R with real
constant term is neither an FFD domain nor an idf domain, but it
is a GD(2) domain. Hence it is super-robust.

Remark 2.8. Robustness is implied by various factorization proper-
ties, but super robustness is not. Nonrobust rings are hard to find,
but examples of domains that are not super-robust are plentiful, see
Proposition 2.4.

In comparison with Corollary 1.9, we state the following.

Corollary 2.9. (a) If P is a prime ideal of a super-robust ring, then
R/P is super-robust.

(b) A subring of a super-robust domain need not be super-robust.

Proof. (a) follows from the definition of super-robustness while (b)
follows from Proposition 2.4: Z[X] is not super-robust while Q[X] is
super-robust.

Remark 2.10. As already remarked, a Dedekind domain is super-
robust. The super-robust domain R in Proposition 2.7 is not Dedekind
because it is not integrally closed since i �∈ R.
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Proposition 2.11. A GD(1) domain need not be an FFD or idf.

Proof. A GD(2) domain is clearly also GD(1). The domain in
Proposition 2.7 is therefore GD(1), but it is neither FFD nor idf.

If p is a prime element in R, then the element X is contained in the
prime ideal of R[[X]] generated by {p, X}. Thus, if R has infinitely
many primes p we have that R[[X]] is not GD(2).

Proposition 2.12. If R has infinitely many prime elements, then
R[[X]] is not super-robust.

Definition 2.13. Let I be a constant-free ideal in R[X1, . . . , Xn].
Then R is I-n-super-robust with respect to an ideal J ⊇ I in R[X1, . . . ,
Xn] if there are only finitely many prime ideals, P , of R that satisfy
(6) PR[X1, . . . , Xn] + I = J.

If, for a fixed positive integer n and for a fixed constant-free ideal
I, (6) has only finitely many solutions P for every ideal J ⊇ I in
R[X1, . . . , Xn], we say that R is I-n-super-robust. If, for a fixed n,
R is I-n-super-robust for every constant-free ideal I, we say that R is
n-super-robust. If R is n-super-robust for every positive integer n, we
say that R is ℵ0-super-robust.

Theorem 2.14. An integral domain R is a GD(2) domain if and
only if it is ℵ0-super-robust.

Proof. If R is ℵ0-super-robust, then it is super-robust. Hence by
Proposition 2.3, it is GD(2). Suppose that R is GD(2). We want to
show that, for every positive integer n and every constant-free ideal I
in S = R[X1, . . . , Xn] and every ideal J ⊆ S containing I, the equation
(6) has only finitely many primes P of R as solutions. Note that I and
J are fixed and P is the variable.

Let k ≥ 0 be the maximum number of variables with the property
(after possibly relabeling) that I ∩ R[X1, . . . , Xk] = {0}. Let A =
R[X1, . . . , Xk]. (If k = 0, then A = R.) Rewrite (6) as
(7) PA[Xk+1, . . . , Xn] + I = J.
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In (7) PA is a prime ideal of A consisting of polynomials with coef-
ficients in P . Let P1 �= P2 be prime ideals of R solving (6). Then
P1A and P2A remain distinct solutions of (7). By the choice of k,
I ∩ A[Xk+i] �= 0 for i = 1, . . . , n − k. Let

fi(Xk+i) be a polynomial in I ∩ A[Xk+i] of minimum degree in
Xk+i with ai ∈ A as its leading coefficient.

Localize A at the multiplicative set {am : m = 1, 2, . . . } where
a = a1a2 · · · an−k to get A[a−1]. Only finitely many P ’s from (6)
intersect {am : m = 1, 2, . . . } because R is GD(2). Such primes are
no longer proper ideals in A[a−1]. If these are the only solutions of (6)
then we would be done.

If P ∩ {am : m = 1, 2, . . . } = ∅, then PA[a−1] is a prime ideal
in A[a−1]. However, it is possible that distinct solutions of (6) may
become the same prime ideals of A[a−1].

Fix P a prime ideal of R which is a solution of (6). Suppose

(8) PA[a−1] = P1A[a−1]

in A[a−1] with P1 a solution of (6) different from P . Since R is GD(2),
P is contained in only finitely many P1’s that are solutions of (6). Thus
in (8) we may restrict to P1 with P �⊂ P1.

Let x ∈ P\P1. Then, from (8), x = g(a−1) where g is some
polynomial in a−1 with coefficients in P1. By multiplying by a large
enough power of a we get xy ∈ P1A where y is a power of a. Therefore,
a ∈ P1A since x �∈ P1. Hence the coefficients of a are in P1. Since R
is GD(2), the coefficients of a are contained in only finitely many P1’s.
Thus (8) holds for only finitely many P1’s. Therefore, only finitely
many solutions of (6) are lost in the following equation

(9) PA[a−1][Xk+1, . . . , Xn] + I[a−1] = J [a−1].

Since I[a−1] ∩ A[a−1] = {0}, we may consider A[a−1] as equal
to (A[a−1] + I[a−1])/I[a−1] and therefore a subring of T = A[a−1]
[Xk+1, . . . , Xn]/I[a−1]. Because of the choice of fi(Xk+i), the division
algorithm gives that T is an integral extension of A[a−1]. Equation
(9) implies that the hypotheses of Lemma 2.1 are satisfied, with
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C = A[a−1], D = T , and J = J [a−1]/I[a−1]. Therefore Lemma 2.1
implies that

(10) (J [a−1]/I[a−1]) ∩ A[a−1] = (PA[a−1] + I[a−1])/I[a−1].

Thus after discarding finitely many solutions of (6) along the way only
the lefthand side of (10) survives. Therefore, (6) has only finitely many
solutions. Thus R is ℵ0-super-robust.

Remark 2.15. We originally intended to use irreducible elements in
place of prime elements. The role of GD(1) domains would be played by
irreducible divisor finite (idf) domains as defined in [1]. We would also
need irreducible divisors of powers finite (idpf) domains. This means
that if a is a non-zero element of R the set of irreducible non-associate
divisors of powers of a is finite. While prime factors of powers finite
domains and GD(1) domains coincide, it is no longer clear that idpf
domains and idf domains coincide.

For integral domains R ⊆ S, S is called an overring of R if the
quotient fields coincide. One might ask whether every overring of a
(super)robust ring is (super)robust? We note that this is true for
super-robustness if S is a localization of R, see [11, Theorem 34].
The corresponding statement is false for robust rings by an example
of Coykendall (private communication). In general Coykendall has
shown in [3, 4] that integral closures of GD(1) (respectively GD(2),
HFD) domains need not be of the same type. For the behavior of other
generalizations of UFD under localization, see [1].

We conclude the paper with a problem suggested by the referee.
When are rings of the form D+M GD(1) or GD(2)? In Proposition 2.7
we used D = R and M = XC[X]. For a general definition see [6]. More
generally, characterize which pullbacks are GD(1) and GD(2) domains.

Note added in proof. The concept of idpf is considered by the
authors in a paper to appear in the Houston Journal of Mathematics.
With regard to the problem suggested by the referee, Coykendall and
Dumitrescu have described the rings of the form A + XB[X] which
are idf.
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