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THE NORM THEOREM FOR
TOTALLY SINGULAR QUADRATIC FORMS

AHMED LAGHRIBI

ABSTRACT. The aim of this paper is to prove the norm
theorem in the case of totally singular quadratic forms.

1. Introduction. Let F be a commutative field. In characteristic
different from 2, an important part in the algebraic theory of quadratic
forms is that related to function fields of quadratic forms, and a classical
result in this area is the Cassels-Pfister subform theorem. This theorem
is a consequence of another one due to Knebusch and known as the
norm theorem [5, Theorem 4.2]. It asserts that for a normed irreducible
polynomial p ∈ F [x1, . . . , xn], an anisotropic quadratic form φ becomes
hyperbolic over the quotient field of F [x1, . . . , xn]/(p) if and only if p
is a norm of φ over F (x1, . . . , xn) the field of rational functions in n
variables x1, . . . , xn over F (normed means that the coefficient of the
highest monomial occurring in p with respect to the lexicographical
ordering is 1).

For quadratic forms in characteristic 2, we should distinguish be-
tween different objects: nonsingular quadratic forms, totally singular
quadratic forms, and singular but not totally singular quadratic forms,
cf. subsection 2.1 for definitions, and it is an interesting problem to ex-
tend some known results in characteristic �= 2 to one of these objects.
The theory of function fields of nonsingular quadratic forms works as
in characteristic �= 2. In fact, for such quadratic forms we have the
norm theorem by Baeza [2]. This theorem and some representation re-
sults in [1, Satz 3.4, 3.5, Lemma 3.7] imply the Cassels-Pfister subform
theorem for nonsingular quadratic forms, which was explicitly stated in
[6, Proposition 3.4] (recall that some representation results in [1] have
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been also obtained by Amer [10, pp. 17 18]). Moreover, the author
and Hoffmann obtained some progress on the theory of function fields
of possibly singular quadratic forms [3, 4, 6, 7, 9], and the basics of a
theory of totally singular quadratic forms have been established in [3,
Section 8].

In [8] and [9] more investigations on totally singular quadratic forms
have been performed, and it turns out that the theory of function fields
of such quadratic forms can be done like that for quadratic forms in
characteristic �= 2. In fact, in [8] the Cassels-Pfister subform theorem
has been proved after changing the notion of hyperbolicity by the
so-called quasi-hyperbolicity, which means that the underlying vector
space of the totally singular form is of even dimension and contains a
maximal totally isotropic subspace of half dimension (totally isotropic
space is just a space on which the restriction of the quadratic form is the
zero form). The norm theorem was also obtained in the particular case
where the normed irreducible polynomial is given by a totally singular
quadratic form. The aim of this paper is to prove the general version
of the norm theorem for totally singular quadratic forms:

Theorem 1.1. Let φ be an anisotropic totally singular quadratic
form of dimension ≥ 2 over F , and let p ∈ F [x1, . . . , xn] be a
normed irreducible polynomial. Let F (p) be the quotient field of
F [x1, . . . , xn]/(p) and K = F (x1, . . . , xn). Then the following are
equivalent:

(1) φ is quasi-hyperbolic over F (p).

(2) p is a norm of φK .

Theorem 1.1 will be proved in two steps. First, we give the proof in
the case of a normed irreducible polynomial in one variable. In this
case, the implication (1) ⇒ (2) will be proved by a direct argument.
For the converse, we introduce a nonsingular form φ′ which dominates
generically our totally singular form φ and satisfies dimφ′ = 2 dimφ
(the quadratic form φ′ is defined at the beginning of Section 3. We
refer to [3] for details concerning the domination relation). By using
Knebusch’s specialization theory, we prove in Proposition 3.3 (2) that
the Witt index of φ′K(p) is at least the dimension of the anisotropic part
of φF (p) (here K is the field of rational functions on which φ′ is defined),
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and by using Proposition 3.2 we get the quasi-hyperbolicity of φF (p).
The reason of the reduction to nonsingular forms is the fact that the
specialization argument that we use is not known for totally singular
forms. In the second step, we will prove the theorem for a normed
irreducible polynomial in more than one variable. To this end, we will
use the following proposition to reduce the situation to a polynomial
in one variable:

Proposition 1.2. Let φ be an anisotropic totally singular quadratic
form of dimension ≥ 2 over F , f ∈ F [x1, . . . , xn] and K = F (x1, . . . ,
xn). Let p be a normed irreducible polynomial which divides f with an
odd power. If f is a norm of φK , then p is also a norm of φK .

2. Preliminaries.

2.1 Notation and definitions. For a, b ∈ F , let denote by [a, b],
respectively [a], the quadratic form ax2 + xy + by2, respectively the
quadratic form ax2. A quadratic form over F is called nonsingular,
respectively totally singular, if it is isometric to an orthogonal sum of
quadratic forms [a, b], respectively [a]. Any quadratic form φ can be
written as φ ∼= R ⊥ S where R is nonsingular and S is totally singular
(∼= denotes the isometry of quadratic forms). The quadratic form φ is
called singular when dimS > 0.

For a nonzero quadratic form φ of dimension n ≥ 1 and underlying
vector space V , the homogeneous polynomial Pφ given by φ after a
choice of a basis of V is reducible if and only if φ ∼= H ⊥ [0] ⊥ · · · ⊥ [0]
or φ ∼= [a] ⊥ [0] ⊥ · · · ⊥ [0] for some a ∈ F ∗. When Pφ is irreducible,
the function field of φ, denoted by F (φ), is defined as the quotient field
of F [x1, . . . , xn]/(Pφ). We set F (φ) = F if Pφ is reducible or φ = 0.

A quadratic form ψ is called a subform of φ, denoted by ψ ⊂ φ, if
there exists a quadratic form ψ′ such that φ ∼= ψ ⊥ ψ′. Two quadratic
forms φ and ψ are called similar if φ ∼= αψ for some α ∈ F ∗.

A quadratic form φ of dimension n ≥ 2 over F is called isotropic if
the polynomial Pφ has a solution in Fn − {0}, otherwise φ is called
anisotropic.

A scalar α ∈ F ∗ is called a norm of φ if φ ∼= αφ. We denote by
DF (φ), respectively GF (φ), the set of scalars in F ∗ represented by φ,
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respectively the group of norms of φ. For a field extension K/F , let
φK denote the quadratic form φ⊗K.

It was proved in [3, Proposition 2.4] that any quadratic form φ is
uniquely decomposed as follows

(1) φ ∼= i× H ⊥ j × [0] ⊥ φan,

where H is the hyperbolic plane [0, 0], and φan is anisotropic that we
call the anisotropic part of φ (here n × ψ denotes the orthogonal sum
of n copies of a quadratic form ψ).

As in (1), the integer i, respectively j, is called the Witt index of φ
and denoted by iW (φ), respectively the defect index of φ and denoted
by id(φ).

Clearly, the quasi-hyperbolicity of a totally singular form φ means
that dimφ is even and dimφ = 2id(φ).

2.2 Representation results. Recall that the anisotropic part of a
totally singular form φ = [a1] ⊥ · · · ⊥ [an] is uniquely determined by
the F 2-vector space inside F generated by {a1, . . . , an}. More precisely,
this vector space coincides with DF (φ) ∪ {0}, and the anisotropic part
of φ is isometric to [ai1 ] ⊥ · · · ⊥ [aim

] for any F 2-basis {ai1 , . . . , aim
}

of DF (φ) ∪ {0}. From this we easily deduce the following lemma:

Lemma 2.1 [3], [9, Lemma 2.1]. Let φ = [a1] ⊥ · · · ⊥ [an] be a
totally singular quadratic form over F .

(1) If b1, . . . , bm ∈ DF (φ) are such that the form ψ = [b1] ⊥ · · · ⊥
[bm] is anisotropic, then ψ ⊂ φan.

(2) For any field extension K/F , there exists i1, . . . , im ∈ {1, . . . , n}
such that (φK)an ∼= ([ai1 ] ⊥ · · · ⊥ [aim

])K .

A well-known representation theorem by Pfister, cf. [11, Theorem 3.2,
pp. 148 149], easily extends to the case of totally singular quadratic
forms. For the reader’s convenience we give a proof.

Proposition 2.2. If a nonzero polynomial p ∈ F [x] is represented by
an anisotropic totally singular form φ over F (x), then it is represented
by φ over the polynomial ring F [x].
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Proof. Set φ = [a1] ⊥ · · · ⊥ [an]. Since p is represented by φF (x),
there exist polynomials p0 �= 0, p1, . . . , pn ∈ F [x] such that

p =
n∑

i=1

ai

(
pi

p0

)2

.

There is nothing to prove if deg (p0) = 0. Suppose we have deg (p0) > 0.
We take the sequences (q0, q1, . . . , qn), (r0, r1, . . . , rn) given by pi =
qip0 + ri with q0 = 1, r0 = 0 and deg (ri) < deg (p0) (deg (0) = −∞).
Let

s = p+
n∑

i=1

aiq
2
i .

If s = 0, then the polynomial p is represented by φ over F [x], and we
are done. If not, the polynomial sp2

0 equals
∑n

i=1 air
2
i , and thus it has

degree smaller than 2deg (p0), i.e., deg (s) < 0, which is not possible.

Remark 2.3. Proposition 2.2 remains true in the case of a polynomial
in more than one variable. This was communicated to me by D.W.
Hoffmann during the workshop which was held in Eilat, February 2004.

From Proposition 2.2 we deduce some corollaries:

Corollary 2.4. If an anisotropic totally singular form φ over F
represents a nonzero polynomial p(x1, . . . , xn) over F (x1, . . . , xn), and
if c = (c1, . . . , cn) ∈ Fn satisfies p(c) �= 0 then p(c) ∈ DF (φ).

Proof. We use Proposition 2.2, and we proceed as in [11, Corollary
3.6, p. 150].

Corollary 2.5. Let φ be an anisotropic totally singular form over
F , and let p ∈ F [x1, . . . , xn] be a norm of φ. Let c1, . . . , ck ∈ F be
such that the polynomial q := p(c1, . . . , ck, xk+1, . . . , xn) is nonzero,
1 ≤ k ≤ n. Then, q is a norm of φ over F (xk+1, . . . , xn).
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Proof. Set φ = [a1] ⊥ · · · ⊥ [am], K = F (x1, . . . , xn) and L =
F (xk+1, . . . , xn). For any i ∈ {1, . . . ,m} we have pai ∈ DK(φK). We
consider p as a polynomial of L[x1, . . . , xk] and we apply Corollary 2.4
to get qai ∈ DL(φL) for any i ∈ {1, . . . ,m}. Since qφL is anisotropic
we get by Lemma 2.1 that φL

∼= qφL.

2.3 Isotropy results. A totally singular quadratic form φ is called
a quasi-Pfister form, of degree n, if there exists an n-fold bilinear Pfister
form B such that φ is isometric to the totally singular form given by
v 
→ B(v, v). We refer to [3, 9] for details on quasi-Pfister forms and
their neighbors.

We recall a characterization of quasi-Pfister forms using their groups
of norms:

Lemma 2.6 [3, Proposition 8.5]. An anisotropic totally singular
form φ over F is isometric to a quasi-Pfister form if and only if
DF (φ) ⊂ GF (φ).

Other characterizations of quasi-Pfister forms have been proved in [8,
9] by using standard splitting towers.

Lemma 2.7 [8, Lemma 2.4]. Let π be an anisotropic quasi-Pfister
form over F , and let a1, . . . , an ∈ F ∗ be such that a1π ⊥ · · · ⊥ anπ is
isotropic. Then id(a1π ⊥ · · · ⊥ anπ) ≥ dimπ.

Proof. Set π = [b1] ⊥ · · · ⊥ [bm]. The isotropy of a1π ⊥ · · · ⊥ anπ
implies the existence of scalars xi ∈ DF (aiπ) ∪ {0}, not all zero, such
that

∑n
i=1 xi = 0. Without loss of generality, we may suppose xi �= 0

for any i ∈ {1, . . . , n}. Since aiπ ∼= xiπ (Lemma 2.6), it follows that
a1π ⊥ · · · ⊥ anπ ∼= b1φ ⊥ · · · ⊥ bmφ where φ = [x1] ⊥ · · · ⊥ [xn]. Since∑n

i=1 xi = 0, the quadratic form φ is isotropic. Hence the claim.

Lemma 2.8. Let φ be a totally singular form over F , and let L/F
be an extension which is purely transcendental or separable. If φL is
isotropic, respectively quasi-hyperbolic, then φ is isotropic, respectively
quasi-hyperbolic.
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Proof. (1) Suppose that L/F is purely transcendental.

(i) It is well known that if φL is isotropic, then φ is also isotropic.

(ii) If φL is quasi-hyperbolic, then any subform of φ of dimension
≥ (dimφ/2) + 1 is isotropic over L, and thus it is also isotropic over
F . Hence dimφan ≤ (dimφ/2). Moreover, by Lemma 2.1 there exists
φ′ ⊂ φ of dimension dimφ/2 such that (φL)an ∼= φ′L. In particular,
φ′ is anisotropic over F , and again by Lemma 2.1 φ′ ⊂ φan. Hence
dimφan ≥ (dimφ/2), and thus dimφan = (dimφ/2).

(2) (i) Suppose that L is separable over F and φL is isotropic.
Set φ = [a1] ⊥ · · · ⊥ [am], and let {e1, . . . , en} be an F -basis of
L. Let v = (

∑n
j=1 λ

1
jej , . . . ,

∑n
j=1 λ

m
j ej) ∈ Lm − {0} be such that

φ(v) = 0. Then
∑n

j=1

(∑m
i=1 ai(λi

j)
2
)
e2j = 0. Since L/F is separable,

{e21, . . . , e2n} is also an F -basis of L. Then
∑m

i=1 ai(λi
j)

2 = 0 for any
j ∈ {1, . . . , n}, and thus φ is isotropic since v �= 0.

(ii) For the quasi-hyperbolicity we use the same argument as in
(1)(ii).

As a corollary we get that only the case of inseparable irreducible
polynomials will be considered in this paper:

Corollary 2.9. Let φ be a totally singular form of dimension ≥ 2
over F , and let f ∈ F [x1, . . . , xn] be a norm of φ. Let p be an
irreducible polynomial which divides f with an odd power. Then:

(1) φF (p) is isotropic.

(2) If φ is anisotropic, then p is inseparable in the sense that
∂p/∂xi = 0 for any i ∈ {1, . . . , n}.

Proof. Set φ = [a1] ⊥ · · · ⊥ [am], A = F [x1, . . . , xn] and K =
F (x1, . . . , xn). Since K2 ⊂ GK(φK) we may suppose that p2 does not
divide f .

(1) Without loss of generality, we may suppose that φ is anisotropic
and 1 ∈ DF (φ). Hence, f ∈ DK(φK) and there exist polynomials
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r �= 0, q1, . . . , qm ∈ A such that

(2) r2f =
m∑

i=1

aiq
2
i .

Since p2 does not divide f , we may suppose in (2) that p does not
divide all the polynomials q1, . . . , qm. To get the claim it suffices to
extend (2) to the field F (p).

(2) For any i ∈ {1, . . . , n} the polynomial p considered as an element
of Li := F (x1, . . . , xi−1, xi+1, . . . , xn)[xi] stays irreducible. Since
A/(p) and Li/(p) possess the same quotient field, the claim follows
from statement (1) and Lemma 2.8.

We give results concerning the isotropy of totally singular forms over
purely inseparable extensions of type F ( 2m√

d):

Lemma 2.10. Let d ∈ F ∗ be such that the polynomial x2m

+ d is
irreducible over F , and let φ be an anisotropic totally singular form of
dimension ≥ 2 over F . Then φ becomes isotropic over F ( 2m√

d) if and
only if [1] ⊥ [d] is similar to a subform of φ.

Proof. Set k = 2m − 1, l = 2m−1 − 1, α = 2m√
d and φ = [a1] ⊥ · · · ⊥

[an]. The condition of the lemma is clearly sufficient. Conversely, sup-
pose that φF (α) is isotropic and let v =

(∑k
j=0 l

1
jα

j , . . . ,
∑k

j=0 l
n
j α

j
)
∈

F (α)n − {0} be such that φ(v) = 0. The condition φ(v) = 0 implies

n∑
i=1

ai

( l∑
j=0

lijα
j

)2

=
n∑

i=1

ai

( k∑
j=l+1

lijα
j

)2

.

Hence

(3)

l∑
j=0

( n∑
i=1

ai(lij)
2

)
α2j = α2m

k∑
j=l+1

( n∑
i=1

ai(lij)
2

)
α2j−2m

= α2m
l∑

j=0

( n∑
i=1

ai(lij+l+1)
2

)
α2j .
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Set vj = (l1j , . . . , l
n
j ) for j ∈ {0, . . . , k}. By comparing the two sides

in (3), and using the fact that α2m

= d and {1, α, . . . , αk} is an F -
basis of L, we get φ(vj) = dφ(vj+l+1) for any j ∈ {0, . . . , l}. Since
v �= 0, there exists j0 ∈ {0, . . . , k} such that vj0 �= 0, for example
j0 = 0. Hence φ(v0) = dφ(vl+1) �= 0 because φ is anisotropic. The
form [φ(v0)] ⊥ [φ(vl+1)] is anisotropic since the polynomial x2m

+ d is
irreducible. By Lemma 2.1 [φ(v0)] ⊥ [φ(vl+1)] is a subform of φ, i.e.,
φ(vl+1)([1] ⊥ [d]) is a subform of φ.

Proposition 2.11. Let d ∈ F ∗ be such that the polynomial x2m

+ d
is irreducible over F , and let φ be an anisotropic totally singular form
of dimension ≥ 2 over F . If φ becomes isotropic over L = F ( 2m√

d),
then there exists ρ a totally singular form of dimension id(φL) such
that ρ ⊥ dρ ⊂ φ.

Proof. We proceed by induction on the dimension of φ. By
Lemma 2.10 the result is true in dimension 2. Suppose that the result
is true for any anisotropic totally singular form of dimension < dimφ.
Set n = id(φL). Since φ is isotropic over L, it follows from Lemma 2.10

(4) φ ∼= φ′ ⊥ α([1] ⊥ [d]),

for some α ∈ F ∗ and a totally singular form φ′ of dimension dimφ− 2.
After extending (4) to L, we get

φL
∼= [0] ⊥ ([α] ⊥ φ′)L.

Then id (([α] ⊥ φ′)L) = n− 1. Since the form [α] ⊥ φ′ is anisotropic of
dimension < dimφ, we get by induction totally singular forms ρ′ and
φ′′ such that dim ρ′ = n− 1 and

(5) [α] ⊥ φ′ ∼= ρ′ ⊥ dρ′ ⊥ φ′′.

We add in each side of (5) the form α([1] ⊥ [d]) and we use the isometry
[α] ⊥ [α] ∼= [0] ⊥ [α] to get

(6) [0] ⊥ φ ∼= ([α] ⊥ ρ′) ⊥ d([α] ⊥ ρ′) ⊥ φ′′.

The form ψ := [α] ⊥ ρ′ ⊥ d([α] ⊥ ρ′) is anisotropic, otherwise we
would get by Lemma 2.7 id(ψ) ≥ 2, and by (6) φ would be isotropic. It
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follows from Lemma 2.1 that ψ is a subform of ([0] ⊥ φ)an, i.e., ρ ⊥ dρ
is a subform of φ where ρ = [α] ⊥ ρ′. Hence the claim.

We get the following corollaries:

Corollary 2.12. With the same notation and hypotheses as in
Proposition 2.11 we have:

(1) id(φL) ≤ [dimφ/2] where [n] denotes the integer part of n.

(2) If φL becomes quasi-hyperbolic, then:

(i) there exists ρ a totally singular form such that φ ∼= ρ ⊥ dρ.

(ii) x2m

+ d ∈ GF (x)(φF (x)).

Proof. (1) and (2)(i) are immediate consequences of Proposition 2.11,
and for (2)(ii) we use (i) and the fact that x2m

+d is a norm of [1]⊥ [d].

Corollary 2.13. Let φ be an anisotropic totally singular form of
dimension ≥ 2 over F . If p ∈ F [x] is an irreducible polynomial such
that φF (p) is isotropic, then id(φF (p)) ≤ [dimφ/2].

Proof. By Lemma 2.8, the polynomial p is inseparable. Then there
exists a separable irreducible polynomial q ∈ F [x] such that p = q(x2m

)
for some integer m ≥ 1. Let α be a root of q in the algebraic closure of
F , and let β = 2m√

α. Since S = F (α) is separable over F , the form φS

is anisotropic. It follows from Corollary 2.12 that id(φF (p)) ≤ [dimφ/2]
since F (p) is isomorphic to S(β).

3. Proof of Theorem 1.1 in the case n = 1. Throughout this
section, we fix the following

(
)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

t1, . . . , tn are variables over F (n ≥ 2)
K = F (t1, . . . , tn)
a1, . . . , an ∈ F ∗

φ = [a1] ⊥ · · · ⊥ [an]
φ′ = [a1, a

−1
1 t−1

1 ] ⊥ · · · ⊥ [an, a
−1
n t−1

n ].
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3.1 Preparatory results.

Lemma 3.1. Let ψ be a quadratic form over F , and b1, . . . , bn ∈ F ∗

such that ψ ⊥ [b1] ⊥ · · · ⊥ [bn] is anisotropic. Then ψ ⊥ [b1, b−1
1 t−1

1 ] ⊥
· · · ⊥ [bn, b−1

n t−1
n ] is also anisotropic.

Proof. By induction, it suffices to prove the lemma for n = 1. Suppose
that ψ ⊥ [b1, b−1

1 t−1
1 ] is isotropic over F (t1), and let (p1, . . . , pm, r, s) ∈

F (t1)m+2 − {0} be such that

(7) ψ(p1, . . . , pm) + b1r
2 + rs+ b−1

1 t−1
1 s2 = 0.

We may suppose that p1, . . . , pm, r, s are polynomials not all divisible
by t1. After multiplying (7) by t1 and specializing t1 to 0, we deduce
that s = s′t1 for some s′ ∈ F [t1]. We substitute in (7) and we specialize
t1 to 0 to get

ψ(p1(0), . . . , pm(0)) + b1r(0)2 = 0.

Since ψ ⊥ [b1] is anisotropic, t1 divides p1, . . . , pm, r, which is not
possible since t1 also divides s.

It is well known and easy to prove that for a, b, c, d ∈ F and α ∈ F ∗,
we have the following

[a, b] ⊥ [c, d] ∼= [a+ c, b] ⊥ [c, b+ d]
α[a, b] ∼= [αa, α−1b].

We will refer to these isometries as “standard relations.”

Proposition 3.2. As in (
) we have id(φ) ≥ iW (φ′).

Proof. We proceed by induction on dimφ. If φ is anisotropic, then
φ′ is also anisotropic by Lemma 3.1, and thus the proposition is true.
Suppose that φ is isotropic. Let (x1, . . . , xn) ∈ Fn − {0} be such
that

∑n
i=1 aix

2
i = 0. Without loss of generality, we may suppose

x1 �= 0. Hence, a1 is represented by ψ := [a2] ⊥ · · · ⊥ [an]. Let
ψ′ = [a2, a

−1
2 t−1

2 ] ⊥ · · · ⊥ [an, a
−1
n t−1

n ]. By using standard relations we
get the isometry

(8) φ′ ∼= [0, β1] ⊥ [α2, β2] ⊥ · · · ⊥ [αn, βn],
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where
β1 = x−2

1 a−1
1 t−1

1 ,

and for i ≥ 2,

αi =
{
ai if xi = 0

x2
i ai if xi �= 0

βi =

{
a−1

i t−1
i if xi = 0

β1 + x−2
i a−1

i t−1
i if xi �= 0.

Hence

(9) [α2, β2] ⊥ · · · ⊥ [αn, βn] ∼= (iW (φ′) − 1) × H ⊥ ρ,

for some anisotropic quadratic form ρ over K. Let λ : K →
F (t2, . . . , tn)∞ be the F (t2, . . . , tn)-place satisfying t1 
→ ∞. The
quadratic forms [α2, β2] ⊥ · · · ⊥ [αn, βn] and (iW (φ′) − 1) × H are
of good reduction with respect to λ, cf. [5] for the notion of good re-
duction and related details. Hence, ρ also possesses a good reduction
with respect to λ [5, Proposition 2.2]. We specialize in (9), and we use
standard relations with [5, Proposition 2.2] to get

(10) ψ′ ∼= (iW (φ′) − 1) × H ⊥ λ∗(ρ),

where λ∗(ρ) is the specialization of ρ with respect to λ. By induction
we get id(ψ) ≥ iW (ψ′) ≥ iW (φ′) − 1. Since a1 is represented by ψ, we
get the isometry φ ∼= [0] ⊥ ψ. Hence id(φ) = id(ψ) + 1 ≥ iW (φ′).

Proposition 3.3. We keep the same notation as in (
), and we
suppose that φ is anisotropic. Let f ∈ GF (x)(φF (x)) and p ∈ F [x] be
an irreducible polynomial which divides f with an odd power. Let λ :
K(x) → K(p)∞ be the K-place associated to p, and ε = dim(φF (p))an.
Then we have the following:

(1) For any ak1 , . . . , akε
∈ {a1, . . . , an} such that (φF (p))an ∼=

([ak1 ] ⊥ · · · ⊥ [akε
])F (p), there exist indices i1, . . . , iε ∈ {1, . . . , n}

such that

φ′ ∼= [fak1 , μk1 ] ⊥ · · · ⊥ [fakε
, μkε

] ⊥
(
⊥n

i=1
i �=i1,... ,iε

[ai, νi]
)
,
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where μk1 , . . . , μkε
and νi (i �= i1, . . . , iε) belong to A, the ring of λ.

(2) iW (φ′K(p)) ≥ ε.

(3) φF (p) is quasi-hyperbolic.

Proof. Since F (x)2 ⊂ GF (x)(φF (x)), we may suppose that p2 does not
divide f . Let f ′ ∈ F [x] be such that f = pf ′.

(1) By Corollary 2.9 φF (p) is isotropic, and by Lemma 2.1 (2) there
exist ak1 , . . . , akε

∈ {a1, . . . , an} such that (φF (p))an ∼= ([ak1 ] ⊥ · · · ⊥
[akε

])F (p). We may suppose, possibly after reindexing, that ki = i for
i = 1, . . . , ε.

Claim. There exist indices i1, . . . , iε ∈ {1, . . . , n} such that for any
l ∈ {1, . . . , ε} we have the relation

(Rl) fal =
( l−1∑

i=1

(βl
i)

2fai

)
+ (αl

il
)2ail

+

(
n∑

j=1
j �=i1,... ,il

(αl
j)

2aj

)
,

with the following conditions :

• βl
1, . . . , β

l
l−1 ∈ A.

• αl
j ∈ A for any j �= i1, . . . , il.

• αl
il

is a unit of A.

Before we prove the claim we use it to justify the statement. Without
loss of generality, we may assume in (R1) that α1

j �= 0 for any
j ∈ {1, . . . , n} − {i1}. By using standard relations and (R1) we get

(11) φ′ ∼= [fa1, μ1] ⊥
(
⊥n

j=1
j �=i1

[aj , νj ]

)
,

where {
μ1 = (α1

i1
)−2a−1

i1
t−1
i1

νj = a−1
j t−1

j + (α1
i1

)−2(α1
j )

2a−1
i1
t−1
i1

if j �= i1.

Note that the elements μ1, νj , j �= i1, belong to A since α1
i1

is a unit.
If ε = 1, then the proof is complete. If not, suppose we have for some
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l < ε the isometry

(12) φ′ ∼= [fa1, μ
′
1] ⊥ · · · ⊥ [fal, μ

′
l] ⊥

(
⊥n

j=1
j �=i1,... ,il

[aj , ν
′
j ]

)
,

with μ′
1, . . . , μ

′
l, ν

′
j ∈ A, j �= i1, . . . , il. Without loss of generality,

we may suppose in (Rl+1) that the elements βl+1
1 , . . . , βl+1

l and αl+1
j

are all nonzero, j �= i1, . . . , il+1. Set β = αl+1
il+1

. By using standard
relations, the relation (12) and (Rl+1), we get the following

(13) φ′ ∼= [fa1, μ1] ⊥ · · · ⊥ [fal+1, μl+1] ⊥
(
⊥n

j=1
j �=i1,... ,il+1

[aj , νj ]

)
,

where ⎧⎪⎨
⎪⎩
μj = μ′

j + (βl+1
j )2β−2ν′il+1

if 1 ≤ j ≤ l

μl+1 = β−2ν′il+1

νj = ν′j + (αl+1
j )2β−2ν′il+1

if j �= i1, . . . , il+1.

The elements μ1, . . . , μl+1, νj , j �= i1, . . . , il+1, belong to A since β
is a unit. Now it is clear that if we continue the process we get the
statement.

(2) By statement (1) we have

(14) φ′ ∼= [fak1 , μk1 ] ⊥ · · · ⊥ [fakε
, μkε

] ⊥
(
⊥n

i=1
i �=i1,... ,iε

[ai, νi]
)
,

for some μk1 , . . . , μkε
, νi ∈ A, i �= i1, . . . , iε. On the one hand, the

form φ′ is of good reduction with respect to λ, and its specialization
λ∗(φ′) equals φ′K(p). On the other hand, the form [fak1 , μk1 ] ⊥
· · · ⊥ [fakε

, μkε
] is also of good reduction with respect to λ, and its

specialization equals ε×H since fak1 , . . . , fakε
belong to the maximal

ideal of A. Hence, after taking the specialization in (14) we get
iW (φ′K(p)) ≥ ε.

(3) By statement (2) we have iW (φ′K(p)) ≥ ε. We apply Propo-
sition 3.2 over the field F (p) to get id(φF (p)) ≥ ε, i.e., id(φF (p)) ≥
(dimφ/2). By Corollary 2.13 id(φF (p)) ≤ (dimφ/2). Hence, φF (p) is
quasi-hyperbolic.
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Let us now prove the claim. Since fa1 ∈ DF (x)(φF (x)), there exist by
Proposition 2.2 polynomials α1

1, . . . , α
1
n such that

(15) fa1 =
n∑

i=1

(α1
i )

2ai.

Since p2 does not divide f , it follows from (15) that there exists
i1 ∈ {1, . . . , n} such that p does not divide α1

i1
, and thus α1

i1
is a

unit for A. If ε = 1 then the proof is complete. If not, suppose we have
indices i1, . . . , il such that l < ε and the relations (R1), . . . , (Rl) hold.
Since fal+1 ∈ DF (x)(φF (x)), we get by Proposition 2.2 polynomials
γl+1
1 , . . . , γl+1

n such that

(16) fal+1 =
n∑

i=1

(γl+1
i )2ai.

For any m ∈ {1, . . . , l} we multiply (Rm) by (αm
im

)−2, and we use
successive substitutions from (R1), . . . , (Rl) to get easily from (16)
the following

(17) fal+1 =
( l∑

i=1

(βl+1
i )2fai

)
+
( n∑

j=1
j �=i1,... ,il

(αl+1
j )2aj

)
,

where βl+1
1 , . . . , βl+1

l , αl+1
j ∈ A, j �= i1, . . . , il. Moreover, we claim

that there exists il+1 ∈ {1, . . . , n} − {i1, . . . , il} such that αl+1
il+1

is a
unit for A. If not, we get easily from (17) that the element

f ′al+1 +
l∑

i=1

(βl+1
i )2f ′ai

belongs to the maximal ideal of A, and after taking its image by λ
we deduce that [a1] ⊥ · · · ⊥ [al+1] is isotropic over F (p) (because p
does not divide f ′), and thus (φF (p))an is also isotropic since l < ε and
(φF (p))an ∼= ([a1] ⊥ · · · ⊥ [aε])F (p), a contradiction. Now it is clear that
if we continue the process we get the claim.
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3.2 Proof of Theorem 1.1 in the case n = 1. By Proposition 3.3
(3) the condition p ∈ GF (x)(φF (x)) implies the quasi-hyperbolicity of
φF (p). For the converse, suppose that φF (p) is quasi-hyperbolic. As in
the proof of Corollary 2.13 p = q(x2m

) for some q ∈ F [x] an irreducible
separable polynomial and m ≥ 1. Let α1, . . . , αr be the roots of q in
the algebraic closure of F . For any i ∈ {1, . . . , r}, let βi = 2m√αi and
Si = F (αi) which is a separable extension of F . The quadratic form φSi

is then anisotropic. Moreover, the polynomial x2m

+ αi is irreducible
over Si. Since φF (p) is quasi-hyperbolic and F (p) is isomorphic to
Si(βi), it follows from Corollary 2.12 that x2m

+αi is a norm of φSi(x).
Since p is normed, we have p =

∏r
i=1(x

2m

+ αi). Hence over the field
S = F (α1, . . . , αr)(x), the polynomial p is a norm of φS . In particular,
the form [ai] ⊥ pφ is isotropic over S for any i ∈ {1, . . . , n}. Since
S/F (x) is separable, it follows from Lemma 2.8 that pai ∈ DF (x)(φF (x))
for any i ∈ {1, . . . , n}. Lemma 2.1 (1) implies that p ∈ GF (x)(φF (x)).

4. Proof of Proposition 1.2. We may suppose that p2 does not
divide f . We proceed by induction on n.

(1) The case n = 1. By Proposition 3.3 (3) φF (p) is quasi-hyperbolic,
and by Theorem 1.1 in the case of a polynomial in one variable we
conclude that p ∈ GF (x)(φF (x)).

(2) The case n > 1. We will follow some steps of the induction
argument given by Knebusch in [5, p. 296, (ii) ⇒ (i)]. Set x′ =
(x2, . . . , xn), x = (x1, x

′), L = F (x2, . . . , xn), r the degree of p
considered as a polynomial of L[x1] and ζ ∈ F [x2, . . . , xn] the highest
coefficient of p ∈ L[x1].

(i) Suppose that F is infinite:

• If r = 0. We write f = p(x′)g(x) ∈ F [x1, . . . , xn]. Since p2 does
not divide f , then p does not divide all coefficients of g ∈ L[x1]. Since
F is infinite, there exists c ∈ F such that p(x′) does not divide g(c, x′)
in F [x′]. By Corollary 2.5 p(x′)g(c, x′) is a norm of φL. By induction
we deduce that p(x′) is a norm of φL, and thus it is also a norm of φK .
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• If r > 0. Let p′ = ζ−1p which is a normed polynomial in L[x1].
It is easy to verify that p

′2 does not divide f in L[x1]. By case (1),
the polynomial p′ is a norm of φL(x1), and thus pφL(x1)

∼= ζφL(x1). We
claim that ζ is a norm of φL. In fact, take h any normed irreducible
divisor of ζ in F [x2, . . . , xn] with odd power. Since p is irreducible,
the polynomial h does not divide all coefficients of p ∈ L[x1]. Since F
is infinite, there exists c ∈ F such that h does not divide p(c, x′). By
Corollary 2.5 we have the isometry p(c, x′)φL

∼= ζφL. Hence ζp(c, x′)
is a norm of φL, and by induction hypothesis h is a norm of φL. Since
ζ is normed and any normed irreducible factor of it is a norm of φL,
we deduce that ζ is a norm of φL, and thus p is a norm of φL(x1).

(ii) Suppose that F is finite: As used in [5, p. 297] we change
F by F (t) for some variable t over F . Hence, over F (t) we are in
conditions of (2)(i), and thus p is a norm of φF (t). The claim follows
from Corollary 2.5 by substituting 0 in t.

5. General proof of Theorem 1.1. Let L = F (x2, . . . , xn) (read
L = F if n = 1), and let ζ be the highest coefficient of p considered as
a polynomial of L[x1].

If p is a norm of φL(x1), then we get by Proposition 3.3 (3) that
φ is quasi-hyperbolic over L(p) = F (p). Conversely, suppose that φ is
quasi-hyperbolic over F (p). By Theorem 1.1 in the case of a polynomial
in one variable, the polynomial ζ−1p ∈ L[x1] is a norm of φL(x1). In
particular, ζp is a norm of φL(x1). By Proposition 1.2, p is a norm
of φ.
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