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A TELESCOPING PRINCIPLE FOR OSCILLATION
OF SECOND ORDER DIFFERENTIAL

EQUATIONS ON A TIME SCALE

LYNN ERBE, LINGJU KONG AND QINGKAI KONG

ABSTRACT. We establish a telescoping principle for oscil-
lation of the second order scalar differential equation
(p(t)xΔ(t))Δ + q(t)x(σ(t)) = 0 on a time scale and use it
to obtain several new conditions for oscillation. Our results
extend, unify, and modify the telescoping principles for os-
cillation of second order differential equations and difference
equations, respectively, and provide a new tool for the inves-
tigation of oscillation on time scales. We illustrate the results
obtained by several examples, none of which may be handled
by known oscillation criteria.

1. Introduction. In this paper, we study the self-adjoint second
order scalar equation

(E) (p(t)xΔ(t))Δ + q(t)x(σ(t)) = 0

on a time scale T, that is, on a nonempty closed subset T of R, the set
of real numbers. Without loss of generality we assume throughout
that 0 ∈ T and supT = ∞ since we are interested in extending
oscillation and nonoscillation criteria for the corresponding differential
and difference equations, namely

(1.1) (p(t)x′(t))′ + q(t)x(t) = 0

with T the interval [0,∞), and

(1.2) Δ(pnΔxn) + qnxn+1 = 0

with T = N0, the set of nonnegative integers.
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Numerous oscillation and nonoscillation criteria have been established
for equations (1.1) and (1.2), see, for example, [3 5, 8, 9, 11 21] and
the references therein. Many of the criteria involve the integral of q(t) or
the sum of qn and hence require information concerning the equation
on the whole set [0,∞) or N. However, from the Sturm separation
theorem, it is clear that oscillation may be regarded as an interval
property. For instance, if there exists a sequence of subsets [ai, bi] of
[0,∞), ai → ∞ as i → ∞, such that for each i there is a nontrivial
solution of equation (1.1) which has at least two zeros in [ai, bi], then
every solution of equation (1.1) is oscillatory, no matter what the
behavior of the coefficients is, in equation (1.1), on the remaining parts
of [0,∞). The same property holds for equation (1.2).

Kwong and Zettl [15] applied this idea to oscillation of equation
(1.1) and established a powerful telescoping principle that allows one
to trim off the “troublesome” parts of

∫ t

0
q(t) dt and apply any known

criterion to the “good” parts. Kong and Zettl [14] obtained a parallel
telescoping principle for equation (1.2) and applied it to obtain many
new oscillation results for difference equations. The main purpose of
this paper is to generalize the telescoping principles for equations (1.1)
and (1.2) to time scales, and apply it to obtain new results on the
oscillation of (E). Our work will unify and modify the work in [14]
and [15], and will cover many existing criteria for oscillation, including
the continuous case, discrete case, and the general case on time scales.
Because of the generality, a number of additional technical arguments
will be involved in the proofs.

A solution x = x(t) of (E) is said to be nonoscillatory on T if
there exists τ ∈ T such that x(t)x(σ(t)) > 0 for t > τ . Otherwise,
it is oscillatory. It is well known that either all solutions of (E)
are oscillatory or none are, so the equation (E) may be classified as
oscillatory or nonoscillatory.

For the convenience of the reader, we recall the following concepts
related to time scales.

Definition 1.1. Let T be a closed subset of R with the inherited
Euclidean topology. Define the forward jump operator σ and the
backward jump operator ρ, by

σ(t) = inf{τ ∈ T | τ > t} ∈ T and ρ(t) = sup{τ ∈ T | τ < t} ∈ T
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for all t ∈ T with t < supT and t > inf T, respectively. If supT < ∞,
we define σ(supT) = supT. Similarly, if inf T > −∞, we define
ρ(inf T) = inf T. If σ(t) > t, t is said to be right-scattered; otherwise,
it is right-dense. If ρ(t) < t, t is said to be left-scattered; otherwise,
it is left-dense. We also define σk(t) = σ(σk−1(t)) for t ∈ T and
k = 2, 3, . . . . Finally, the graininess function μ : T → [0,∞) is defined
by μ(t) = σ(t) − t.

Definition 1.2. For f : T → R and t ∈ T, (if t = supT, assume
t is not left-scattered), define the Δ-derivative fΔ(t) of f(t) to be the
number, provided it exists, with the property that, for any ε > 0, there
is a neighborhood U of t such that

|[f(σ(t)) − f(s)] − fΔ(t)[σ(t) − s]| ≤ ε|σ(t) − s|

for all s ∈ U . For n > 1, the nth Δ-derivative of f(t) is defined by
fΔn

(t) := (fΔn−1
)Δ(t).

We say that f is Δ-differentiable on T provided fΔ(t) exists for all
t ∈ T.

It can be shown that if f : T → R is continuous at t ∈ T and t is
right-scattered, then

fΔ(t) =
f(σ(t)) − f(t)

σ(t) − t
.

Note that if T = Z, the set of integers, then

fΔ(t) = Δf(t) = f(t + 1) − f(t).

If t ∈ T is right-dense and f : T → R is differentiable at t, then

fΔ(t) = f ′(t) = lim
s→t

f(t) − f(s)
t − s

.

Definition 1.3. Let f : T → R be a function. We say that f is
rd-continuous if it is continuous at each right-dense point in T and
lims→t− f(s) exists as a finite number for all left-dense points t ∈ T.
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Definition 1.4. If FΔ(t) = f(t), then we define the integral of f on
[a, b] ∩ T by ∫ b

a

f(τ )Δτ = F (b) − F (a);

and
∫∞

a
f(τ )Δτ = limb→∞

∫ b

a
f(τ )Δτ .

It is well known that if f is rd-continuous on [a, b]∩T, then
∫ b

a
f(τ )Δτ

exists. For related results on the calculus on time scales, see [1, 2, 7,
10] and the references therein. In particular, we also have the following
formula involving the graininess function which is valid for all points
at which fΔ(t) exists:

(1.3) f(σ(t)) = f(t) + μ(t)fΔ(t).

We assume throughout that p ∈ C1
rd(T,R) with p(t) > 0 and

q ∈ Crd(T,R), where Crd(T,R) denotes the set of rd-continuous
functions f : T → R and C1

rd(T,R) denotes the set of differentiable
functions f : T → R whose derivative are rd-continuous. Our approach
to the oscillation problems of (E) is based largely on the application of
the Riccati equation. If x(t) is a solution of (E) with x(t)x(σ(t)) > 0
for t ∈ [t1, t2] ∩T, we let

(1.4) u(t) = −p(t)xΔ(t)
x(t)

.

Then for t ∈ [t1, t2] ∩ T, u = u(t) satisfies the Riccati equation:

(R) uΔ(t) =
u2(t)

−μ(t)u(t) + p(t)
+ q(t).

If t ∈ [t1, t2] ∩ T is right-scattered in T, then from (1.3) and (R), we
have

(1.5)
u(σ(t)) = μ(t)

[ u2(t)
−μ(t)u(t) + p(t)

+ q(t)
]

+ u(t)

=
p(t)u(t)

−μ(t)u(t) + p(t)
+ μ(t)q(t).
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Note that (1.5) also holds for the case that t is right dense in T.

In the following, we let N be the set of natural numbers and assume

(1.6) J =
( ∞⋃

i=1

Ji

)⋂
T, Ji = (ai, σ(bi)), i ∈ N,

where ai, bi ∈ T, i ∈ N, satisfy 0 < ai < bi < ai+1. We call J an
“interval shrinking” set in T. The set J will be used to introduce the
following “shrinking” transformation on the time scale T. That is, we
define the time scale T̂ by:
(1.7)

T̂ :=
{
s ∈ T : s ≤ a1

}
⋃{ ∞⋃

j=1

{
s = t −

j∑
i=1

(σ(bi) − σ(ai)) : t ∈ T, σ(bj) ≤ t ≤ aj+1

}}
,

and an interval shrinking transformation T : T → T̂
(1.8)

s = T t =

⎧⎪⎪⎨⎪⎪⎩
t t ∈ (−∞, a1]

⋂
T,

T aj t ∈ (aj , σ(bj))
⋂

T,

t −
j∑

i=1

(σ(bi) − σ(ai)) t ∈ [σ(bj), aj+1]
⋂

T,
j ∈ N.

For s ∈ T̂ we let

T −1s = inf{t ∈ T : T t = s}.

2. Telescoping principle. In this section we establish the basic
telescoping principle for oscillation. The following lemma plays a key
role in the proofs.

Lemma 2.1. A solution x(t) of (E) satisfies x(t)x(σ(t)) > 0 for
t ∈ [t1, t2] ∩ T if and only if the corresponding solution u(t) of the
Riccati equation (R) satisfies μ(t)u(t) < p(t) for t ∈ [t1, t2] ∩ T.
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Proof. Since u(t) = −p(t)xΔ(t)/x(t), for t ∈ [t1, t2] ∩T,

−μ(t)u(t) + p(t) =
μ(t)p(t)xΔ(t)

x(t)
+ p(t)

= p(t)
(

μ(t)xΔ(t)
x(t)

+ 1
)

= p(t)
x(σ(t))

x(t)
.

Therefore, μ(t)u(t) < p(t) if and only if x(t)x(σ(t)) > 0 for t ∈
[t1, t2] ∩T.

Let T̂ be defined by (1.7) and consider the telescoped equation of (E)

(Ê) (p̂(s)yΔ(s))Δ + q̂(s)y(σ̂(s)) = 0, s ∈ T̂,

where p̂(s) = p(t), q̂(s) = q(t) for t = T −1s, and where σ̂ denotes the
forward jump operator in T̂.

Our first result is a type of comparison theorem which, loosely
speaking, says that if a certain solution y = y(s) of the telescoped
equation (Ê) has a zero in T̂, then a corresponding solution of the
original equation (E) has a zero in T.

Theorem 2.1. Assume

(2.1)
∫ σ(bi)

σ(ai)

q(t)Δt ≥ 0 for all i ∈ N,

and let c ∈ T̂ such that c > 0. Suppose that y is a solution of (Ê)
with y(s)y(σ̂(s)) > 0 for s ∈ [0, c)∩ T̂ and y(c)y(σ̂(c)) ≤ 0. Let x be a
solution of (E) with x(0) �= 0, p(0)xΔ(0)/x(0) ≤ p̂(0)yΔ(0)/y(0). Then
there exists d ≤ T −1c such that x(d)x(σ(d)) ≤ 0. More precisely, if
c ≤ T ai, then there exists d ≤ ai such that x(d)x(σ(d)) ≤ 0.

Proof. In this proof, by u �< v we mean either u ≥ v or u does not
exist. The proof is by induction (with respect to the location of the
point c ∈ T̂). Assume the conclusion is not true. Then u(t) defined by
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(1.4) satisfies the Riccati equation (R) and (1.5), and μ(t)u(t) < p(t) for
t ∈ [0, T −1c]. For s ∈ T̂, let v(s) = −p̂(s)yΔ(s)/y(s) and μ̂(s) = μ(t)
for t = T −1s. Then it follows that v satisfies the Riccati equation

(2.2) vΔ(s) =
v2(s)

−μ̂(s)v(s) + p̂(s)
+ q̂(s)

and

(2.3) v(σ̂(s)) =
p̂(s)v(s)

−μ̂(s)u(s) + p̂(s)
+ μ̂(s)q̂(s).

By Lemma 2.1, μ̂(s)v(s) < p̂(s) for s ∈ [0, c) ∩ T̂ and μ̂(c)v(c) �< p̂(c).

(i) Assume c ≤ T a1 = a1. Then in this case it follows that
t = T −1s = s for s ∈ [0, c], so we have p̂(t) = p(t), q̂(t) = q(t),
and the Riccati equations (R) and (2.2) are the same on [0, c]∩T. We
claim that

(2.4) u(t) ≥ v(t) for t ∈ [0, c] ∩ T.

For any n ∈ N sufficiently large, it follows from [2, Theorem 4.5]
(existence-uniqueness theorem for the linear IVP), that the initial value
problem

(2.5) uΔ
n (t) =

u2
n(t)

−μ(t)un(t) + p(t)
+ q(t) +

1
n

, un(0) = u(0),

has a unique solution, say un(t), on t ∈ [0, c]∩T. We first observe that
un(t) → u(t) as n → ∞ for t ∈ [0, c]∩T. We wish to show that, for all
large n ∈ N,

(2.6) un(t) ≥ v(t) for t ∈ [0, c] ∩ T.

If this is not the case, then since un(0) ≥ v(0), there will exist t∗ ∈ (0, c]
such that un(t∗) < v(t∗). Hence, there exists t∗ ∈ [0, t∗) such that

(2.7) un(t∗) ≥ v(t∗) and un(t) < v(t) for t ∈ (t∗, t∗] ∩T.

If t∗ is right-scattered in T (hence in T̂), then from (2.5)

(2.8) un(σ(t∗)) =
p(t∗)un(t∗)

−μ(t∗)un(t∗) + p(t∗)
+ μ(t∗)q(t∗) +

μ(t∗)
n

.
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Now, since for any p, μ > 0, the function f(u) := pu/(−μu + p) is
increasing if we compare (2.3) and (2.8), we obtain a contradiction to
(2.7).

If t∗ is right-dense in T (hence in T̂), then un(t∗) = v(t∗) and
un(t) < v(t) for t ∈ (t∗, t∗]∩T. From (2.2) and (2.5), uΔ

n (t∗) > vΔ(t∗),
so there exists t̄ ∈ (t∗, t∗]∩T such that un(t̄) > v(t̄), contradicting the
definition of t∗. Hence (2.6) holds.

Therefore, from un(t) → u(t) as n → ∞ for t ∈ [0, c] ∩ T, we obtain
(2.4), and so letting t = c in (2.4), we have

(2.9) μ(c)u(c) ≥ μ̂(c)v(c) �< p̂(c) = p(c).

This implies that μ(c)u(c) �< p(c), contradicting the assumption.

(ii) Assume T a1 < c ≤ T a2, then arguing as in the first part above,
we see that u(σ(a1)) ≥ v(σ̂(a1)) = v(σ̂(T a1)). Integrating (R) from
σ(a1) to σ(b1) and using (2.1), we obtain

u(σ(b1)) − u(σ(a1)) =
∫ σ(b1)

σ(a1)

u2(t)Δ(t)
−μ(t)u(t) + p(t)

+
∫ σ(b1)

σ(a1)

q(t)Δt ≥ 0.

Hence u(σ(b1)) ≥ u(σ(a1)) ≥ v(σ̂(T a1)). Now since T σ(b1) = σ̂(T a1),
it follows that u(t) and v(s) satisfy the same Riccati equation for
σ(b1) ≤ t ≤ T −1c and T σ(b1) ≤ s ≤ c, respectively. As before, we
see that

μ(T −1c)u(T −1c) ≥ μ̂(c)v(c) �= p̂(c) = p(T −1c).

Again, this implies that μ(T −1c)u(T −1c) �< p(T −1c), contradicting the
assumption. The proof of the induction step from i to i + 1 is similar
and hence is omitted.

Theorem 2.2 (telescoping principle). Under the conditions and with
the notation of Theorem 2.1, if the telescoped equation (Ê) is oscillatory,
then (E) is oscillatory.
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Proof. Let x(t) be a solution of (E) with x(0) �= 0, and let y1(s)
be a solution of (Ê) satisfying y1(0) �= 0 and p(0)xΔ(0)/x(0) ≤
p̂(0)yΔ

1 (0)/y1(0). Since y1(s) is oscillatory, there exists a smallest
c1 > 0 in T̂ such that y1(s)y1(σ̂(s)) > 0 for s ∈ [0, c1) ∩ T̂ and
y1(c1)y1(σ̂(c1)) ≤ 0. By Theorem 2.1, there exists d1 ≤ T −1c1 in
T such that x(d1)x(σ(d1)) ≤ 0. Now, we will work on the solution
x(t) for t > d1. Let e1 ∈ T with e1 ≥ d1 satisfy x(e1) �= 0. Let y2(s)
be a solution of (Ê) satisfying y2(e1) �= 0 and p(e1)xΔ(e1)/x(e1) ≤
p̂(T e1)yΔ

2 (T e1)/y2(T e1). Proceeding as before, we show that there
exists d2 ∈ T with d2 > d1 such that x(d2)x(σ(d2)) ≤ 0. Continuing
this process leads to the conclusion that x is oscillatory and therefore
the equation (E) is oscillatory.

This principle can be applied to get many new examples of oscillatory
equations. We use a process which is the reverse of the construction in
Theorem 2.2. Start with any known oscillatory equation (Ê). Choose
a sequence of numbers si ∈ T̂ such that si → ∞. Cut T̂ at each si

and pull the two halves of T̂ apart to form a gap of arbitrary finite
length. Now fill the gap with an arbitrary new (bounded) time scale
and define a positive p and any q whose integral over the new time scale
is nonnegative. Do this at each si and relabel the so-constructed new
coefficient functions by p(t) and q(t). Then the obtained equation (E)
is oscillatory.

The telescoping principle is also useful in extending various known os-
cillation criteria. It implies that any sufficient conditions for oscillation
need only to be verified on “intervals”, i.e., on T \J where J is defined
by (1.6), while on J , p(t) and q(t) can be arbitrary rd-continuous func-
tions as long as p(t) > 0 and q(t) has a nonnegative integral over each
interval (σ(ai), σ(bi)) of J .

However, due to the jumping behavior of functions on time scales, the
above telescoping principle may not always be easy to apply. In partic-
ular, if

∫ σ(bi)

σ(ai)
q(t)Δt �= 0 for some i ∈ N, then

∫ t

0
q(l)Δl �≡

∫ T t

0
q̂(l)Δl.

To overcome this difficulty, in the next section, we introduce a mod-
ified telescoping principle in which

∫ t

0
q(l)Δl remains unchanged after

the telescoping process.
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3. Modified telescoping principle. We say that the Riccati
equation (R) is nonoscillatory provided the corresponding equation
(E) is nonoscillatory. Hence, by Lemma 2.1, (R) is nonoscillatory
means that for any solution u(t) of (R), there exists t1 ∈ T such that
μ(t)u(t) < p(t) for t ∈ [t1,∞) ∩T.

To establish a modified telescoping principle we need to obtain a
perturbed equation of (R). Lemma 3.1 and Remarks 3.1 and 3.2 will
explain the ideas.

Lemma 3.1. Assume the Riccati equation (R) is nonoscillatory on
T, and let u(t) be a solution with μ(t)u(t) < p(t), t ∈ [t1,∞) ∩ T, for
some t1 ∈ T. Let c ≥ t1 be right-scattered in T, and k the real number.
We define the perturbation T̃ of T at c by

(3.1) T̃ =
{
τ ∈ (−∞, c] : τ ∈ T

}⋃{
τ ∈ (c,∞) : τ − μ(c) ∈ T

}
.

Consider the perturbed equation of (R) given by:

(3.2) wΔ(τ ) =
w2(τ )

−μ̃(τ )w(τ ) + p̃(τ )
+ q̃(τ ), τ ∈ T̃,

where p̃(t) = p(t), q̃(t) = q(t), μ̃(t) = μ(t) for t < c; p̃(t) = p(t−μ(c)),
q̃(t) = q(t−μ(c)), μ̃(t) = μ(t−μ(c)) for t > σ(c); and q̃(c) = q(c)+ k,
q̃(σ(c)) = −k, μ̃(c) = μ(c), μ̃(σ(c)) = μ(c). If p̃(σ(c)) is sufficiently
large, then there exists p̃(c) > p(c) such that (3.2) is nonoscillatory.
Furthermore, p̃(c) → p(c) as p̃(σ(c)) → ∞.

Proof. Let w(t) = u(t) for t ≤ c and w(t) = u(t − μ(c)) for
t > σ(c) in T̃. We need only choose p̃(c) corresponding to p̃(σ(c))
and define w(σ(c)) accordingly such that w(t), t ∈ T̃, is a solution of
(3.2) satisfying

μ̃(c)w(c) < p̃(c) and μ̃(σ(c))w(σ(c)) < p̃(σ(c)).

Note that since c is right-scattered in T, both c and σ(c) are right-
scattered in T̃, and we have μ̃(σ(c)) = μ̃(c) = μ(c), w(c) = u(c), and
u(σ(c)) = w(σ(c) + μ(c)). From (1.5) and the right-scattered form of
(3.2), we get, after some manipulation,
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u(σ(c)) =
p(c)u(c)

−μ(c)u(c) + p(c)
+ μ(c)q(c)(3.3)

w(σ(c)) =
p̃(c)u(c)

−μ(c)u(c) + p̃(c)
+ μ(c)(q(c) + k)(3.4)

and

u(σ(c)) =
p̃(σ(c))w(σ(c))

−μ(c)w(σ(c)) + p̃(σ(c))
− μ(c)k.(3.5)

Now if p̃(σ(c)) is sufficiently large, then the solution w(σ(c)) of (3.5)
as a function of p̃(σ(c)) exists and we obtain

w(σ(c)) =
(u(σ(c)) + μ(c)k) p̃(σ(c))

μ(c) (u(σ(c)) + μ(c)k) + p̃(σ(c))
≤ u(σ(c)) + μ(c)k.

Also
w(σ(c)) −→ u(σ(c)) + μ(c)k as p̃(σ(c)) −→ ∞.

It is easy to see that, for any u ∈ R and μ > 0, the function
g(p) := pu/(−μu+p) is continuous and decreasing for p > max{0, μu}.
Thus, from (3.3) and (3.4), for a sufficiently large p̃(σ(c)), we can find
p̃(c) > p(c) > μ(c)u(c) = μ̃(c)w(c) satisfying (3.4) and p̃(c) → p(c) as
p̃(σ(c)) → ∞.

Remark 3.1. Assume (E) is nonoscillatory on T, and let u(t) be a
solution of the Riccati equation (R) with μ(t)u(t) < p(t), t ∈ [t1,∞)
for some t1 ∈ T.

(i) Let c ≥ t1 be right-dense in T. Then T̃ given by (3.1) is the
same as T. In this case, we define the perturbed equation (3.2) of (R)
at c to be the same as (R) in this case.

(ii) Let {ci}∞i=1 be a sequence in T such that t1 ≤ c1 < c2 < · · · . We
define the perturbation T̃ of T with respect to {ci}∞i=1 by
(3.6)

T̃ =
{
τ ∈ T : τ ≤ c̃1

}⋃{ ∞⋃
i=1

{
τ ∈ (c̃i, c̃i+1] : τ −

i∑
j=1

μ(cj) ∈ T
}}

,

where c̃i = ci +
∑i−1

j=1 μ(cj), i ∈ N, with
∑0

j=1 μ(cj) = 0.
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Using the same idea as in Lemma 3.1, we obtain a perturbed nonoscil-
latory equation of (R) on T̃, defined by

(R̃) wΔ(τ ) =
w2(τ )

−μ̃(τ )w(τ ) + p̃(τ )
+ q̃(τ )

in the following way:

(a) If, for some i, ci is right-dense in T, then (R̃) for τ ∈ [c̃i, c̃i+1)∩ T̃
is the same as (R) for t ∈ [ci, ci+1) ∩ T;

(b) If, for some i, ci is right-scattered in T, then (R̃) for τ ∈
[σ̃2(c̃i), c̃i+1) ∩ T̃ is the same as (R) for t ∈ [σ2(ci), ci+1) ∩ T, and
for some ki ∈ R, q̃(c̃i) = q(ci) + ki, q̃(σ̃(c̃i)) = −ki, p̃(c̃i) is sufficiently
close to p(ci), and p̃(σ̃(c̃i)) is sufficiently large, where σ̃ is the forward
jump operator in T̃. Note that the arbitrariness of ki allows some
flexibility in applications.

In the following, we use the notation

r(t) =
∫ t

0

q(l)Δl, t ∈ T,(3.7)

r̂(s) =
∫ s

0

q̂(l)Δl, s ∈ T̂,(3.8)

and

r̃(τ ) =
∫ τ

0

q̃(l)Δl, τ ∈ T̃.(3.9)

Remark 3.2. In Remark 3.1 (ii), we let ci = ai, i ∈ N, where ai

are defined as in (1.6), and consider the perturbed equation (R̃) of
(R) with respect to {ai}∞i=0. Then it is easy to see that, for right
scattered ai, we can always choose suitable kis in Remark 3.1 (ii) such
that the telescoped equation of (R̃) based on J satisfies the condition
r̂(s) = r(T −1(s)) for all s ∈ T̂.
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Theorem 3.1 (modified telescoping principle). Let J and T be
defined by (1.6) and (1.8), respectively. Assume the Riccati equation
(R) is nonoscillatory. Then the modified telescoped equation

(R̂) vΔ(s) =
v2(s)

−μ̂(s)v(s) + p̂(s)
+ q̂(s), s ∈ T̂,

is also nonoscillatory where p̂(s) = p(t), q̂(s) = q(t) for t = T −1s and
t �= ai, p̂(T ai) is sufficiently close to p(ai), i ∈ N, and r̂(s) = r(T −1s),
μ̂(s) = μ(T −1s) for s ∈ T̂. In particular, p̂(T ai) = p(ai), q̂(T ai) =
q(ai) if ai is right-dense for some i ∈ N.

Proof. Since (R) is nonoscillatory, without loss of generality, we may
assume μ(t)u(t) < p(t), t ∈ [0,∞) ∩ T. Let T̃ defined by (3.6) be the
perturbation of T with respect to {ai}∞i=1, and consider the perturbed
nonoscillatory equation of (R) on T̃ defined by (R̃) such that, if ai is
right-scattered in T, then p̃(σ̃(ãi)) is sufficiently large, p̃(ãi) = p̂(T ai),
and ki is chosen so that r̃(σ̃(ãi)) = r(σ(bi)). Note that in T̃, J

becomes J̃ = (∪∞
i=1(ãi, σ̃(b̃i))) ∩ T̃, where ãi = ai +

∑i−1
j=1 μ(aj) and

b̃i = bi+
∑i

j=1 μ(aj). Let J̃ be the interval shrinking set in T̃, and based
on J̃ define T and the interval shrinking transformation T̃ : T̃ → T
in the same way as in (1.7) and (1.8), where ai and σ(bi), i ∈ N, are
replaced by ãi and σ̃(b̃i), respectively. Consider the telescoped equation
of (R̃)

(3.10) w̄Δ(r) =
w̄2(r)

−μ̄(r)w̄(r) + p̄(r)
+ q̄(r), r ∈ T,

where p̄(r) = p̃(τ ), q̄(r) = q̃(τ ) and μ̄(r) = μ̃(τ ) for τ = T̃ −1r.

Note that
∫ σ̃(b̃i)

σ̃(ãi)
q̃(l)Δl = 0 for all i ∈ N regardless of whether

or not ai is right scattered or right-dense in T and equation (R̃)
is nonoscillatory. By Theorem 2.2, equation (3.10) is nonoscillatory.
Comparing J and J̃ , we see that p̂(s) = p̄(r), q̄(s) = q̂(r) for s �= T ai

and r �= T̃ (ãi); μ̂(s) = μ̄(r) for s ∈ T̂ and r ∈ T; p̂(T ai) =
p̃(ãi) = p̄(T̃ (ãi); and q̂(T ai) = q̄(T̃ (ãi) since r̂(T σ(bi)) = r̄(σ̃T̃ (ãi)),
where r̄(r) =

∫ r

0
q̄n(l)Δl. This implies that (R̂) is nonoscillatory and

completes the proof.
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Remark 3.3. Theorem 3.1 covers the telescoping principle for differ-
ential equations in [15] and improves the one for difference equations
in [14] since the “adjusted sequence” used there for applications, see
[14, p. 1052], is no longer needed.

4. Extensions of known oscillation criteria. Now we are ready
to establish extensions of known oscillation criteria using the modified
telescoping principle. We shall content ourselves with several examples
to show how it works. The following results are taken from [2, 6].

Result 4.1 [2, Theorem 4.64]. Assume

∫ ∞

0

1
p(t)

Δt =
∫ ∞

0

q(t)Δt = ∞.

Then (E) is oscillatory.

Result 4.2 [2, Corollary 4.50 ]. Assume that there exist a strictly
increasing sequence {tk}∞k=1 ⊂ T with limk→∞ tk = ∞ and two positive
real numbers K and M such that μ(tk) ≥ K, p(tk) ≤ M for k ∈ N,
and

lim
k→∞

∫ tk

t1

q(t)Δt = ∞.

Then (E) is oscillatory.

Result 4.3 [6, Corollary 7]. Assume that there exists a strictly
increasing sequence {tk}∞k=1 ⊂ T with limk→∞ tk = ∞ such that
μ(tk) > 0 for k ∈ N. Suppose further that

lim sup
k→∞

(∫ tk

0

q(t)Δt − p(tk)
μ(tk)

)
= ∞.

Then (E) is oscillatory.



OSCILLATION OF DIFFERENTIAL EQUATIONS 163

We shall now indicate how to extend the above results using Theo-
rem 3.1. In the following, given the set

(4.1)

I =
( ∞⋃

i=1

[ni, mi]
)⋂

T,

ni, mi ∈ T, 0 < ni ≤ mi < ni+1, i ∈ N,

with ni → ∞ as i → ∞.

Theorem 4.1. Let I be defined by (4.1) and suppose that

(4.2)
∞∑

i=1

∫ σ(mi)

ni

1
p(t)

Δt =
∞∑

i=1

∫ σ(mi)

ni

q(t)Δt = ∞.

Then (E) is oscillatory.

Proof. Assume the contrary. Then the associated Riccati equation
Ru = 0 is nonoscillatory. Let J = T \ I. Then J can be written
in the form of (1.6). Let T̂ and T be defined as in (1.7) and (1.8),
respectively. By Theorem 3.1, the telescoped equation (R̂) is also
nonoscillatory, where p̂(s) = p(t), q̂(s) = q(t) for t = T −1s, t �= ai,
p̂(T ai) is sufficiently close to p(ai), i = 1, . . . , n, and r̂(s) = r(T −1s),
μ̂(s) = μ(T −1s) for s ∈ T̂.

Choose p̂(T ai) sufficiently close to p(ai) so that p̂(T ai) > 0 and∫∞
0

Δs/p̂(s) = ∞. This is possible because of (4.2) and the fact that
we can choose p̂(s) to satisfy

∣∣∣∣ ∞∑
i=1

∫
[ni,σ(mi)]

⋂
[0,υ]

Δt

p(t)
−
∫ T υ

0

Δs

p̂(s)

∣∣∣∣ < 1 for any v ∈ R+.

Also
∫∞
0

q̂(s)Δs = ∞ since r̂(s) = r(T −1s) and
∑∞

i=1

∫ σ(mi)

ni
q(t)Δt =

∞. But then by Result 4.1, if follows that the equation (Ê) is oscillatory,
a contradiction to the fact that (R̂) is nonoscillatory. This completes
the proof.
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Theorem 4.2. Let I be defined by (4.1). Assume there exists a
strictly increasing sequence {tk}∞k=1 ⊂ I with limk→∞ tk = ∞ and two
positive real numbers K and M such that μ(tk) ≥ K, p(tk) ≤ M for
k ∈ N, and

(4.3) lim
k→∞

∞∑
i=1

∫
[ni,σ(mi)]

⋂
[t1,tk]

q(t)Δt = ∞.

Then (E) is oscillatory.

Proof. Assume the contrary. Then the Riccati equation Ru = 0 is
nonoscillatory. Let J = T \ I. Then J can be written in the form of
(1.6). Let T̂ and T be defined as in (1.7) and (1.8), respectively. By
Theorem 3.1, the telescoped equation (R̂) is also nonoscillatory, where
p̂(s) = p(t), q̂(s) = q(t) for t = T −1s, t �= ai, p̂(T ai) is sufficiently close
to p(ai), i = 1, . . . , n, and r̂(s) = r(T −1s), μ̂(s) = μ(T −1s) for s ∈ T̂.

Choose p̂(T ai) so close to p(ai) that p(T ai) ≤ M + 1, i ∈ N. Set
sk = T tk; then sk → ∞ as k → ∞, μ̂(sk) ≥ K, p(tk) ≤ M + 1 for all
k ∈ N. From (4.3), we also have

lim
k→∞

∫ sk

s1

q̂(s)Δs = ∞.

By Result 4.2, (Ê) is oscillatory, which is a contradiction, since (R̂) is
nonoscillatory. This contradiction completes the proof.

Corollary 4.1. Assume that there exists a strictly increasing se-
quence {tk}∞k=1 ⊂ I with limk→∞ tk = ∞ and two positive real numbers
K and M such that μ(tk) ≥ K, p(tk) ≤ M for k ∈ N and

∞∑
k=1

q(tk)μ(tk) = ∞.

Then (E) is oscillatory.

Proof. This follows from Theorem 4.2 where I = ∪∞
k=1{tk}.
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Theorem 4.3. Let I be defined by (4.1). Assume that there exists
a strictly increasing sequence {tk}∞k=1 ⊂ T with limk→∞ tk = ∞ and
μ(tk) > 0 for k ∈ N. Suppose further that

lim sup
k→∞

( ∞∑
i=1

∫
[ni,σ(mi)]

⋂
[0,tk)

q(t)Δt − p(tk)
μ(tk)

)
= ∞.

Then (E) is oscillatory.

Proof. Assume the contrary. Then as in Theorem 4.1, the associated
Riccati equation Ru = 0 is nonoscillatory. Let J = T \ I. Then J can
be written in the form of (1.6). Let T̂ and T be defined as in (1.7)
and (1.8), respectively. By Theorem 3.1, the telescoped equation (R̂) is
also nonoscillatory, where p̂(s) = p(t), q̂(s) = q(t) for t = T −1s, t �= ai,
p̂(T ai) is sufficiently close to p(ai), i = 1, . . . , n, and r̂(s) = r(T −1s),
μ̂(s) = μ(T −1s) for s ∈ T̂.

Set sk = T tk, then sk → ∞ as k → ∞ and μ̂(sk) > 0. Also,

lim sup
k→∞

(∫ sk

0

q̂(s)Δs − p̂(sk)
μ̂ (sk)

)
= ∞.

But then by Result 4.3, (Ê) is oscillatory. This contradiction completes
the proof.

Corollary 4.2. Assume that there exists a strictly increasing se-
quence {tk}∞k=1 ⊂ T with limk→∞ tk = ∞ and μ(tk) > 0 for k ∈ N.
Suppose further that

lim sup
k→∞

( k−1∑
i=1

q(tk)μ(tk) − p(tk)
μ(tk)

)
= ∞.

Then (E) is oscillatory.

Proof. This follows from Theorem 4.3 where I = ∪∞
k=1{tk}.
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5. More oscillation criteria. In this section we obtain some new
oscillation criteria by more sophisticated applications of the telescoping
principle. Our results cover and improve Theorem 3 to Corollary 5 in
[15] for differential equations since the condition p(t) ≡ 1 needed there
is not required here, cover and simplify Theorem 5.2 to Corollary 5.8
in [14] for difference equations, and generalize and improve the Olech-
Opial-Wazewski type criteria for oscillation for differential equations in
[17].

Lemma 5.1. Let T1 = ∪{[t, σ(t)] : t ∈ T is right scattered in T}
and T2 = {t ∈ T : t is right-dense in T}. Assume that a function
u(t) ∈ Crd(T,R) has the property that there exist α > 0 and p(t) > 0
for t ∈ T such that
(5.1)

u(t) ≥ α +
∫ t

0

u2(l)Δl

−μ(l)u(l) + p(l)
and μ(t)u(t) < p(t) for t < T,

where T ∈ [0,∞], and

(5.2) α2
∑
l∈T1

μ(σ(l))μ(l)
p(σ(l))(−αμ(l) + p(l))

+ α

∫
T2

Δl

p(l)
> 1.

Then T < ∞.

Proof. Assume the contrary. Then μ(t)u(t) < p(t) for all t ∈ T.
Consider the problem

(5.3) v(t) = α +
∫ t

0

v2(l)Δl

−μ(l)v(l) + p(l)
, v(0) = α.

Comparing (5.1) and (5.3), we get that α ≤ v(t) ≤ u(t) and μ(t)v(t) <
p(t) for t ∈ T, and

(5.4) vΔ(t) =
v2(t)

−μ(t)v(t) + p(t)
for t ∈ T.

Hence for t ∈ T1,(
1

v(t)

)Δ

= − vΔ(t)
v(t)v(σ(t))

= − v(t)
v(σ(t))(−μ(t)v(t) + p(t))

≤ − αμ(σ(t))
p(σ(t))(−αμ(t) + p(t))

,
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and for t ∈ T2 (
1

v(t)

)Δ

= −vΔ(t)
v2(t)

= − 1
p(t)

.

Combining the above we see that, for t ∈ T,

1
v(t)

− 1
v(0)

=
∫ t

0

(
1

v(l)

)Δ

Δl

=
∫

[0,t]
⋂

T1

(
1

v(l)

)Δ

Δl +
∫

[0,t]
⋂

T2

(
1

v(l)

)Δ

Δl

≤ −α
∑

l∈[0,t]
⋂

T1

μ(σ(l))μ(l)
p(σ(l))(−αμ(l) + p(l))

−
∫

[0,t]
⋂

T2

Δl

p(l)
.

Therefore, for t ∈ T,

1
v(t)

<
1
α
− α

∑
l∈[0,t]

⋂
T1

μ(σ(l))μ(l)
p(σ(l))(−αμ(l) + p(l))

−
∫

[0,t]
⋂

T2

Δl

p(l)

=
1
α

(
1 − α2

∑
l∈[0,t]

⋂
T1

μ(σ(l))μ(l)
p(σ(l))(−αμ(l) + p(l))

− α

∫
[0,t]

⋂
T2

Δl

p(l)

)
.

By (5.2), there exists T1 ∈ T such that v(t) ≤ 0 for t ≥ T1. This
contradicts the fact that v(t) ≥ α > 0 and completes the proof.

Theorem 5.1. Let r(t) be defined by (3.7). For any λ ∈ R, define
J(λ) = {t ∈ T : r(t) < λ} and J̄(λ) = {t ∈ T : r(t) ≥ λ}. Let
J̄1(λ) = ∪{[t, σ(t)] : t ∈ J̄(λ) is right-scattered in T} and J̄2(λ) = {t ∈
J̄(λ) : t is right dense in T}. Assume that there exists an increasing
sequence of positive numbers

λ1 < λ2 < · · · < λk < · · · , λk → ∞ as k → ∞

such that, for any k ∈ N, either



168 L. ERBE, L. KONG AND Q. KONG

(i) there exists tk ∈ J̄1(λk) satisfying p(tk) ≤ μ(tk)λk, or

(ii) p(t) > μ(t)λk for all t ∈ J̄1(λk) and there exists c ∈ (0, 1) such
that

(5.5) λ2
k

∑
t∈J̄1(λk)

μ(σ∗(t))μ(t)
p(σ∗(t))(−cλkμ(t) + p(t))

+ λk

∫
J̄2(λk)

Δt

p(t)
> 1,

where σ∗(s) = min{t ∈ J̄(λk) : t ≥ σ(s)}.
Then (E) is oscillatory.

Proof. Assume the contrary, and without loss of generality, assume
the associated Riccati equation (R) has a solution u ∈ C1

rd(T,R)
satisfying μ(t)u(t) < p(t), t ∈ T. An integration of the Riccati equation
gives

(5.6) u(t) = u(0) + r(t) +
∫ t

0

u2(l)Δl

−μ(l)u(l) + p(l)
.

By passing to a subsequence if necessary, we may assume λ1 >
max{1,−u(0)/(1 − c)}. In the following, we first show that for, any
k ∈ N,

(5.7) λ2
k

∫
J̄1(λk)

⋃
J̄2(λk)

Δt

−cμ(t)λk + p(t)
≥ 1

k
.

Assume (i) holds for some k ∈ N. Then we observe that p(tk) ≤
μ(tk)λk implies that μ(tk) > 0 since p(tk) > 0. It is easy to see that,
for t ∈ J̄(λk),

(5.8) λk + u(0) ≥ λk − λ1(1 − c) ≥ λk − λk(1 − c) = cλk.

From (5.6),

p(t) > μ(t)u(t) ≥ μ(t)(λk + u(0)) ≥ cμ(t)λk for all t ∈ J̄(λk).

On the other hand, p(tk) ≤ μ(tk)λk implies that

p(tk) ≤ kμ(tk)λ2
k + cμ(tk)λk,
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and hence
λ2

kμ(tk)
−cμ(tk)λk + p(tk)

≥ 1/k.

As a result,

λ2
k

∫
J̄1(λk)

⋃
J̄2(λk)

Δt

−cμ(t)λk + p(t)
≥ λ2

k

∫ σ(tk)

tk

Δt

−cμ(t)λk + p(t)

=
λ2

kμ(tk)
−cμ(t)λk + p(tk)

≥ 1
k

,

i.e., (5.7) holds.

Assume (ii) holds for some k ∈ N. Then p(t) > μ(t)λk for all
t ∈ J̄1(λk) implies that μ(t)/p(t) < 1/λk ≤ 1 for all t ∈ J̄1(λk). So

λ2
k

∫
J̄1(λk)

⋃
J̄2(λk)

Δt

−cμ(t)λk + p(t)

= λ2
k

∑
t∈J̄1(λk)

μ(t)
−cλkμ(t) + p(t)

+ λ2
k

∫
J̄2(λk)

Δt

p(t)

≥ λ2
k

∑
t∈J̄1(λk)

μ(σ∗(t))μ(t)
p(σ∗(t))(−cλkμ(t) + p(t))

+ λk

∫
J̄2(λk)

Δt

p(t)
> 1.

Hence (5.7) also holds.

Now, we show that

(5.9)
∫ ∞

0

u2(t)Δt

−μ(t)u(t) + p(t)
= ∞.

From (5.6) and (5.8) we have that, for t ∈ J̄(λ1),

u(t) ≥ cλ1 +
∫ t

0

u2(l)Δl

−μ(l)u(l) + p(l)
≥ cλ1.

From (5.7), there exists l1 ∈ T such that l1 > 0 and

λ2
1

∫
J̄1(λ1)

⋃
J̄2(λ1)

⋂
[0,l1]

Δt

−cμ(t)λ1 + p(t)
≥ c.
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Then∫ l1

0

u2(t)Δt

−μ(t)u(t) + p(t)
≥
∫

J̄1(λ1)
⋃

J̄2(λ1)
⋂

[0,l1]

u2(t)Δt

−μ(t)u(t) + p(t)

≥ c2λ2
1

∫
J̄1(λ1)

⋃
J̄2(λ1)

⋂
[0,l1]

Δt

−cμ(t)λ1 + p(t)

≥ c3.

Next, we may assume that λ2 is so large that λ2 > maxt∈[0,l1]∩T r(t).
Then J̄(λ2) ⊂ (l1,∞) ∩T. Repeating the above arguments, we obtain
l2 ∈ T such that l2 ≥ σ(l1) and

λ2
2

∫
J̄1(λ2)

⋃
J̄2(λ2)

⋂
[l1,l2]

Δt

−cμ(t)λ2 + p(t)
≥ c

2
.

Hence, ∫ l2

l1

u2(t)Δt

−μ(t)u(t) + p(t)
≥ c3

2
,

as before. In general, we obtain ln ∈ T, n = 1, 2, . . . , such that
ln+1 ≥ σ(ln) and

∫ ln+1

ln

u2(t)Δt

−μ(t)u(t) + p(t)
≥ c3

n + 1
.

As a result, we obtain (5.9).

Since min J̄(λk) → ∞ as k → ∞, we can choose k1 ∈ N large enough
such that c1 = min J̄(λk1) satisfies

(5.10) u(0) +
∫ c1

0

u2(t)Δt

−μ(t)u(t) + p(t)
> 0.

There are two cases to be considered for k1.

Case 1. Assumption (i) holds for k = k1. From (5.6) and (5.10),
u(t) > r(t) ≥ λk1 for t ∈ J̄(λk1). Hence μ(tk1)u(tk1) > μ(tk1)λk1 ≥
p(tk1), contradicting the assumption.
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Case 2. Assumption (ii) holds for k = k1. Let J̄(λk1) =
(∪n

i=1[ci, di]) ∩ T, n ≤ ∞. Rewrite (5.6) as

u(t) = r(t) +
(

u(0) +
∫ c1

0

u2(l)Δl

−μ(l)u(l) + p(l)

)
+
∫ t

c1

u2(l)Δl

−μ(l)u(l) + p(l)
.

Consider the telescoped equation on T̂ obtained by cutting off J(λk1)
from T

(5.11)

v(s) = r̂(s) +
(

u(0) +
∫ c1

0

u2(l)Δl

−μ(l)u(l) + p(l)

)
+
∫ s

0

v2(l)Δl

−μ̂(l)v(l) + p̂(l)

where s = T t is defined by (1.8) according to J(λk1), r̂(s) = r(T −1s),
μ̂(s) = μ(T −1s), p̂(s) = p(t) for t �= di, p̂(T di) is sufficiently close to
p(di), i = 1, . . . , n. From (5.5) we have that

(5.12) λ2
k1

∑
l∈T̂1

μ̂(σ̂(l))μ̂(l)
p̂(σ̂(l))(−cλμ̂(l) + p̂(l))

+ λk1

∫
T̂2

Δl

p̂(l)
> 1

where T̂1 = ∪{[s, σ(s)] : s ∈ T̂ is right-scattered in T̂} and T̂2 = {s ∈
T̂ : s is right-dense in T̂}. By Theorem 3.1, (5.11) is nonoscillatory,
i.e., μ̂(s)v(s) < p̂(s) for s ∈ T̂. However, from (5.10) and (5.11) we see
that

v(s) > λk1 +
∫ s

0

v2(l)Δl

−μ̂(l)u(l) + p̂(l)
.

This, together with (5.12), contradicts Lemma 5.1 and completes the
proof.

Corollary 5.1. Let J̄2(λ), λ ∈ R, be defined as in Theorem 5.1.
Assume that, for any λ ∈ R,∫

J̄2(λ)

Δt

p(t)
>

1
λ

.

Then (E) is oscillatory.

Proof. This follows from Theorem 5.1, (i) and (ii).
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Corollary 5.2. Let r(t) be defined by (3.7). Assume for a strictly
increasing sequence {tk}∞k=1 ⊂ T

lim sup
t→∞

r(t) = lim
k→∞

r(tk) = ∞,

and p(tk) ≤ μ(tk)r(tk) for all k ∈ N. Then (E) is oscillatory.

Proof. This follows from Theorem 5.1 (i).

Corollary 5.3. Let J̄(λ) and σ∗(t) be defined as in Theorem 5.1
and d be any positive number less than (1 +

√
5)/2. Assume that, for

all k ∈ N, there exists tk ∈ J̄(λk) such that

p(tk) ≤ dμ(tk)λk and p(σ∗(tk)) ≤ dμ(σ∗(tk))λk.

Then (E) is oscillatory.

Proof. Choose c ∈ (0, 1) such that (c +
√

c2 + 4)/2 > d. For k ∈ N,
if assumption (i) of Theorem 5.1 is not satisfied, then

0 ≤ p(σ∗(tk))(−cλkμ(tk) + p(tk))
≤ μ(tk)μ(σ∗(tk))d(−c + d)λ2

k

<
1
4

μ(tk)μ(σ∗(tk))(c +
√

c2 + 4)(−c +
√

c2 + 4)λ2
k

= μ(tk)μ(σ∗(tk))λ2
k.

Hence
μ(tk)μ(σ∗(tk))λ2

k

p(σ∗(tk))(−cλkμ(tk) + p(tk))
> 1.

This implies (5.5). Therefore assumption (ii) of Theorem 5.1 is satisfied.

Theorem 5.2. Let r(t) be defined by (3.7), J(λ), J̄(λ), J̄1(λ), and
J̄2(λ) as in Theorem 5.1. Assume that μ(t) is bounded on T, and there
exists λ ∈ R such that

(5.13)
∑

t∈J̄1(λ)

μ(σ∗(t))μ(t)
p(σ∗(t))p(t)

+
∫

J̄2(λ)

Δt

p(t)
= ∞
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where σ∗(s) = min{t ∈ J̄(λ) : t ≥ σ(s)}, and

(5.14)
∫

J(λ)

(λ − r(t))2Δt

μ(t)(λ − r(t)) + p(t)
= ∞.

Then (E) is oscillatory.

Proof. Assume the contrary, and without loss of generality, suppose
the associated Riccati equation (R) has a solution u ∈ C1

rd(T,R)
satisfying μ(t)u(t) < p(t), t ∈ T. There are two possible cases according
to whether or not

u(0) +
∫ ∞

0

μ2(t)Δt

−μ(t)u(t) + p(t)
> −λ.

In the former case, since 1/p is continuous on J̄(λ), (5.13) implies
that sup J̄(λ) = ∞. So we can choose t1 ∈ J̄(λ) such that

u(0) +
∫ t1

0

u2(t)Δt

−μ(t)u(t) + p(t)
≥ −λ + α

for some α > 0. Rewrite the Riccati equation (R) as

(5.15)

u(t) = r(t) +
(

u(0) +
∫ t1

0

u2(l)Δl

−μ(l)u(l) + p(l)

)
+
∫ t

t1

u2(l)Δl

−μ(l)u(l) + p(l)
.

It follows that for t ∈ J̄(λ)

(5.16) u(t) ≥ α +
∫ t

t1

u2(l)Δl

−μ(l)u(l) + p(l)
,

and hence u(t) ≥ α for t ∈ J̄(λ) ∩ [t1,∞). If there exists t∗ ∈ J̄(λ) ∩
[t1,∞) such that p(t∗) ≤ μ(t∗)α, then μ(t∗)u(t∗) ≥ p(t∗), contradicting
the assumption. Thus, p(t) > μ(t)α for all t ∈ J̄(λ)∩ [t1,∞). As in the
proof of Theorem 5.1, by using Theorem 3.1, we may assume without
loss of generality that (5.16) holds for all t ≥ t1, and (5.13) can be
replaced by ∑

t∈T1

μ(σ(t))μ(t)
p(σ(t))p(t)

+
∫
T2

Δt

p(t)
= ∞
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where T1 = ∪{[t, σ(t)] : t ∈ T ∩ [t1,∞) is right-scattered in T} and
T2 = {t ∈ T ∩ [t1,∞) : t is right-dense in T}. This implies that∑

t∈T1

μ(σ(t))μ(t)
p(σ(t))p(t)

= ∞ or
∫
T2

Δt

p(t)
= ∞.

Hence,

(5.17) α2
∑
t∈T1

μ(σ(t))μ(t)
p(σ(t))(−αμ(t) + p(t))

+ α

∫
T2

Δt

p(t)
> 1.

Now, from (5.16), (5.17) and μ(t)u(t) < p(t), t ∈ T, we get a
contradiction to Lemma 5.1.

In the remaining case,

(5.18) u(0) +
∫ ∞

0

u2(t)Δt

−μ(t)u(t) + p(t)
≤ −λ.

It follows from (5.15) that u(t) ≤ r(t) − λ < 0 for t ∈ J(λ). Since the
function f(u) = u2/(−μu + p) is decreasing for u < 0 and p > 0, we
see that, for t ∈ J(λ),

u2(t)
−μ(t)u(t) + p(t)

≥ (r(t) − λ)2

−μ(t)(r(t)− λ) + p(t)
.

From (5.14)∫ ∞

0

u2(t)Δt

−μ(t)u(t) + p(t)
≥
∫

J(λ)

u2(t)Δt

−μ(t)u(t) + p(t)

≥
∫

J(λ)

(r(t) − λ)2Δt

−μ(t)(r(t)− λ) + p(t)
= ∞.

This contradicts (5.18) and completes the proof.

The following definition is needed in the next lemmas.

Definition 5.1. For any set E ⊂ T, let E1 = ∪{[t, σ(t)] : t ∈
E is right-scattered in T} and E2 = {t ∈ E : t is right-dense in T}.
Then we define a measure of E by

m{E} =
∑
t∈E1

μ(t)μ(σ∗(t)) + mess E2
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where σ∗(t) = min{τ ∈ E : τ ≥ σ(t)} and mess E2 is the Lebesgue
measure of E2.

Corollary 5.4. Let r(t) be defined by (3.7), J(λ), J̄(λ), J̄1(λ) and
J̄2(λ) as in Theorem 5.1. Assume that 1/p(t) and μ(t) are bounded on
T, and that there exists λ ∈ R such that m{J̄(λ)} = ∞ and

(5.19)
∫

J(λ)

(λ − r(t))2Δt = ∞.

Then (E) is oscillatory.

Proof. It is easy to see that m{J̄(λ)} = ∞ implies that (5.13) holds.
Assume that p(t) ≤ M and μ(t) ≤ M for t ∈ T and M > 0. If there
exists a sequence {tk}∞k=1 ⊂ J(λ) such that

(λ − r(tk))
√

μ(tk) −→ ∞ as k → ∞,

then
∞∑

k=1

(λ − r(tk))2μ(tk)
(λ − r(tk))μ(tk) + p(tk)

≥
∞∑

k=1

(λ − r(tk))2μ(tk)√
M(λ − r(tk))

√
μ(tk) + M

= ∞.

Hence (5.14) holds. Otherwise, there exists N > 0 such that
μ(t)(λ − r(t)) + p(t) ≤ N for all t ∈ J(λ). By (5.19),∫

J(λ)

(λ − r(t))2Δt

μ(t)(λ − r(t)) + p(t)
≥ 1

N

∫
J(λ)

(λ − r(t))2Δt = ∞.

Hence (5.14) also holds. By Theorem 5.2, (E) is oscillatory.

Corollary 5.5. Let r(t) be defined by (3.7), J(λ), J̄(λ), J̄1(λ),
and J̄2(λ) as in Theorem 5.1. Assume that p(t) and μ(t) are bounded
on T. Suppose further that there exist two real numbers λ1 and λ2

with λ1 < λ2 such that m{J(λ1)} = m{J̄(λ2)} = ∞. Then (E) is
oscillatory.

Proof. Choose λ̄ ∈ (λ1, λ2). Note that J̄(λ2) ⊂ J̄(λ̄), we have that
m{J̄(λ̄)} = ∞. Assume μ(t) ≤ M for t ∈ T. Then J(λ̄) ⊃ J(λ1)
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implies that∫
J(λ̄)

(λ̄ − r(t))2Δt ≥
∫

J(λ1)

(λ̄ − r(t))2Δt

≥ (λ̄ − λ1)2
( ∑

t∈J1(λ1)

μ(t) + mess J2(λ1)
)

≥ (λ̄ − λ1)2

⎛⎝ 1
M

∑
t∈J1(λ1)

μ(t)μ(σ∗(t)) + mess J2(λ1)

⎞⎠ = ∞

since

m{J(λ1)} =
∑

t∈J1(λ1)

μ(t)μ(σ∗(t)) + mess J2(λ1) = ∞.

Therefore, the assumptions of Corollary 5.4 are satisfied with λ̄ in place
of λ.

The last result provides the Olech-Opial-Wazewski type criteria for
oscillation, see [17] for details. The following definitions for approxi-
mate limits are used in the statement.

Definition 5.2. Let f be a real valued function on T and −∞ ≤
l, L ≤ ∞. Then we write lim app supt→∞f(t) = L in case

m{t ∈ T : f(t) > L1} = ∞ for all L1 < L

and
m{t ∈ T : f(t) > L2} < ∞ for all L2 > L.

Similarly, lim app inft→∞f(t) = l in case

m{t ∈ T : f(t) < l1} < ∞ for all l1 < l

and
m{t ∈ T : f(t) < l2} = ∞ for all l2 > l.

Corollary 5.6. Let r(t) be defined by (3.7). Assume p(t) and μ(t)
are bounded on T, and either

(5.20) lim app supt→∞r(t) = ∞
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or

(5.21) −∞ ≤ lim app inft→∞r(t) < lim app supt→∞r(t) < ∞.

Then (E) is oscillatory.

Proof. Assume (5.20) holds, and p(t) ≤ M for t ∈ T and for some
M > 0. Let {λk}∞k=1 ⊂ [1,∞) such that λk → ∞ as k → ∞.
Then for any k ∈ N, we have that m{J̄(λk)} = ∞, i.e., either∑

t∈J̄1(λk) μ(t)μ(σ∗(t)) = ∞ or mess J̄2(λk) = ∞. If assumption (i)
of Theorem 5.1 is not satisfied, then

λ2
k

∑
t∈J̄1(λk)

μ(σ∗(t))μ(t)
p(σ∗(t))(−cλkμ(t) + p(t))

+ λk

∫
J̄2(λk)

Δt

p(t)

≥ λ2
k

M2

∑
t∈J̄1(λk)

μ(t)μ(σ∗(t)) +
λk

M
mess J̄2(λk) = ∞.

Therefore, assumption (ii) of Theorem 5.1 is satisfied. The conclusion
then follows from Theorem 5.1.

Assume (5.21) holds. Then choose λ1 and λ2 such that

lim app inft→∞r(t) < λ1 < λ2 < lim app supt→∞r(t).

Then the conclusion follows from Corollary 5.5.

6. Examples. In this section, we give several examples to illustrate
our results. To the best of our knowledge, no previous criteria for
oscillation can be applied to these examples. We note in particular
that, in the first example, the graininess function μ(t) is unbounded
while, in the second example, μ(t) → 0 as t → ∞. The third example
deals with the case when T is the union of closed intervals.

Example 6.1. Let T = {ak : k ∈ N0}, where a > 1. Let p(t) ≡ 1
for all t ∈ T and

q(t) =
{

1 t = a2k,
−k t = a2k+1,

k ∈ N0.
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Then (E) is oscillatory.

In fact, for any k ∈ N0, σ(ak) = ak+1 and μ(ak) = σ(ak) − ak =
(a − 1)ak. Let I be defined by (4.1) with nk = mk = a2k for k ∈ N.
Obviously,

∞∑
k=1

∫ σ(mk)

nk

1
p(t)

Δt =
∞∑

k=1

∫ a2k+1

a2k

1
p(t)

Δt =
∞∑

k=1

(a − 1)a2k = ∞,

and
∞∑

k=1

∫ σ(mk)

nk

q(t)Δt =
∞∑

k=1

∫ a2k+1

a2k

q(t)Δt =
∞∑

k=1

(a − 1)a2k = ∞.

It then follows from Theorem 4.1 that (E) is oscillatory. Note that∫∞
0

q(t)Δt = −∞ in this case.

In the next two examples, for any λ ∈ R, we let J(λ), J̄(λ), J̄1(λ),
and J̄2(λ) be defined as in Theorem 5.1 and let the measure m(·) and
σ∗(t) be as in Definition 5.1.

Example 6.2. Let T = {tk : k ∈ N}, where tk =
∑k

n=1 1/
√

k for all
k ∈ N. Let p be any positive bounded function on T, and define q to
satisfy

k∑
n=1

q(tn)√
n + 1

=
{

0 if k is odd,
−1/ 4

√
2k + 1 if k is even,

k ∈ N0.

Then (E) is oscillatory.

In fact, for any tk ∈ T, μ(tk) = σ(tk) − tk = 1/
√

k + 1 and hence is
bounded on T. Clearly,

J(0) =
{

tk ∈ T :
∫ tk

0

q(t)Δt < 0
}

= {t2k : k ∈ N0},

and

J̄(0) =
{

tk ∈ T :
∫ tk

0

q(t)Δt ≥ 0
}

= {t2k+1 : k ∈ N0}.
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Therefore,

m(J̄(0)) =
∑

t∈J̄(0)

μ(t)μ(σ∗(t)) =
∞∑

k=1

1√
2k + 2

1√
2k + 4

= ∞,

and ∫
J(0)

r2(t)Δt =
∑

t∈J(0)

(∫ t

0

q(t)Δt
)2

μ(t)

=
∞∑

k=1

1√
2k + 1

1√
2k + 1

= ∞.

It then follows from Corollary 5.4 with λ = 0 that (E) is oscillatory.
Note that

∫∞
0

q(t)Δt = 0 in this case.

Example 6.3. Let T = ∪∞
k=0[2k, 2k + 1]. Let p(t) ≤ t2/c, where

c ≥ 128, and

q(t) =
{

2k + 1 t ∈ [4k, 4k + 1],
−2(k + 1) t ∈ [4k + 2, 4k + 3],

k ∈ N0.

Then (E) is oscillatory.

In fact, we may let λk = k + 1, k ∈ N. For any k ∈ N0, define
l4k+1 = 2k + 1 and l4k+3 = −2(k + 1); then r(t) =

∫ t

0
q(l)Δl can be

written as

r(t) =

{
2
∑2k

n=1 l2n−1 + (2k + 1)(t − 4k) t ∈ [4k, 4k + 1],

2
∑2k+1

n=1 l2n−1 − 2(k + 1)(t − 4k − 2) t ∈ [4k + 2, 4k + 3],
k ∈ N0.

From a direct computation we obtain that, for any k ∈ N0, r(4k) =
−2k, r(4k + 1) = 1, r(4k + 2) = 2(k + 1), and r(4k + 3) = 0. Set

Ek =
∞⋃

n=k

[4n + 2, 4n + 5/2], k ∈ N.
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It is easy to see that, for k ∈ N, J̄(λk) ⊃ Ek; as a consequence,
J̄2(λk) ⊃ Ek. Hence, for k ∈ N,

λk

∫
J̄2(λk)

1
p(t)

Δt ≥ (k+1)
∫

Ek

c

t2
dt = (k+1)c

∞∑
n=k

∫ 4n+(5/2)

4n+2

1
t2

dt

>
(k+1)c

2

∞∑
n=k

1
(4n + 4)2

=
(k+1)c

32

∞∑
n=k

1
(n + 1)2

>
(k+1)c

32

2k+1∑
n=k

1
(n + 1)2

>
(k+1)2c

32(2k + 2)2

=
(k+1)2c

128(k + 1)2
≥ 1.

We observe that r(t) is either 0 or 1 for all right-scattered points
t = 2k + 1, k ∈ N0. Therefore J̄1(λk) = ∅ for all k ∈ N. Then
the conclusion follows from Theorem 5.1 (ii). Note that, in this case,∫∞

p(l)Δl < ∞,

lim inf
t→∞

∫ t

0

q(l)Δl = −∞ and lim sup
t→∞

∫ t

0

q(l)Δl = ∞.

Additional examples may readily be given to illustrate the oscillation
criteria of the other results. We leave this to the interested reader.
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