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SUBSPACES WITH NONINVERTIBLE
ELEMENTS IN Re C(X)

M.H. SHIRDARREH HAGHIGHI

ABSTRACT. Let X be a compact Hausdorff space, and let
M be a subspace of Re C(X) consisting only of noninvertible
elements. We show that there exist closed sets Y ⊂ X such
that each element of M has a zero in Y and no closed subset
of Y has this property; furthermore, such a Y is a singleton,
or has no isolated points. If M has finite codimension n and
Y is not a singleton, then Y is a union of at most n nontrivial
connected components. We also show that positive functionals
exist in M⊥.

1. Introduction. Throughout this paper we assume that X is
an arbitrary compact Hausdorff space. Denote by C(X), respectively
Re C(X), the space of all continuous complex, respectively real, func-
tions on X.

In this section we discuss the motivation and a brief history of
studying subspaces with noninvertible elements in C(X) and Re C(X).

Plainly, every ideal of C(X) or Re C(X) is a subspace consisting only
of noninvertible elements. Let us call a subspace M of C(X) or Re C(X)
a Z-subspace if M is consisting only of noninvertible elements. In other
words, M is a Z-subspace if for each f ∈ M there exists x ∈ X such
that f(x) = 0.

So, every subspace of an ideal in C(X) or Re C(X) is a Z-subspace. It
is easy to construct Z-subspaces in Re C[0, 1] which are not contained
in maximal ideals. For example, let M = {f : f(0) + f(1) = 0}. Each
f ∈ M has a zero in [0, 1], by the intermediate value theorem, but
clearly M is not contained in an ideal.

The situation for C(X) is completely different. Studying Z-subspaces
begins with the following famous result due to Gleason [2] and Kahane
and Zelazko [5]:
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Theorem 1.1. A Z-subspace of codimension 1 in a unital complex
commutative Banach algebra is a maximal ideal.

What about other codimensions, finite or infinite? Examples ([3,
Section 2] and [6, Section 2]) show that in C(X), arbitrary Z-subspaces
are not necessarily contained in maximal ideals. However, the following
result of Jarosz [3] is interesting.

Theorem 1.2. Every finite codimensional Z-subspace of C(X) is
contained in a maximal ideal.

Farnum and Whitley [1, Theorem 1], gave the following character-
ization of Z-subspaces with codimension 1 in ReC(X). Recall that
the dual space M(X) of Re C(X) is the space of all regular real Borel
measures on X.

Theorem 1.3 [1]. Let ϕ be a linear functional of norm 1 on Re C(X)
such that ϕ(f) ∈ Im (f) for all f ∈ Re C(X) (this is equivalent to
saying that M = kerϕ is a Z-subspace). Then ϕ is a positive measure
supporting on a connected component of X.

Corollary 1.4. Let X be totally disconnected, for example, the
Cantor set. Then a Z-subspace of codimension 1 in ReC(X) is a
maximal ideal.

The author and Seddighi have shown the following combination of
Theorem 1.2 and Corollary 1.4 ([6, Theorem 3.1]).

Theorem 1.5. Let X be totally disconnected. Then each finite
codimensional Z-subspace of ReC(X) is contained in a maximal ideal.

In the following two sections, we represent more general results for
Z-subspaces in ReC(X).
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2. Z-subspaces and Z-supports. Let M be a Z-subspace of
Re C(X). We call a closed set Y ⊆ X a Z-support for M if every
element of M has a zero in Y . In particular, X is a Z-support for M .
A Z-support for M is called a minimal Z-support, if Y is a Z-support
and no proper closed subset of Y is a Z-support for M . In other words,
Y is a minimal Z-support for M if and only if for each proper closed set
F ⊂ Y , there exists f ∈ M such that f �= 0 everywhere on F . One can
easily verify that the uniform closure of a Z-subspace is a Z-subspace,
and both have the same Z-supports.

Theorem 2.1. Let M be a Z-subspace of ReC(X). Then each Z-
support for M contains a minimal Z-support. In particular, since X
is a Z-support, minimal Z-supports exist for M .

Proof. Suppose Y is a Z-support for M . Consider the class

T = {S ⊆ Y : S is a Z-support for M}.

Since Y ∈ T , T �= ∅. Let {Sα} be a chain in T . Compactness of Y
implies that ∩Sα ∈ T . It follows that minimal elements, in the sense
of inclusion, exist in T . They are minimal Z-supports for M .

Lemma 2.2. Let Y = Y1 ∪ Y2 be a Z-support for a Z-subspace
M in ReC(X), where Y1 and Y2 are disjoint closed nonvoid sets.
Furthermore assume that there exists f ∈ M such that f is constantly
zero on Y1 and f �= 0 everywhere on Y2. Then Y1 is a Z-support for
M . In particular Y cannot be a minimal Z-support for M .

Proof. Let g ∈ M . We have to show that g has a zero in Y1. Since
|f | > 0 on Y2, and Y2 is compact, we can choose a real scalar β so large
that |βf + g| > 0 on Y2. But βf + g ∈ M and hence (βf + g)(x) = 0,
for some x ∈ Y . Clearly, x /∈ Y2, so that x ∈ Y1. This gives g(x) = 0;
the desired result.

Theorem 2.3. A minimal Z-support for a Z-subspace in Re C(X)
is either a singleton, or has no isolated points.
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Proof. Let Y = {a}∪S be a Z-support for a Z-subspace M , where S
is closed and a /∈ S. If there exists f ∈ M such that |f | > 0 on S, then
f(a) = 0. Therefore by Lemma 2.2, we conclude that a is a common
zero for all elements of M . Otherwise, each element of M has a zero
in S. So, either {a} or S is a Z-support for M . Therefore, a minimal
Z-support for M , if not a singleton, cannot have any isolated points.

Theorem 2.4. Let M be a Z-subspace of ReC(X) with finite
codimension n and Y a minimal Z-support for M . Then one and only
one of the following statements holds:

1. Y is a singleton;

2. Y is a union of at most n nontrivial connected components.

Proof. In view of Theorem 2.3, it suffices to prove that Y has
not more than n connected components. On the contrary, suppose
Y = C1 ∪ · · · ∪ Cn+1, where Ci’s are disjoint closed nonvoid sets. For
1 ≤ i ≤ n + 1, the characteristic function Xi of Ci is continuous on
Y ; let fi be a continuous extension of Xi to whole X. Since M is of
codimension n, there exist scalars c1, . . . , cn+1, not all zero, such that
f = c1f1 + · · · + cn+1fn+1 ∈ M . Clearly, f = ci identically on Ci.
Now we have the decomposition Y = Y1 ∪Y2, where Y1 = ∪cj=0Cj and
Y2 = ∪cj �=0Cj . The set Y1 is closed and not empty, since f vanishes on
Y . Also Y2 is closed and not empty, since some scalars ci �= 0. So f is
constantly zero on Y1 and |f | > 0 on Y2. Lemma 2.2 implies that Y1 is
a Z-support for M . This contradicts the minimality of Y .

We now get Theorem 1.5 as a simple corollary:

Corollary 2.5. Let X be totally disconnected. Then each finite
codimensional Z-subspace of ReC(X) is contained in a maximal ideal.

Proof. Suppose M is a finite codimensional Z-subspace in Re C(X).
Let Y be a minimal Z-support for M . Since it is not possible to have
any nontrivial component for Y , necessarily it is a singleton. That is,
Y is contained in a maximal ideal.
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The next theorem shows that the number n cannot be reduced in
case 2 of Theorem 2.4 above. More precisely, if X has at least n
nontrivial connected components, then there exist a Z-subspace M
with codimension n such that each Z-support for M has at least n
components. It follows that each minimal Z-support for such an M
has exactly n components.

Theorem 2.6. Let X = X1 ∪ · · · ∪ Xn, where Xi’s, 1 ≤ i ≤ n,
are nontrivial disjoint connected components in X. Then there exists
a Z-subspace M of codimension n in Re C(X) such that each minimal
Z-support for M intersects each Xi, for 1 ≤ i ≤ n.

Proof. If n = 1, there is nothing to prove; so assume n > 1. Since
each Xi is nontrivial, we can choose two distinct points xi and yi in
Xi, 1 ≤ i ≤ n. Define the subspace M of Re C(X) by

M = {f : f(xi) + f(yi+1) = 0, if i �= n and
f(xn) + (−1)n+1f(y1) = 0}.

We claim that M has the desired properties. Plainly M is of
codimension n. Now we show that M is a Z-subspace. To this end,
let f ∈ M and suppose, to get a contradiction, that f has no zero in
X. So, by replacing f with −f , if necessary, we can assume that f
is strictly positive on X1, since X1 is connected; specially f(x1) > 0.
We have f(x1) + f(y2) = 0. This gives f(y2) < 0. It follows that f
is always negative on X2, by connectedness of X2. Continuing in this
way, and using the equalities f(xi) + f(yi+1) = 0, for 1 ≤ i ≤ n − 1,
we conclude that f is strictly positive on Xi, if i is odd, and strictly
negative on Xi, if i is even.

Now the equality f(xn) + (−1)n+1f(y1) = 0 implies that f(y1) < 0.
But we had f > 0 on X1. This contradiction shows that M is a Z-
subspace.

Next we show that every Z-support for M contains x1. Suppose
Y is a Z-support for M . If x1 /∈ Y , the Uryson lemma provides a
continuous function g on X1 such that g(x1) = 1 and g = −1 constantly
on (Y ∩ X1) ∪ {y1}. Extend g so that it is equal to (−1)i on each
Xi, 2 ≤ i ≤ n. Evidently, g ∈ M , but g has no zero on Y . This
contradiction shows that Y must contain x1. Similarly Y contains all
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other xi’s (and yi’s, of course), for 1 ≤ i ≤ n. Therefore Y intersects
all Xi.

Example 2.7. Let X = [0, 1] ∪ [2, 3], and

M = {f ∈ Re C(X) : f(0) + f(2) = 0 and f(1) = f(3)}.

As in the proof of the above theorem, we see that M is a Z-subspace
with codimension 2 and if Y is a Z-support for M , then 0, 1, 2, 3 ∈ Y .
It is now easy to see that the only Z-support for M is X, which would
be of course minimal.

Example 2.8. Let X = I2, the closed unit square, and

M = {f ∈ ReC(X) : f(0, 0) + f(1, 1) = 0}.

Clearly M is a Z-subspace. The graph of the functions y = xm,
x ∈ [0, 1], for positive integers m are all different minimal Z-supports
for M . In fact, minimal Z-supports for M are minimal connected
subsets of X containing (0, 0) and (1, 1), and they are the graphs of
continuous 1-1 curves inside I2 which connect (0, 0) to (1, 1).

We can define a maximal Z-subspace to be a Z-subspace M such that
no subspace containing M is a Z-subspace. In this sense, the subspace
constructed in Theorem 2.6 is a maximal Z-subspace (Examples 2.7
and 2.8 are special cases). The reason for maximality of M is the
following. If M ′ is a Z-subspace properly containing M , then M ′ has
codimension < n. Let Y be a minimal Z-support for M ′. Then Y has
at most n−1 connected components. But Y is also a Z-support for M ,
and this contradicts the fact that every Z-support for M has at least
n components.

It is easy to see that every Z-subspace is contained in a, not neces-
sarily unique, maximal Z-subspace.

3. Z-subspaces and positive functionals. In this section
we investigate the relationship between the Z-subspaces and positive
functionals (measures).
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Note that a regular Borel positive measure μ of norm 1 on X is
supported on Y ⊆ X if and only if μ ∈ coỸ ⊆ M(X). Here Ỹ denotes
the set of Dirac measures ỹ supported on points y ∈ Y , and coỸ is
the weak∗ closure of the convex hull of Ỹ ⊂ M(X). The Banach-
Alaoglu theorem implies that coỸ is weak∗ compact. For a subspaceM
of Re C(X), denote

M⊥ =
{

μ ∈ M(X) :
∫

f dμ = 0, for all f ∈ M
}

.

Theorem 3.1. If M is a Z-subspace of ReC(X) and Y ⊆ X is a
Z-support for M , then M⊥ contains positive measures supported on Y .

Proof. We have to prove that M⊥ ∩ coỸ �= ∅. Let M⊥ ∩ coỸ = ∅.
Since M⊥ is weak∗ closed and coỸ is weak∗ compact in M(X), there
exists f ∈ ReC(X) and a ∈ R such that∫

fdμ < a <

∫
f ds,

for all μ ∈ M⊥ and all s ∈ coỸ . The left side of the above equality is
identically zero for all μ in M⊥, because M⊥ is a subspace. This shows
that f is an element of M , the uniform closure of M . So there exists
s0 ∈ Y such that f(s0) =

∫
f ds̃0 = 0. This is impossible in the above

inequality, since then the right side would also be zero for s = s̃0. This
contradiction shows that M⊥ ∩ coỸ �= ∅.

From Theorems 2.4 and 3.1 we establish Theorem 1.3 of Farnum and
Whitley.

Corollary 3.2. If ϕ is a linear functional on ReC(X) such that
ϕ(f) ∈ Im (f) for all f ∈ ReC(X), then ϕ is positive of norm one and
is supported on a connected component of X.

Proof. That ϕ is positive with norm one is obvious. If Y is a minimal
Z-support for M = ker ϕ, then Y is either a singleton or has only
one connected component, by Theorem 2.4, and there exists a positive
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functional in M⊥ of norm one, supported on Y . This linear functional
is necessarily ϕ, since M⊥ has dimension 1.

Note that the converse of the above corollary is also true, i.e., a
positive functional of norm one supported on a connected component
of X has the property ϕ(f) ∈ Im (f) for all f ∈ Re C(X) (in other
words its kernel is a Z-subspace). This fact is an easy consequence of
the intermediate value theorem.

Corollary 3.3. Let X be connected. A subspace M of ReC(X) is a
Z-subspace if and only if there exists a positive functional in M⊥.

Remarks 3.4. 1. All the results mentioned above for ReC(X) can be
slightly modified so that be true for unital real Banach algebras via the
Gelfand transformation.

2. Theorems 2.1, 2.3, 2.4 and 3.1 do hold for C(X). Theorem 1.2
of Jarosz states that case 2 cannot happen in Theorem 2.4, for a finite
codimensional Z-subspace of C(X). However, Theorems 2.1, 2.3 and
3.1 are worth mentioning for C(X).

3. Finite codimensional Z-subspaces in complex Banach algebras
are studied by many authors ([4, 6]), and it is not known if every
finite codimensional Z-subspace of a complex unital Banach algebra is
contained in a maximal ideal, [4, Problem 3].

4. If X is connected, Corollary 3.3 implies that every maximal Z-
subspace in ReC(X) is of codimension 1. The following conjecture
seems to be true:

If X has n < ∞ connected components, then every maximal Z-
subspace in Re C(X) is of codimension ≤ n.
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