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ON THE CLASSIFICATION THEOREMS
OF ALMOST-HERMITIAN OR

HOMOGENEOUS KÄHLER STRUCTURES

P. FORTUNY AND P.M. GADEA

ABSTRACT. A proof by Young tableaux and symmetrizers
is given of the classification theorems by Gray and Hervella of
almost-Hermitian structures and by Abbena and Garbiero of
homogeneous Kähler structures.

1. Introduction. As it is well known, representation theory has
been applied to the classification of several geometric structures on dif-
ferentiable manifolds, beginning with the almost-Hermitian structures
[10].

An interesting case is that of homogeneous Kähler structures [1, 4,
6], both because of the importance of the manifolds under study and
also as it gives some specific examples of representations of the unitary
group U(n). Moreover, Abbena-Garbiero’s classification [1] has found
an application [8] to spaces of negative constant holomorphic sectional
curvature: The characterization of the complex hyperbolic space as
the only connected simply-connected irreducible homogeneous Kähler
manifold admitting a nonvanishing homogeneous Kähler structure in
Abbena-Garbiero’s class K2 ⊕K4, see [1] and Section 2 below. On the
other hand, the almost-Hermitian case also has much interest, see [5]
amongst many others.

The aim of the present paper is to give a proof of Gray-Hervella’s
[10] and Abbena-Garbiero’s [1] theorems, by using Young tableaux
and symmetrizers. Although other demonstrations have been given
[4 6], we think that one more proof is in order due to the importance
of both theorems and because the present proof can perhaps aid to
a better understanding of the involved decompositions, and to solve
some related questions: For instance, the expression of the tensors in
the classes in the homogeneous quaternionic Kähler case, with relevant

Research partially supported by DGICYT, Spain, under Grant no. BFM2002-
00141.

Received by the editors on May 27, 2003.

Copyright c©2006 Rocky Mountain Mathematics Consortium

213



214 P. FORTUNY AND P.M. GADEA

group Sp (n)Sp (1), see Fino [6], and thus the corresponding geometric
properties.

2. The classification theorems.

2.1 Gray-Hervella’s and Abbena-Garbiero’s theorems. Let V be a 2n-
dimensional real vector space endowed with a complex structure J and
a Hermitian inner product 〈 , 〉; that is, J2 = −I, 〈JX, JY 〉 = 〈X, Y 〉,
for any X, Y ∈ V , where I denotes the identity isomorphism of V . Let
F denote the Kähler 2-form F (X, Y ) = 〈X, JY 〉.

From the geometric viewpoint, V is the model of the tangent space at
any point of a differentiable manifold equipped with either an almost-
Hermitian or a homogeneous Kähler structure.

In order to classify almost-Hermitian structures, the authors of [10]
consider the space

(2.1) S(V )− = {S ∈ ⊗3V ∗ : SXY Z = −SXZY = −SXJY JZ}

of tensors satisfying the same symmetries as the covariant derivative
∇F of the Kähler form F with respect to the Levi-Civita connection of
an almost-Hermitian manifold (M, g, J). By using, among other results
and techniques, quadratic invariants, the authors obtain the following
classification theorem

Theorem 2.1 (Gray and Hervella). If dim V ≥ 6, S(V )− decom-
poses into the direct sum of the following subspaces invariant and irre-
ducible under the action of the group U(n):

W1 = {S ∈ S(V )− : SXXZ = 0},
W2 =

{
S ∈ S(V )− : S

XY Z
SXY Z = 0

}
,

W3 = {S ∈ S(V )− : SJXJY Z = SXY Z , c12(S) = 0},
W4 =

{
S ∈ S(V )− : SXY Z = − 1

2(n−1)
(〈X, Y 〉c12(S)(Z)

− 〈X, Z〉c12(S)(Y ) − 〈X, JY 〉c12(S)(JZ)

+ 〈X, JZ〉c12(S)(JY ))
}
,
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X, Y, Z ∈ V , where c12 is defined by c12(S)(X) =
∑2n

r=1 SererX , X ∈ V ,
and {e1, . . . , e2n} denotes an arbitrary orthonormal basis of V . If
dim V = 4, then S(V )− = W2 ⊕W4. If dim V = 2, then S(V )− = {0}.

In turn, in order to classify homogeneous Kähler structures, the
authors of [1] consider the space

(2.2) S(V )+ = {S ∈ ⊗3V ∗ : SXY Z = −SXZY = SXJY JZ}

of tensors fulfilling the same symmetries as a homogeneous almost-
Hermitian structure S on a connected homogeneous Kähler manifold
(M = G/H, g, J); that is, a (1, 2) tensor on M satisfying the Ambrose-
Singer-Sekigawa equations [3, 12]

∇̃g = 0, ∇̃R = 0, ∇̃S = 0, ∇̃J = 0,

where ∇̃ = ∇ − S, ∇ denotes the Levi-Civita connection, and R
its curvature tensor. By using, among other results and techniques,
quadratic invariants, the authors obtain the following classification
theorem

Theorem 2.2 (Abbena and Garbiero). If dim V ≥ 6, S(V )+
decomposes into the direct sum of the following subspaces invariant and
irreducible under the action of the group U(n):

K1 =
{
S ∈ S(V )+ : SXY Z = 1

2 (SY ZX + SZXY + SJY JZX + SJZXJY ),

c12(S) = 0
}
,

K2 =
{
S ∈ S(V )+ : SXY Z = 〈X, Y 〉α(Z) − 〈X, Z〉α(Y )

+ 〈X, JY 〉α(JZ) − 〈X, JZ〉α(JY )
− 2〈JY, Z〉α(JX), α ∈ V ∗},

K3 =
{
S ∈ S(V )+ : SXY Z = −1

2 (SY ZX + SZXY + SJY JZX + SJZXJY ),

c12(S) = 0
}
,

K4 =
{
S ∈ S(V )+ : SXY Z = 〈X, Y 〉β(Z) − 〈X, Z〉β(Y )

+ 〈X, JY 〉β(JZ) − 〈X, JZ〉β(JY )
+ 2〈JY, Z〉β(JX), β ∈ V ∗},
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X, Y, Z ∈ V , where c12 is defined as in the previous theorem, and

α(X) =
1

2(n−1)
c12(S)(X), β(X) =

1
2(n+1)

c12(S)(X), X ∈ V.

If dim V = 4, then S(V )+ = K2 ⊕ K3 ⊕ K4. If dim V = 2, then
S(V )+ = K4.

Denoting complexifications by a superscript c, we now consider the
decompositions in (±i)-eigenspaces V c = V 1,0 ⊕ V 0,1 and V ∗c =
λ1,0 ⊕ λ0,1, with respect to the complex structure Jc. In Salamon’s
notation [11], let λp,q denote the space of forms of type (p, q). One has
an isomorphism λp,q ≈ Λpλ1,0 ⊗ Λqλ0,1. We can decompose the space

S(V )c = {S ∈ ⊗3V ∗c : SXY Z = −SXZY },

X, Y, Z ∈ V c, into subspaces invariant under the action of U(n), as
follows:

V ∗c ⊗ Λ2V ∗c = (λ1,0 ⊗ Λ2λ1,0) ⊕ (λ1,0 ⊗ Λ1λ1,0 ⊗ Λ1λ0,1)
⊕ (λ1,0 ⊗ Λ2λ0,1) ⊕ (λ0,1 ⊗ Λ2λ1,0)(2.3)
⊕ (λ0,1 ⊗ Λ1λ1,0 ⊗ Λ1λ0,1) ⊕ (λ0,1 ⊗ Λ2λ0,1)

≈ [V ∗c ⊗ (λ2,0 ⊕ λ0,2)] ⊕ (V ∗c ⊗ λ1,1).(2.4)

Now, since JcX = iX if X ∈ V (1,0) and JcX = −iX if X ∈ V (0,1), the
space

(2.5) S(V )c
− = {S ∈ ⊗3V ∗c : SXY Z = −SXZY = −SXJcY JcZ},

X, Y, Z ∈ V c, complexified of Gray-Hervella’s space S(V )− in (2.1), is
the first summand in (2.4):

(2.6) S(V )c
− = V ∗c ⊗ (λ2,0 ⊕ λ0,2).

Similarly, the space

S(V )c
+ = {S ∈ ⊗3V ∗c : SXY Z = −SXZY = SXJcY JcZ},

X, Y, Z ∈ V c, complexified of Abbena-Garbiero’s space S(V )+ in (2.2),
is the second summand in (2.4), S(V )c

+ = V ∗c ⊗ λ1,1. The further
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decompositions of either S(V )c
− or S(V )c

+ into subspaces invariant
and irreducible under the action of U(n), have a somewhat different
treatment, as we shall see.

2.2 The primitive classes W1, . . . ,W4 of almost-Hermitian structures.
As usual in the theory of Young diagrams [9], let us denote our basic
vector space by a box, that is, � = V ∗c. Then

(2.1) S(V )c
∓ ⊂ S(V )c = ⊗ = ⊕

In the almost-Hermitian case, only ordinary Young tableaux do appear.
Those “standard with respect to the order 231” and having 23-skew-
symmetry, that is,

2

3

1

and

2 1

3

have respective invariant and irreducible subspaces of tensors [9, The-
orem 9.3.9] given by

{
S ∈ ⊗3V ∗c : SXY Z =

1
3 S

XY Z
SXY Z , X, Y, Z ∈ V c

}
,(2.2) {

S ∈ ⊗3V ∗c : S
XY Z

SXY Z = 0, X, Y, Z ∈ V c
}

.(2.3)
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By virtue of (2.5), see also (2.3), we can write

S(V )c
− = (λ1,0 ⊗ Λ2λ1,0) ⊕ (λ1,0 ⊗ Λ2λ0,1)

⊕ (λ0,1 ⊗ Λ2λ1,0) ⊕ (λ0,1 ⊗ Λ2λ0,1)

=

⎛⎜⎜⎜⎜⎜⎝
λ1,0

λ1,0

λ1,0

⊕
λ1,0 λ1,0

λ1,0

⎞⎟⎟⎟⎟⎟⎠
⊕ (λ1,0 ⊗ λ0,1 ∧ λ0,1) ⊕ (λ0,1 ⊗ λ1,0 ∧ λ1,0)

⊕

⎛⎜⎜⎜⎜⎜⎝
λ0,1

λ0,1

λ0,1

⊕
λ0,1 λ0,1

λ0,1

⎞⎟⎟⎟⎟⎟⎠(2.4)

=

{
Re

⎛⎜⎜⎜⎜⎜⎝
λ1,0

λ1,0

λ1,0

⊕

λ0,1

λ0,1

λ0,1

⎞⎟⎟⎟⎟⎟⎠

⊕ Re

⎛⎜⎝ λ1,0 λ1,0

λ1,0
⊕

λ0,1 λ0,1

λ0,1

⎞⎟⎠
⊕ Re

[(
(λ1,0 ⊗ λ0,1)0 ∧ λ0,1

) ⊕ (
(λ0,1 ⊗ λ1,0)0 ∧ λ1,0

)]
⊕ Re

[
(λ1,0 ⊗ λ0,1)0⊥ ∧ (λ1,0 ⊕ λ0,1)

]}c

,

where we have ordered the four primitive classes as in Gray-Hervella’s
Theorem 2.1, and where (λ1,0 ⊗ λ0,1)0⊥ denotes the orthogonal com-
plement, with respect to the induced Hermitian metric, of the space
of tr12-traceless tensors, denoted in turn by a zero superscript. It is
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immediate that the tensors in the two first classes satisfy

(2.5) SJXJY Z = −SXY Z

and the tensors in the two last classes fulfill SJXJY Z = SXY Z .

The class W1 corresponds to the first summand in (2.4); that is, to the
representation of U(n) with highest weight (1, 1, 1, 0, . . . , 0). According
to [9, Theorem 5.2.1] and [7, Proposition 26.24], this representation
(note the different notation for highest weights in [7]) is complex. Then,
by (2.2), we have that

SXY Z =
1
24

Re S
XY Z

(Sc
X−iJX,Y −iJY,Z−iJZ + Sc

X+iJX,Y +iJY,Z+iJZ)

=
1
6 S

XY Z
(SXY Z − SJXJY Z);

that is, Gray-Hervella’s formula in [10, p. 42]. Thus, from (2.5) we
obtain that SXY Z = (1/3)SXY ZSXY Z , which is equivalent to the
property characterizing the tensors in the class W1.

The second subspace in (2.4) corresponds to the irreducible represen-
tation of U(n) with highest weight (2, 1, 0, . . . , 0). As the one above,
this representation is complex. By (2.2), it consists, see (2.3), of tensors
S satisfying

Re S
XY Z

(Sc
X−iJX,Y −iJY,Z−iJZ + Sc

X+iJX,Y +iJY,Z+iJZ) = 0.

Thus, on account of (2.5), we deduce that SXY ZSXY Z = 0; that is,
the condition for W2. The third summand in (2.4) clearly corresponds
to the class W3 and the fourth summand in (2.4) to the class W4.

2.3 The primitive classes K1, . . . ,K4 of homogeneous Kähler struc-
tures. In order to study the further decomposition of the other
subspace, S(V )c

+, we follow Salamon’s notations [11], but denoting
by Re the “real part,” as follows: Wedging with the Kähler form
F = −i

∑n
k=1 θk ∧ θ̄k on V , where {θk} stands for a basis of λ1,0, de-

termines a U(n)-equivariant map L: λp−1,q−1 → λp,q. The orthogonal
complement of the image of L with respect to the induced Hermitian
metric is denoted by λp,q

0 . The complex U(n)-modules λp,q
0 are irre-

ducible. In particular, the Kähler form is a member of Re λ1,1 and
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its orthogonal complement in Reλ1,1 is denoted by (Reλ1,1)0. Let F c

denote the complexified Kähler form. One has the orthogonal decom-
position λ1,1 = λ1,1

0 ⊕ 〈F c〉.
Consider the first summand

Λ3(λ1,0 ⊕ λ0,1) =

at the right-hand side in (2.1). Denoting by (Λ3(λ1,0 ⊕ λ0,1))′ the
subspace of Λ3(λ1,0 ⊕ λ0,1) of tensors satisfying moreover SXY Z =
SXJcY JcZ , we have(

Λ3(λ1,0 ⊕ λ0,1)
)′

=
{
(Λ3λ1,0) ⊕ (Λ2λ1,0 ⊗ Λ1λ0,1) ⊕ (Λ1λ1,0 ⊗ Λ2λ0,1) ⊕ (Λ3λ0,1)

}′

≈ λ2,1 ⊕ λ1,2

= λ2,1
0 ⊕ (λ1,0 ⊗ 〈F c〉) ⊕ λ1,2

0 ⊕ (λ0,1 ⊗ 〈F c〉)

=
λ0,1 λ1,0

λ1,0
⊕

λ0,1 λ1,0

λ0,1
⊕ (V ∗c ⊗ 〈F c〉).

In the last line:

(1) We have used composite Young tableaux, see for instance [2,
pp. 157, 160], corresponding to mixed tensors which are traceless with
respect to the second and third component, and we have put either a
λ0,1 or a λ1,0 in boldface for the sake of visualization of those tableaux;

(2) We have used the commutativity of the tensor product, that is,
that λ1,2 ≈ Λ2λ0,1 ⊗ Λ1λ1,0, in order to write the second summand as
the “conjugate” of the first one.

Since(
Λ2(λ1,0 ⊕ λ0,1)

)′ =
{
(Λ2λ1,0) ⊕ (Λ1λ1,0 ⊗ Λ1λ0,1) ⊕ (Λ2λ0,1)

}′

= λ1,1
0 ⊕ 〈F c〉,
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the second summand in (2.1) can be written as

λ0,1 λ1,0 λ1,0 ⊕ λ0,1 λ0,1 λ1,0 ⊕ (V ∗c ⊗ 〈F c〉).

Consequently,
(2.1)

S(V )c
+ =

{
Re

⎛⎜⎝ λ0,1 λ1,0

λ1,0
⊕

λ0,1 λ1,0

λ0,1

⎞⎟⎠ ⊕ (V ∗ ⊗ 〈F 〉)

⊕ Re
(

λ0,1 λ1,0 λ1,0 ⊕ λ0,1 λ0,1 λ1,0

)
⊕ (V ∗ ⊗ 〈F 〉)c

}
.

The first summand in (2.1) corresponds to the irreducible represen-
tation of U(n) with highest weight (1, 1, 0, . . . , 0,−1) and consists of
tensors satisfying two conditions:

(1) The tensors are skew-symmetric in the two first indices and the
block of the two first indices is symmetric with respect to the last index.
Notice that this condition guarantees the final 23-skew-symmetry.

(2) The two first slots in each of the four summands corresponding
to the tensors following rule (1) corresponding to the first, respectively
second, composite Young tableau in (2.1) belong to V (1,0), respectively
V (0,1), and the last slot belongs to V (0,1), respectively V (1,0).

That is, the tensors corresponding to the first summand are given by

(2.2)

SXY Z =
1
16

Re (Sc
X−iJX,Y −iJY,Z+iJZ − Sc

Y −iJY,X−iJX,Z+iJZ

+ Sc
Z−iJZ,X−iJX,Y +iJY − Sc

X−iJX,Z−iJZ,Y +iJY

+ Sc
X+iJX,Y +iJY,Z−iJZ − Sc

Y +iJY,X+iJX,Z−iJZ

+ Sc
Z+iJZ,X+iJX,Y −iJY − Sc

X+iJX,Z+iJZ,Y −iJY )

=
1
2

(SY ZX + SZXY + SJY JZX + SJZXJY ),

which is the expression of the tensors in the class K1 ⊕ K2. If we
moreover take zero trace one obtains the tensors in the first class.
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Similarly, the space of tensors corresponding to the irreducible repre-
sentation of U(n) with highest weight (2, 0, . . . , 0,−1), is (the real part
of) that of tensors which are symmetric in the two first indices and such
that the block of the two first indices is skew-symmetric with respect
to the last index, satisfying moreover the second condition above. A
computation similar to the one in (2.2) gives us the space of tensors

(2.3) SXY Z = −1
2

(SY ZX + SZXY + SJY JZX + SJZXJY ),

that is, the expression of the tensors in the class K3⊕K4. If we moreover
take zero trace one obtains the tensors in the third class. One has the

Proposition 2.3.

K1 ⊕K2 = {S ∈ S(V )+ : SXY Z =
1
4

(
S

XY Z
SXY Z + S

XJY JZ
SXJY JZ

)},
K3 ⊕K4 = {S ∈ S(V )+ : S

XY Z
SXY Z = 0}.

Proof. The expression for K1 ⊕ K2 is immediate from (2.2). As
for K3 ⊕ K4, if S satisfies Abbena-Garbiero’s expression (2.3), then it
satisfies SXY ZSXY Z + SXJY JZSXJY JZ = 0, from which we obtain
that

0 = S
XY Z

(
S

XY Z
SXY Z + S

XJY JZ
SXJY JZ

)
= 4 S

XY Z
SXY Z .

The converse is immediate.
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