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A CHARACTERIZATION OF BOUNDARY CONDITIONS
FOR REGULAR STURM-LIOUVILLE PROBLEMS

WHICH HAVE THE SAME LOWEST EIGENVALUES

GUANGSHENG WEI AND ZONGBEN XU

ABSTRACT. In this paper we characterize the self-adjoint
boundary conditions for the regular Sturm-Liouville problems
which have the same lowest bound. In addition, we answer the
equal cases of the inequalities among the minimal eigenvalues
of the Sturm-Liouville problems [4].

1. Introduction. Let

(1.1) {λn(eiθK) : n ∈ N0 = {0, 1, 2, . . . , }}

denote the eigenvalues, listed in nondecreasing order, of the Sturm-
Liouville problem (SLP) consisting of the equation

(1.2) −(py′)′+qy = λwy on I := [a, b] with −∞ < a < b < ∞,

and the coupled self-adjoint boundary condition (BC)

(1.3) Y (b) = e−iθKY (a),

where i =
√−1,−π < θ < π,

(1.4)
Y (t) =

[
y(t)

y[1](t)

]
,

K ∈ SL(2,R) :=
{

K =
[

k11 k12

k21 k22

]
: kij ∈ R, det(K) = 1

}

and

(1.5) p−1, q, w ∈ L(I,R), p, w > 0 a.e..
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Here y[1] := py′ denotes the quasi-derivative of y, L(I,R) denotes the
set of real-valued Lebesgue integrable functions on I and R the set of
real numbers.

For any K ∈ SL (2,R), let {νn : n ∈ N0} and {γn : n ∈ N0} denote
the eigenvalues of the following separated BC’s

(1.6) y(a) = 0, k22y(b) − k12y
[1](b) = 0

and

(1.7) y[1](a) = 0, k21y(b) − k11y
[1](b) = 0,

respectively. Eastham, Kong, Wu and Zettl [4] established a most
general result of the inequalities among the eigenvalues of SLPs. This
result generalizes some well known classical results of Weidmann [6],
Eastham [3] et al., e.g., [1, 2, 8], for some special cases of the matrix
K. These general inequalities can be written as follows.

Theorem 1.1. Let K ∈ SL (2,R).

(a) If k11 > 0 and k12 ≤ 0, then λ0(K) is simple, and for any
θ ∈ (−π, π), θ �= 0, we have

(1.8)
ν0 ≤ λ0(K) < λ0(eiθK) < λ0(−K) ≤ {γ0, ν1}

≤ λ1(−K) < λ1(eiθK) < λ1(K) ≤ {γ1, ν2} ≤ · · · ;

(b) If k11 ≤ 0 and k12 < 0, then λ0(K) is simple, and for any
θ ∈ (−π, π), θ �= 0, we have

(1.9)
λ0(K) < λ0(eiθK) < λ0(−K) ≤ {γ0, ν0}

≤ λ1(−K) < λ1(eiθK) < λ1(K) ≤ {γ1, ν1} ≤ · · · ;

(c) If neither case (a) nor case (b) applies to K, then either case (a)
or case (b) applies to −K.

The purpose of this paper is to discuss the eigenvalue equalities
problem related to (1.8) (1.9), that is, to ascertain the conditions under
which the equality λ0(K) = ν0 or λ0(K) = γ0 holds in (1.8) (1.9). To
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this end, we consider the following more general problem: characterize
the self-adjoint boundary conditions of the SLP’s which have the same
lowest bound. That is, let L0 denote the minimal operator associated
with the SL expression. It is known [6, page 109] that the operator L0

is symmetric and L0 and all of its self-adjoint extensions are bounded
below. Given a real constant μ0 satisfying

(1.10) μ0 ≤ Λ0(L0) := inf{(L0y, y), y ∈ D(L0), ||y|| = 1},

where Λ0(L0) is called the lower bound of the operator L0, we charac-
terize all self-adjoint extensions, L, of L0 such that their lower bound
Λ0(L) = μ0. This problem may be called the bound-limited self-adjoint
extension problem. Particularly, when μ0 = Λ0(L0), we call it the
bound-preserving self-adjoint extension problem.

In [7], we provided a complete solution to the bound-preserving self-
adjoint extension problem. In the present paper, we will present a close
answer to the bound-limited self-adjoint extension problem. Through
characterizing the necessary and sufficient condition for an operator to
be a bound-limited self-adjoint extension of L0, all possible forms of
the bound-limited self-adjoint extensions of L0 will be discriminated
via a complete classification of self-adjoint BC’s. When specialized to
the eigenvalue equalities problem, these then naturally yield conditions
under which the equalities hold among the minimal eigenvalues in
(1.8) (1.9).

The method used here is different from [7]. Based on a direct sum
decomposition of the domain of the maximal operator associated with
SL expression, we can directly characterize all positive self-adjoint
extensions of L0 when Λ0(L0) > 0. We will show that the positive
self-adjoint extensions of L0 are tightly related to the bound-limited
self-adjoint extensions of L0, Theorem 3.3. Thus, the crucial point of
the present research is to find all possible bound-limited self-adjoint
extensions of L0 among the positive self-adjoint extensions of L0.

This paper is organized as follows. In Section 2 we summarize some
of the basic results needed in later discussion and notations. Section 3
contains the main results, characterizing all bound-limited self-adjoint
extensions of L0. In Section 4 we provide all of all possible explicit BC’s
for the bound-limited self-adjoint extensions. Finally, in Section 5 we
obtain all matrices K such that λ0(K) = ν0 or λ0(K) = γ0.
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2. Notations and preliminaries. Let l be the differential ex-
pression associated with the SL kind differential equation (1.2) defined
by

(2.1) ly := w−1[−(py′)′ + qy].

We assume that (1.5) holds throughout the paper.

The operators associated with the differential expression l are studied
in the weighted Hilbert space

L2(I, w) with inner product (y, z) =
∫

I

y(t)z̄(t)w(t) dt.

Associated with the expression l, two differential operators Lmax and
L0 respectively, called the maximal operator and the minimal operator,
are defined as follows, see, for example, [5, 6]: let

D(Lmax) = {y ∈ L2(I, w) : y, y[1] ∈ AC(I) and ly ∈ L2(I, w)},
(2.2)

D(L0) = {y ∈ D(Lmax) : Y (a) = 0 = Y (b)}.(2.3)

Then

Lmaxy = ly, y ∈ D(Lmax),
L0y = ly, y ∈ D(L0).

It is known [5] that D(Lmax) and D(L0) all are dense in L2(I, w);
therefore, Lmax has a unique adjoint L∗

max, L0 = L∗
max, and L0 is a

semi-bounded symmetric operator with lower bound Λ0(L0).

Denote

Ĵ2 =
[

0 1
−1 0

]
, J2 =

[
0 1
1 0

]
,

[y, z](t) = Y T (t)Ĵ2Z̄(t), 〈y, z〉(t) = Y T (t)J2Z̄(t).

For any y, z ∈ D(Lmax), it is noted that Green’s formula [5] and the
Dirichlet formula [7] are respectively expressed as:

(2.4)
∫ b

a

[(ly)z − y(lz)]w(t)dt = [y, z](b) − [y, z](a)
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and

(2.5)
∫ b

a

[(ly)z + y(lz)]w(t) dt − 2
∫ b

a

[p(t)y′z′ + q(t)yz] dt

= −〈y, z〉(b) + 〈y, z〉(a).

Lemma 2.1. Let LF denote the Friedrichs extension of L0. Then
LF y = ly, y ∈ D(LF ), where

(2.6) D(LF ) = {y ∈ D(Lmax) : y(a) = 0 = y(b)}.

Proof. See [8, Section 5].

Under the assumption μ0 < λ0(L0), let ϕ1 and ϕ2 be the real-valued
solutions of the equation ly = μ0y determined by the initial conditions

(2.7) Φ1(a) :=
[

ϕ1(a)
ϕ

[1]
1 (a)

]
=

[
0
1

]
=

[
ϕ2(b)
ϕ

[1]
2 (b)

]
=: Φ2(b).

Note that the solutions ϕ1 and ϕ2 are linearly independent. (Otherwise,
there exists a constant c such that ϕ1 = cϕ2. Then, we have ϕ1(b) = 0
and μ0 is an eigenvalue of the Friedrichs extension LF . It is known [8]
that LF is a bound-preserving self-adjoint extension of L0. Therefore,
the spectral set σ(LF ) ⊂ [λ0(L0),∞) and hence μ0 ≥ λ0(L0). This
contradicts the prerequisite assumption.) Furthermore, by the Green
formula and (2.7), we easily deduce that

(2.8) ϕ1(b) = −ϕ2(a), ϕ1(t) > 0 and ϕ2(t) < 0, t ∈ I.

Lemma 2.2. Under the assumption μ0 < λ0(L0), each y ∈ D(Lmax)
can be uniquely represented as

(2.9) y = yF + c1ϕ1 + c2ϕ2, yF ∈ D(LF ),

where c1 = y(b)/ϕ1(b) and c2 = y(a)/ϕ2(a). Furthermore, for any yF

and zF ∈ D(LF ), we have

(2.10) (LF yF , zF ) =
∫

I

[p(t)y′
F z̄′F + q(t)yF z̄F ] dt =: (yF , zF )D.
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Proof. Equation (2.9) is similar to that of [7, Lemma 2.4] and
therefore omitted. Equation (2.10) follows from Lemma 2.1 and by
making use of the Dirichlet formula (2.5).

Remark 2.3. If λ0(L0) > 0, then (·, ·)D on the linear manifold D(LF )
forms an inner product and D(L0) is densely defined in D(LF ) with
respect to this inner product.

3. Bound limited self-adjoint extensions. In this section based
on the direct sum decomposition of D(Lmax), see Lemma 2.2, we first
characterize all positive self-adjoint extensions of L0 when Λ0(L0) > 0.
Then, we will identify the bound-limited self-adjoint extensions of L0

from the positive self-adjoint extensions of L0.

Our purpose is to find the bound-limited self-adjoint extensions of L0

with μ0 < Λ0(L0) by means of the positive self-adjoint extensions of
L0. Therefore we need to make the following assumption

(3.1) Λ0(L0) > 0 and μ0 = 0.

This assumption will facilitate our subsequent discussion but does not
actually impose any limitation for L0 because, if necessary, we can
consider the differential expression lμ0 := l − μ0 instead of l.

For any y ∈ D(Lmax), we denote

Y=
[

Y (a)
Y (b)

]
, J̃4 =

[
Ĵ2 0
0 −Ĵ2

]

and

(3.2) A =

⎡
⎢⎢⎣

0 ϕ2(a) 0 0
ϕ2(a) 2ϕ

[1]
2 (a) 0 2

0 0 0 ϕ1(b)
0 2 ϕ1(b) 2ϕ

[1]
1 (b)

⎤
⎥⎥⎦ .

Lemma 3.1. Let (3.1) hold. Then, for any y ∈ D(Lmax), the
following identities hold

(3.3) 2Im(Lmaxy, y) = −iY∗J̃4Y
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and

(3.4) 2Re(Lmaxy, y) = 2(yF , yF )D + ϕ2(a)Y∗A−1Y

where yF = y− (y(b)/ϕ1(b))ϕ1− (y(a)/ϕ2(a))ϕ2 belongs to D(LF ), see
(2.9), and (·, ·)D is defined as in (2.10).

Proof. It is easy to verify from the Green formula (2.4) that the
identity (3.3) holds. So, we only need to prove the identity (3.4). By
(2.4), (2.9) and (2.10), for any y ∈ D(Lmax) we have

(3.5) y = yF + c1ϕ1 + c2ϕ2, yF ∈ D(LF ),

and
(3.6)
(Lmaxy, y) = (LmaxyF , yF + c1ϕ1 + c2ϕ2)

= (yF , yF )D + [yF , c1ϕ1 + c2ϕ2](b) − [yF , c1ϕ1 + c2ϕ2](a)

= (yF , yF )D + y
[1]
F (a)[c1ϕ1(a) + c2ϕ2(a)]

− y
[1]
F (b)[c1ϕ1(b) + c2ϕ2(b)]

= (yF , yF )D + y
[1]
F (a)ϕ2(a)c̄2 + y

[1]
F (b)ϕ2(a)c̄1.

If we write Γ(y) = (y[1]
F (a), y[1]

F (b), c1, c2)T , then

2Re (Lmaxy, y) = 2(yF , yF )D + ϕ2(a)Γ∗(y)J4Γ(y).

Furthermore, from (2.6) and (2.7) we have

(3.7)
y(a) = c2ϕ2(a), y(b) = c1ϕ1(b),

y[1](a) = y
[1]
F (a) + c1 + c2ϕ

[1]
2 (a), y[1](b) = y

[1]
F (b) + c1ϕ

[1]
1 (b) + c2.

This then implies Y = Δ∗Γ(y), where

(3.8) Δ =

⎡
⎢⎢⎣

0 1 0 0
0 0 0 1
0 1 ϕ1(b) ϕ

[1]
1 (b)

ϕ2(a) ϕ
[1]
2 (a) 0 1

⎤
⎥⎥⎦ .
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Simple calculations show that

(3.9) A = Δ∗J4Δ, A−1 = Δ−1J4Δ−1∗

and (3.4) holds. This completes the proof of Lemma 3.1.

The following theorem characterizes all positive self-adjoint exten-
sions of L0 under the assumption (3.1).

Theorem 3.2. Let Λ0(L0) > 0 hold and the matrix A be defined by
(3.2). An operator L is a positive self-adjoint extension of L0 if and
only if there exists a 2 × 4 matrix M such that

rankM = 2, MJ̃4M
∗ = 0,(3.10)

MAM∗ is a positive definite or positive semi-definite matrix
(3.11)

and Ly = Lmaxy, y ∈ D(L), where

(3.12) D(L) = {y ∈ D(Lmax) : MY = 0}.

Proof. Let us suppose that the operator L is a positive self-adjoint
extension of L0, that is, L is self-adjoint and satisfies (Ly, y) ≥ 0 for
all y ∈ D(L). From the self-adjointness of L and [8, Section 4], there
exists a 2 × 4 matrix M such that (3.10) and (3.12) are satisfied. On
the other hand, we can show that (Ly, y) ≥ 0 is equivalent to

(3.13) Y∗A−1Y ≤ 0, for all y ∈ D(L).

Obviously, from (2.8), (3.1) and (3.4) we only need to prove (3.13). If it
is not true, there then is a function y1 in D(L) satisfying Y∗

1A−1Y1 =:
2ε1 > 0. From the definition of the Friedrichs extension, cf. [8,
Section 5], and the representation (2.9) of y1, y1 = y1F + c1ϕ1 +
c2ϕ2, y1F ∈ D(LF ), we conclude that D(L0) is densely defined in
D(LF ) with respect to the inner product (·, ·)D and, for the positive
number −ϕ2(a)ε1/2, there exists a function y0 in D(L0) such that
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(y1F −y0, y1F −y0)D ≤ −ϕ2(a)ε1/2. Since D(L) is a extension manifold
of D(L0), y1 − y0 ∈ D(L) and

0 ≤ (L(y1 − y0), y1 − y0)
= (y1F − y0, y1F − y0)D + (1/2)ϕ2(a)Y∗

1A
−1Y1

≤ (1/2)ϕ2(a)ε1 < 0.

This contradiction shows that (3.13) holds. Furthermore, note that the
mapping Y : D(Lmax) → C4 (the set of 4-dimensional column vectors
on C) is linear and surjective. If we write J̃4M

∗ as [α1, α2], that is,
J̃4M

∗ = [α1, α2], where α1, α2 ∈ C4, then, from (3.10) and (3.12), we
easily see that

(3.14) D(L) = {y ∈ D(Lmax) : Y ∈ span {α1, α2}}.
This, combined with (3.13), yields that[

α∗
1

α∗
2

]
A−1[α1, α2] = MJ̃∗

4 A−1J̃4M
∗

is a negative definite or negative semi-definite matrix. Simple calcula-
tions show that

A = −ϕ2(a)2J̃4A
−1J̃∗

4 ,

which shows that (3.11) holds. Thus, the necessary part of Theorem
3.2 is proved.

Conversely, if there is a 2 × 4 matrix M that satisfies (3.10), (3.11)
and D(L) satisfies (3.12), then, from [8, Section 4], we conclude that
the operator L is self-adjoint. In addition, if we write J̃4M

∗ = [α1, α2],
then by (3.13) and (3.14) we can conclude that (Ly, y) ≥ 0 for all
y ∈ D(L). This shows that L is a positive self-adjoint extension of L0.
We complete the proof of Theorem 3.2.

The following theorem characterizes all bound-limited self-adjoint
extensions of L0 by means of the positive self-adjoint extensions of
L0.

Let

(3.15) Φ =
[

0 1 ϕ1(b) ϕ
[1]
1 (b)

ϕ2(a) ϕ
[1]
2 (a) 0 1

]
.
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Let diag (A) denote all diagonal elements of the square matrix A and
det(A) the determinant of A.

Theorem 3.3. Under the assumption that the constant μ0 < Λ0(L0),
an operator L is a bound-limited self-adjoint extension of L0 with
Λ0(L) = μ0 if and only if there exists a 2 × 4 matrix M such that

rankM = 2, MJ̃4M
∗ = 0,(3.16)

diag (MAM∗) ≥ 0, det(MΦ∗) = 0(3.17)

and Ly = Lmaxy, y ∈ D(L), where

(3.18) D(L) = {y ∈ D(Lmax) : MY = 0}.

Proof. Without loss of generality, we may assume that Λ0(L0) > 0
and μ0 = 0. Let L be a bound-limited self-adjoint extension of L0

with Λ0(L) = 0. Then, L is a positive self-adjoint operator. By
Theorem 3.2, there is a 2 × 4 matrix M such that (3.16) and (3.18)
are satisfied and MAM∗ is a positive definite or positive semi-definite
matrix. Furthermore, the condition Λ0(L) = μ0 = 0 shows 0 ∈ σP (L)
(the set of eigenvalues of L) and there exist constants c1 and c2 such
that ϕ0 := c1ϕ1 + c2ϕ2( �≡ 0) is the eigenfunction corresponding to
0. This, combined with (2.7) and (3.18), yields det(MΦ∗) = 0. Let
α0 = (c1, c2) satisfy α0 �= 0 and α0MΦ∗ = 0 and let

Δ =
[

Δ11

Φ

]
with Δ11 =

[
0 1 0 0
0 0 0 1

]
.

Here Δ is defined by (3.8). From (3.9) and (3.10) we obtain

α0MAM∗α∗
0 = α0MΔ∗J4ΔM∗α∗

0

= [ α0MΔ∗
11, α0MΦ∗ ] J4

[
Δ11M

∗α∗
0

ΦM∗α∗
0

]
= α0MΔ∗

11J2ΦM∗α∗
0 + α0MΦ∗J2Δ11M

∗α∗
0

= 0.

This concludes rank MAM∗ ≤ 1. In this case, applying the charac-
terization of positive semi-definite matrix, we obtain that MAM∗ is a
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positive semi-definite matrix if and only if diag (MAM∗) ≥ 0. This
completes the proof of the necessary part.

Conversely, by (3.17) and the above proof, we can conclude that
0 ∈ σP (L) and MAM∗ is a positive semi-definite matrix. This, together
with Theorem 3.2, implies the sufficiency of Theorem 3.3.

If we consider all self-adjoint extension operators L(M1, M2), see, e.g.,
[8, Section 4], defined by L(M1, M2)y = ly, y ∈ D(L(M1, M2)) with

(3.19) D(L(M1, M2)) = {y ∈ D(Lmax) : M1Y (a) + M2Y (b) = 0},
where the 2 × 2 matrices M1 and M2 satisfy

(3.20) rank (M1, M2) = 2 and M1Ĵ2M
∗
1 − M2Ĵ2M

∗
2 = 0;

then, Theorem 3.3 can be equivalently restated as follows.

Theorem 3.3′. Let the constant μ0 < Λ0(L0) and L(M1, M2) be a
self-adjoint operator. Then L(M1, M2) satisfies Λ0(L(M1, M2)) = μ0

if and only if the matrix M := (M1, M2) satisfies

(3.21) det (MΦ∗) = 0

and

(3.22) diag (MAM∗) ≥ 0.

4. Explicit boundary conditions. The characteristic theorem
(Theorem 3.3) of bound-limited self-adjoint extensions of L0 can be
applied to provide a more detailed description of bound-limited self-
adjoint extensions via all possible explicit BC’s.

For our purpose here it is convenient to divide the self-adjoint BC’s
of L which is a self-adjoint extension of L0 into two disjoint subclasses,
cf. [8, Section 4]:

(a) Separated self-adjoint BC’s. These can be parameterized as
follows

cos αy(a) − sin αy[1](a) = 0, 0 ≤ α < π;(4.1)

cos βy(b) − sin βy[1](b) = 0, 0 < β ≤ π;(4.2)
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(b) Coupled self-adjoint BC’s. These can be formulated as in (1.3).

Theorem 4.1 (Separated BC’s). If the operator L is deduced
from the separated self-adjoint boundary condition and the constant
μ0 < Λ0(L0), then L is a bound-limited self-adjoint extension of L0

with Λ0(L) = μ0 if and only if α and β satisfy one of the following
three cases:

(i) If sin α = 0, then cotβ = ϕ
[1]
1 (b)/ϕ1(b);

(ii) If sin β = 0, then cotα = ϕ
[1]
2 (a)/ϕ2(a);

(iii) If sin α sin β �= 0, then cotα > ϕ
[1]
2 (a)/ϕ2(a), cotβ < ϕ

[1]
1 (b)/

ϕ1(b) and

(4.3) cotα =
− cotβϕ1(b)ϕ

[1]
2 (a) + ϕ

[1]
2 (a)ϕ[1]

1 (b) − 1

ϕ2(a)(ϕ[1]
1 (b) − cotβϕ1(b))

.

Proof. In this case

(4.4) M1 =
[

cos α − sin α
0 0

]
and M2 =

[
0 0

cos β − sin β

]
.

If we write

k2(α) = cos αϕ2(a) − sin αϕ
[1]
2 (a)(4.5)

and

k1(β) = cos βϕ1(b) − sin βϕ
[1]
1 (b),

then

(4.6)

MΦ∗ =
[

cos α − sin α
0 0

] [
0 ϕ2(a)
1 ϕ

[1]
2 (a)

]

+
[

0 0
cos β − sin β

] [
ϕ1(b) 0
ϕ

[1]
1 (b) 1

]

=
[− sin α k2(α)

k1(β) − sin β

]
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and

(4.7) MAM∗

=
[
− sin αϕ2(a) k2(a) − sin αϕ

[1]
2 (a) 0 −2 sin α

0 −2 sin β − sinβϕ1(b) k1(β) − sin βϕ
[1]
1 (b)

]
M∗

=
[−2k2(α) sin α 2 sin α sin β

2 sin α sin β −2k1(β) sinβ

]
.

By Theorem 3.3, we have

(4.8) det(MΦ∗)

= sin α sin β − k2(α)k1(β)

= sin α sin β − (cos αϕ2(a) − sin αϕ
[1]
2 (a))(cosβϕ1(b) − sin βϕ

[1]
1 (b))

= sin α sin β(1 − ϕ
[1]
2 (a)ϕ[1]

1 (b)) + cosα sin βϕ2(a)ϕ[1]
1 (b)

− cos α cos βϕ2(a)ϕ1(b) + sin α cos βϕ1(b)ϕ
[1]
2 (a)

= 0

and

(4.9) k2(α) sinα ≤ 0 and k1(β) sinβ ≤ 0.

If sin α = 0, from (2.9) and (4.5), then (4.8) is equivalent to cotβ =
ϕ

[1]
1 (b)/ϕ1(b) and (4.9) holds. This proves (i). Also, if sinβ = 0, we

can prove (ii).

If sin α sin β �= 0, then (4.8) implies that k2(α) �= 0 and k1(β) �= 0,
and then (4.3) is satisfied. Furthermore, from (2.8) and (4.5), we see
that (4.9) is equivalent to

cotα >
ϕ

[1]
2 (a)

ϕ2(a)
and cotβ <

ϕ
[1]
1 (b)

ϕ1(b)
.

This completes the proof of Theorem 4.1.
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Theorem 4.2 (Coupled BC’s). Let K ∈ SL (R). If the operator
L is deduced from the coupled self-adjoint boundary condition and the
constant μ0 < Λ0(L0), then L is a bound-limited self-adjoint extension
of L0 with Λ0(L) = μ0 if and only if the real numbers kij, 1 ≤ i, j ≤ 2,
and θ satisfy one of the following three cases:

(i) If k12 = 0, then

(4.10) k21 =
−ϕ

[1]
1 (b)k11 − ϕ

[1]
2 (a)k22 + 2 cos θ

ϕ2(a)
;

(ii) If k12 > 0, then k11 ≤ −(ϕ[1]
2 (a)/ϕ2(a))k12, ϕ

[1]
1 (b)k21 ≥

[(ϕ[1]
1 (b)ϕ[1]

2 (a) − 1)/ϕ2(a)]k22 and

(4.11) k21 =
ϕ

[1]
1 (b)

ϕ1(b)
k11− ϕ

[1]
2 (a)

ϕ2(a)
k22 +

ϕ
[1]
1 (b)ϕ[1]

2 (a) − 1
ϕ1(b)ϕ2(a)

k12 +
2 cos θ

ϕ2(a)
;

(iii) If k12 < 0, then k11 ≥ −(ϕ[1]
2 (a)/ϕ2(a))k12, ϕ

[1]
1 (b)k21 ≤

[(ϕ[1]
1 (b)ϕ[1]

2 (a) − 1)/ϕ2(a)]k22 and (4.11) is satisfied.

Proof. In this case we may denote by M1 = K and M2 = −eiθI2. If
we write
(4.12)
k1(a) = k11ϕ2(a) + k12ϕ

[1]
2 (a) and k2(a) = k21ϕ2(a) + k22ϕ

[1]
2 (a),

then

MΦ∗ =
[

k11 k12

k21 k22

] [
0 ϕ2(a)
1 ϕ

[1]
2 (a)

]
− eiθ

[
ϕ1(b) 0
ϕ

[1]
1 (b) 1

]

=
[

k12 k1(a)
k22 k2(a)

]
−

[
eiθϕ1(b) 0
eiθϕ

[1]
1 (b) eiθ

]

=
[

k12 − eiθϕ1(b) k1(a)
k22 − eiθϕ

[1]
1 (b) k2(a) − eiθ

]
and

MAM∗

=
[

k12ϕ2(a) k1(a) + k12ϕ
[1]
2 (a) 0 2k12 − eiθϕ1(b)

k22ϕ2(a) k2(a) + k22ϕ
[1]
2 (a) − 2eiθ −eiθϕ1(b) 2k22 − 2eiθϕ

[1]
1 (b)

]
M∗

=
[

2k12k1(a) k12k2(a)+k22k1(a)−2e−iθk12+ϕ1(b)

k12k2(a)+k22k1(a)−2eiθk12+ϕ1(b) 2k22k2(a)−2(e−iθ+eiθ)k22+2ϕ
[1]
1 (b)

]
.
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Note that
(4.13)

k11k22 − k12k21 = 1 and k12k2(a) − k22k1(a) = −ϕ2(a) = ϕ1(b).

By Theorem 3.3, we have

(4.14) det(MΦ∗)

= (k12 − eiθϕ1(b))(k2(a) − eiθ) − k1(a)(k22 − eiθϕ
[1]
1 (b))

= −eiθϕ1(b)k2(a) + eiθϕ
[1]
1 (b)k1(a) − eiθk12 + ei2θϕ1(b) + ϕ1(b)

= −eiθϕ1(b)

[
k2(a) − ϕ

[1]
1 (b)

ϕ1(b)
k1(a) +

1
ϕ1(b)

k12 − 2 cos θ

]

= 0

and

(4.15) k12k1(a) ≥ 0 and λ22 := k22k2(a) − 2 cos θk22 + ϕ
[1]
1 (b) ≥ 0.

Furthermore, from (4.14) and (4.12) we obtain

(4.16) k2(a) =
ϕ

[1]
1 (b)

ϕ1(b)
k1(a) − 1

ϕ1(b)
k12 + 2 cos θ

and

(4.17) k21 =
ϕ

[1]
1 (b)

ϕ1(b)
k11− ϕ

[1]
2 (a)

ϕ2(a)
k22 +

ϕ
[1]
1 (b)ϕ[1]

2 (a) − 1
ϕ1(b)ϕ2(a)

k12 +
2 cos θ

ϕ2(a)
.

From (4.12), (4.13), (4.15) and (4.16), we have

(4.18)

λ22 = k22

[
ϕ

[1]
1 (b)

ϕ1(b)
k1(a) − 1

ϕ1(b)
k12 + 2 cos θ

]
− 2 cos θk22 + ϕ

[1]
1 (b)

=
ϕ

[1]
1 (b)

ϕ1(b)
k1(a)k22 − 1

ϕ1(b)
k12k22 + ϕ

[1]
1 (b)

=
1

ϕ1(b)
[ϕ2(a)ϕ[1]

1 (b)k11k22 + (ϕ[1]
2 (a)ϕ[1]

1 (b) − 1)k12k22

+ ϕ1(b)ϕ
[1]
1 (b)]

=
k12

ϕ1(b)
[−ϕ2(a)ϕ[1]

1 (b)k21 + (ϕ[1]
2 (a)ϕ[1]

1 (b) − 1)k22].
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If k12 = 0, from (4.15), (4.17) and (4.18), we prove (i). If k12 > 0, by
(2.8), (4.15) and (4.18), we have

(4.19) k11 ≤ −ϕ
[1]
2 (a)

ϕ2(a)
k12 and ϕ

[1]
1 (b)k21 ≥ ϕ

[1]
1 (b)ϕ[1]

2 (a) − 1
ϕ2(a)

k22.

This, together with (4.17), proves (ii). Also, if k12 < 0, we can similarly
prove (iii). So, we complete the proof of Theorem 4.2.

If θ = 0 in (1.3), then corresponding BC’s are called the real coupled
self-adjoint BC’s. In this case, as was seen in the proof of Theorem 4.2,
we have the following corollary.

Corollary 4.3 (Real coupled BC’s). Let K ∈ SL (R). If
the operator L is deduced from the real coupled self-adjoint boundary
condition, θ = 0, and μ0 < Λ0(L0), then L is a bound-limited self-
adjoint extension of L0 with Λ0(L) = μ0 if and only if the real numbers
kij, 1 ≤ i, j ≤ 2, satisfy one of the following three cases:

(i) If k12 = 0, then

(4.20) k21 =
−ϕ

[1]
1 (b)k11 − ϕ

[1]
2 (a)k22 + 2

ϕ2(a)
;

(ii) If k12 > 0, then k11 ≤ −(ϕ[1]
2 (a)/ϕ2(a))k12, ϕ

[1]
1 (b)k21 ≥

[(ϕ[1]
1 (b)ϕ[1]

2 (a) − 1)/ϕ2(a)]k22 and

(4.21) k21 =
ϕ

[1]
1 (b)

ϕ1(b)
k11 − ϕ

[1]
2 (a)

ϕ2(a)
k22 +

ϕ
[1]
1 (b)ϕ[1]

2 (a) − 1
ϕ1(b)ϕ2(a)

k12 +
2

ϕ2(a)
;

(iii) If k12 < 0, then k11 ≥ −(ϕ[1]
2 (a)/ϕ2(a))k12, ϕ

[1]
1 (b)k21 ≤

[(ϕ[1]
1 (b)ϕ[1]

2 (a) − 1)/ϕ2(a)]k22 and (4.21) is satisfied.

Let us finish this section with a concrete example to show the bound
limited self-adjoint extensions L of L0.

Example 4.4. Consider the Fourier expression:

(4.22) ly = −y′′, with t ∈ I = [0, 1] in L2[0, 1].
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Clearly, l is a regular SL kind differential expression on I. It is easily
calculated that Λ0(L0) = π2. Given a constant μ0 = π2/4 (< Λ0(L0)),
applying Theorems 4.1 and 4.2 we will find all bound limited self-adjoint
extensions L of L0 such that Λ0(L) = π2/4. In this case it is not hard to
see that ϕ1 = 2/π sin(πt/2) and ϕ2 = −1/π cos(πt/2) are the solutions
of the equation ly = (π2/4)y which satisfy the condition (2.7) and

(4.23) ϕ1(1) =
2
π

, ϕ′
1(1) = 0, ϕ2(0) = − 2

π
, ϕ′

2(0) = 0.

If the operator L is deduced from the separated self-adjoint boundary
condition, by (4.23) and Theorem 4.1, then L is a bound-limited self-
adjoint extension of L0 with Λ0(L) = π2/4 if and only if α and β satisfy
one of the following three cases:

(i) sin α = cos β = 0;

(ii) sin β = cos α = 0;

(iii) cos α > 0, cotα = −(π2/4) tanβ.

Thus, by (4.1) (4.2), the following separated BC’s

y(0) = 0 = y′(1); y(1) = 0 = y′(0);(4.24)
cos αy(0) − sin αy′(0) = 0 = sin αy(1) + (π2/4) sinαy′(1);

cos α > 0, together with the expression l, define the operators that
satisfy Λ0(L) = π2/4.

If the operator L is deduced from the coupled self-adjoint boundary
condition, by (4.23), then (4.11) is equivalent to

(4.26) k21 =
π2

4
k12 − π cos θ

and therefore K ∈ S L(2,R) is equivalent to

(4.27)
k11k22 = 1 + k12k21 = 1 + k12

(
π2

4
k12 − π cos θ

)

=
(

π

2
k12 − cos θ

)2

+ sin2 θ.
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By (4.23) and Theorem 4.2, L is a bound-limited self-adjoint extension
of L0 with Λ0(L) = π2/4 if and only if the real numbers kij , 1 ≤ i,
j ≤ 2, and θ (∈ (−π, π)) satisfy one of the following three cases:

(i) k12 = 0, k21 = −π cos θ, k11 = 1/k22;

(ii) k12 > 0, k11 ≤ 0, k22 ≤ 0, (4.26) and (4.27) hold;

(iii) k12 < 0, k11 ≥ 0, k22 ≥ 0, (4.26) and (4.27) hold.

Thus, by (1.3), under one of the above three cases, the following coupled
BC’s

KY (a) = eiθY (b),

together with the expression l, define the operators that are the bound
limited self-adjoint extensions L of L0 with Λ0(L) = π2/4.

5. Equal cases: λ0(K) = υ0 or λ0(K) = γ0. In this section let
us specialize the above Theorems 4.1 4.2 to the eigenvalue equalities
problem related to (1.8) (1.9). Thus we will search for the self-adjoint
BC’s under which there hold the equalities on the minimal eigenvalues,
see Theorem 1.1. That is, we are try to find the possible matrices K
such that λ0(K) = υ0 or λ0(K) = γ0, where υ0 and γ0 are the minimal
eigenvalues for (1.6) and (1.7) respectively.

Theorem 5.1. Let ϕ1 and ϕ2 denote the solutions of the equation
ly = ν0y which satisfy the initial conditions (2.7) and k12 �= 0. Then
λ0(K) = ν0 if and only if the real numbers kij , 1 ≤ i, j ≤ 2, satisfy
the following conditions:

(5.1) k12 = ϕ1(b), k22 = ϕ
[1]
1 (b), ϕ

[1]
1 (b)k11 − ϕ1(b)k21 = 1,

(5.2) k11 ≤ ϕ
[1]
2 (a) and ϕ

[1]
1 (b)[ϕ[1]

1 (b)k11 + ϕ
[1]
1 (b)ϕ[1]

2 (a) − 2] ≥ 0.

Remark 5.2. Note that the self-adjoint BC in (1.6) becomes the
Dirichlet BC when k12 = 0. In this case, the matrices K satisfying
λ0(K) = λD

0 := Λ0(L0) may be btained in [7, Theorem 5.2].
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Proof. Since υ0 is the minimal eigenvalue for (1.6) and k12 �= 0, then
ν0 < Λ0(L0), see [8, Section 4]. By Theorem 4.1 and (1.6) we have

(5.3) α = 0, cot β =
k22

k12
=

ϕ
[1]
1 (b)

ϕ1(b)
.

We proceed to apply Theorem 4.2 to υ0 in distinguishing two possible
cases.

(i) k12 > 0. In this case by det(K) = 1, (2.8) and (4.21) we have

(5.4)

k21 =
k22

k12
k11 − ϕ

[1]
2 (a)

ϕ2(a)
k22 +

k22

k12

ϕ
[1]
2 (a)

ϕ2(a)
k12 − 1

ϕ1(b)ϕ2(a)
k12 +

2
ϕ2(a)

=
1 + k12k21

k12
+

1
ϕ2(a)2

k12 +
2

ϕ2(a)

= k21 +
1

k12
+

1
ϕ2(a)2

k12 +
2

ϕ2(a)
.

This deduces to k12 = −ϕ2(a) and k22 = ϕ
[1]
1 (b). Furthermore, we

see that k11 ≤ −(ϕ[1]
2 (a)/ϕ2(a))k12 is equivalent to k11 ≤ ϕ

[1]
2 (a) and

ϕ
[1]
1 (b)k21 ≥ [(ϕ[1]

1 (b)ϕ[1]
2 (a) − 1)/ϕ2(a)]k22 is equivalent to

0 ≤ ϕ
[1]
1 (b)k21 − ϕ

[1]
1 (b)ϕ[1]

2 (a) − 1
ϕ2(a)

ϕ
[1]
1 (b)

= −ϕ
[1]
1 (b)

ϕ2(a)
[−ϕ2(a)k21 + ϕ

[1]
1 (b)ϕ[1]

2 (a) − 1]

= −ϕ
[1]
1 (b)

ϕ2(a)
[ϕ[1]

1 (b)k11 + ϕ
[1]
1 (b)ϕ[1]

2 (a) − 2].

So, together with (2.8) and det(K) = 1, (5.1) and (5.2) hold.

(ii) k12 < 0. In this case, from Corollary 4.3 (iii) and (4.21), the
equation (5.4) does not hold as k12 < 0 and, therefore, there no exists
the matrix K satisfying λ0(K) = ν0.

By the above proof, it is easy to verify the sufficiency, thus completing
the proof.
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Theorem 5.3. Let ϕ1 and ϕ2 denote the solutions of the equation
ly = γ0y which satisfy the initial conditions (2.7). Then λ0(K) = γ0

if and only if the real numbers kij , 1 ≤ i, j ≤ 2, satisfy one of the
following four conditions:

(i) If k11 �= 0 and k12 = 0, then k11 = 1/k22 = ϕ
[1]
2 (a), k21 =

(ϕ[1]
1 (b)ϕ[1]

2 (a) − 1)/ϕ1(b);

(ii) If k11 �= 0 and k12 < 0, then k21(k22 + ϕ
[1]
1 (b)) ≥ 0,

(5.5)
k11 = ϕ

[1]
2 (a), k21 =

ϕ
[1]
1 (b)ϕ[1]

2 (a) − 1
ϕ1(b)

,

k22ϕ
[1]
2 (a) − k12

ϕ
[1]
1 (b)ϕ[1]

2 (a) − 1
ϕ1(b)

= 1;

(iii) If k11 �= 0 and k12 > 0, then k12 ≥ −ϕ2(a), k21(k22+ϕ
[1]
1 (b)) ≤ 0

and (5.5) is satisfied;

(iv) If k11 = 0, then k12 = −1/k21 = −ϕ2(a) and k22 ≤ ϕ
[1]
1 (b).

Proof. Since γ0 is the minimal eigenvalue for (1.7), then γ0 < Λ0(L0),
see [8, Section 4]. By Theorem 4.1 we have the following two cases:

(1) k11 �= 0 : ϕ
[1]
2 (a) > 0, cotβ =

k21

k11
=

ϕ
[1]
1 (b)

ϕ1(b)
− 1

ϕ1(b)ϕ
[1]
2 (a)

;

(5.6)

(2) k11 = 0 : ϕ
[1]
2 (a) = 0.

(5.7)

Based on the above two cases, we now apply Theorem 4.2 through
distinguishing four cases:

Case i. k11 �= 0 and k12 = 0. In this case by (2.8), (4.20) and (5.6),
we obtain

k21 − ϕ
[1]
1 (b)

ϕ1(b)
k11 = − 1

ϕ1(b)ϕ
[1]
2 (a)

k11 = −ϕ
[1]
2 (a)

ϕ2(a)
k22 +

2
ϕ2(a)

.
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Thus

k11

ϕ
[1]
2 (a)

+ ϕ
[1]
2 (a)k22 = 2.

Note that k11k22 = 1. Then k11 = 1/k22 = ϕ
[1]
2 (a). This and (5.6)

prove (i).

Case ii. k11 �= 0 and k12 < 0. In this case by (2.8), (5.6), (4.21) and
det(K) = 1, we have

(5.8)

k21 − ϕ
[1]
1 (b)

ϕ1(b)
k11

= − 1

ϕ1(b)ϕ
[1]
2 (a)

k11

= −ϕ
[1]
2 (a)

ϕ2(a)
k22 +

ϕ
[1]
2 (a)

ϕ2(a)

[
ϕ

[1]
1 (b)

ϕ1(b)
− 1

ϕ1(b)ϕ
[1]
2 (a)

]
k12 +

2
ϕ2(a)

= −ϕ
[1]
2 (a)

ϕ2(a)
k22 +

ϕ
[1]
2 (a)

ϕ2(a)
· k21

k11
k12 +

2
ϕ2(a)

= −ϕ
[1]
2 (a)

ϕ2(a)
k22 +

ϕ
[1]
2 (a)

ϕ2(a)
(k22 − 1

k11
) +

2
ϕ2(a)

= − ϕ
[1]
2 (a)

ϕ2(a)k11
+

2
ϕ2(a)

.

Therefore,

1

ϕ
[1]
2 (a)

k11 + ϕ
[1]
2 (a)

1
k11

= 2.

This implies that k11 = ϕ
[1]
2 (a) and k21 = (ϕ[1]

1 (b)ϕ[1]
2 (a) − 1)/ϕ1(b).

Moreover, by (iii) of Corollary 4.3 and (5.6), we see that k11 ≥
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−(ϕ[1]
2 (a)/ϕ2(a))k12 is equivalent to k12 ≤ −ϕ2(a) and

0 ≥ ϕ
[1]
1 (b)k21 − ϕ

[1]
1 (b)ϕ[1]

2 (a) − 1
ϕ2(a)

k22

= ϕ
[1]
1 (b)k21 +

[
ϕ

[1]
1 (b)

ϕ1(b)
− 1

ϕ1(b)ϕ
[1]
2 (a)

]
ϕ

[1]
2 (a)k22

= ϕ
[1]
1 (b)k21 +

k21

k11
k11k22

= k21(k22 + ϕ
[1]
1 (b)).

Note that ϕ2(a) < 0 and k12 < 0 implies k12 ≤ −ϕ2(a). Thus, by
det(K) = 1 we prove (ii).

Case iii. k11 �= 0 and k12 > 0. In this case, the assertion can be
justified similarly to that of case ii.

Case iv. k11 = 0. In this case by det(K) = 1 we then know that
k12 �= 0. From (5.7) and (4.21) we have

k21 = − 1
ϕ1(b)ϕ2(a)

k12 +
2

ϕ2(a)
.

Note that k12k21 = −1. So, k12 = −ϕ2(a) = −1/k21 > 0. Therefore,
by Corollary 4.3 (ii), we obtain k22 ≤ ϕ

[1]
1 (b) and prove case iv.

By the above proof, the sufficiency is clear, thus completing the proof
of Theorem 5.3.
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