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INTEGRABILITY OF PLANAR POLYNOMIAL
DIFFERENTIAL SYSTEMS THROUGH
LINEAR DIFFERENTIAL EQUATIONS

H. GIACOMINI, J. GINÉ AND M. GRAU

ABSTRACT. In this work we consider rational ordinary
differential equations dy/dx = Q(x, y)/P (x, y), with Q(x, y)
and P (x, y) coprime polynomials with real coefficients. We
give a method to construct equations of this type for which a
first integral can be expressed from two independent solutions
of a second-order homogeneous linear differential equation.
This first integral is, in general, given by a non Liouvillian
function.

We show that all the known families of quadratic systems
with an irreducible invariant algebraic curve of arbitrarily high
degree and without a rational first integral, can be constructed
by using this method. We also present a new example of this
kind of family.

We give an analogous method for constructing rational
equations but by means of a linear differential equation of
first order.

1. Introduction. This paper deals with rational ordinary differen-
tial equations such as

(1)
dy

dx
=

Q(x, y)
P (x, y)

,

where Q(x, y) and P (x, y) are coprime polynomials with real coeffi-
cients. We associate to this rational equation a planar polynomial dif-
ferential system by introducing an independent variable t usually called
time. Denoting by ˙= d/dt, we have

(2) ẋ = P (x, y), ẏ = Q(x, y),
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where (x, y) ∈ R2. This system defines the vector field X =
P (x, y)(∂/∂x) +Q(x, y)(∂/∂y) over R2 and, equivalently, the one-form
ω = Q(x, y) dx − P (x, y) dy. We indistinctively talk about equation
(1) and system (2). Let d be the maximum degree of P and Q. We
say that system (2) is of degree d. When d = 2, we say that (2) is a
quadratic system.

In order to simplify notation, we define R[x, y] as the ring of poly-
nomials in two variables with real coefficients and R(x, y) as the field
of rational functions in two variables with real coefficients, that is, the
quotient field of the previous ring. Analogous definitions stand for R[x]
and R(x).

We have an equation (1) defined in a certain class of functions,
in this case, the rational functions with real coefficients R(x, y) and
we consider the problem whether there is a first integral in another,
possibly larger, class. For instance, as we will discuss later on, Poincaré
stated the problem of determining when a system (2) has a rational first
integral. A Ck function H : U → R such that it is constant on each
trajectory of (2) and it is not locally constant is called a first integral
of system (2) of class k, and the equation H(x, y) = c for a fixed c ∈ R
gives a set of trajectories of the system, but in an implicit way. When
k ≥ 1, these conditions are equivalent to ω∧ dH = 0 and H not locally
constant. The problem of finding such a first integral and the functional
class it must belong to is what we call the integrability problem.

To find an integrating factor or an inverse integrating factor for sys-
tem (2) is closely related to finding a first integral for it. When con-
sidering the integrability problem we also address whether an (inverse)
integrating factor belongs to a certain given class of functions.

Definition 1. Let W be an open set of R2. A function μ : W → R of
class Ck(W), k > 1, that satisfies the linear partial differential equation

(3) ω ∧ dμ = μ dω,

is called an integrating factor of system (2) on W .

It has been shown than an easier function to find which also gives
additional properties for a differential system (2) is the inverse of



PLANAR POLYNOMIAL DIFFERENTIAL SYSTEMS 459

an integrating factor, that is, V = 1/μ, which is called the inverse
integrating factor.

We note that {V = 0} is formed by orbits of system (2). The function
μ = 1/V defines on W \ {V = 0} an integrating factor of system
(2), which allows the computation of a first integral of the system on
W \{V = 0}. The first integral H associated to the inverse integrating
factor V can be computed through the integral H(x, y) =

∫
ω/V, and

the condition (3) for μ = 1/V ensures that this line integral is well
defined.

The inverse integrating factors play an important role in two of the
most difficult open problems of qualitative theory of planar polynomial
vector fields, which are the center problem and 16th Hilbert problem.
In [6], it has been noticed that for many polynomial differential systems
with a center at the origin there is always an inverse integrating factor
V globally defined in all R2, which is usually a polynomial. However,
the first integral for a polynomial differential system with a center at
the origin can be very complicated.

We say that a function f(x, y) is an invariant for a system (2) if
ω ∧ df = kf with k(x, y) a polynomial of degree lower or equal than
d − 1, where d is the degree of the system. This polynomial k(x, y) is
called the cofactor of f(x, y). In the previous equality and all along
this paper we use the convention of identifying the space of functions
over R2 and the space of two-forms over R2. In case f(x, y) = 0 defines
a curve in the real plane, this definition implies that ω ∧ df equals zero
on the points such that f(x, y) = 0. In case f(x, y) is a polynomial we
say that f(x, y) = 0 is an invariant algebraic curve for system (2).

Let us consider f(x, y) = 0 an invariant algebraic curve for system
(2). We will always assume that f(x, y) is an irreducible polynomial
in R[x, y]. Otherwise, it can be shown that each of its factors is an
invariant algebraic curve for system (2). We will denote by n the degree
of the polynomial f(x, y).

In [12], Darboux gives a method for finding an explicit first integral
for a system (2) in the case that d(d + 1)/2 + 1 different irreducible
invariant algebraic curves are known, where d is the degree of the
system. In this case, a first integral of the form H = fλ1

1 fλ2
2 · · · fλr

r ,
where fi(x, y) = 0 is an invariant algebraic curve for system (2) and
λi ∈ C, not all of them null, for i = 1, 2, . . . , r, r ∈ N, can be defined in
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the open set R2\Σ, where Σ={(x, y)∈ R2 | (f1 ·f2 · · · · ·fr)(x, y) = 0}.
The functions of this type are called Darboux functions. We remark
that, particularly, if λi ∈ Z, for all i = 1, 2, . . . , r, H is a rational first
integral for system (2). In this sense Jouanoulou [15], showed that if
at least d(d + 1) + 2 different irreducible invariant algebraic curves are
known, then there exists a rational first integral.

The main fact used to prove Darboux’s theorem, and Jouanoulou’s
improvement, is that the cofactor corresponding to each invariant
algebraic curve is a polynomial of degree ≤ d − 1. Invariant functions
can also be used in order to find a first integral for the system. This
observation permits a generalization of Darboux’s theory which is given
in [14] where, for instance, nonalgebraic invariant curves with an
algebraic cofactor for a polynomial system of degree 4 are presented. In
our work, we give other families of systems with such invariant curves.

Christopher, in [9], studies the multiplicity of an invariant algebraic
curve and gives the definition for exponential factor, which is a partic-
ular case of invariant for system (2).

Definition 2. Let h, g be two coprime polynomials. The function
eh/g is called an exponential factor for system (2) if for some polynomial
k of degree at most d − 1, where d is the degree of the system, the
following relation is fulfilled: ω ∧ d

(
eh/g

)
= keh/g. As before, we say

that k(x, y) is the cofactor of the exponential factor eh/g.

We note that an exponential factor eh/g does not define an invariant
curve, but the next proposition, proved in [9], gives the relationship
between both notions.

Proposition 3 [9]. If F = eh/g is an exponential factor and g is not
a constant, then g = 0 is an invariant algebraic curve, and h satisfies
the equation ω ∧ dh = (hkg + gkF ) where kg and kF are the cofactors
of g and F , respectively.

All these previous results are closely related to a result of Singer
[25] which represents an important progress in the resolution of the
integrability problem when considering first integrals for a system (2)
in the class of Liouvillian functions. Roughly speaking, we can define
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a Liouvillian function or a function which can be expressed by means
of quadratures, as a function constructed from rational functions using
composition, exponentiation, integration, and algebraic functions. A
precise definition of this class of functions is given in [25].

Theorem 4 [25]. Let us consider the polynomial one-form ω =
Q dx − P dy related to system (2). System (2) has a Liouvillian first
integral if, and only if, ω has an inverse integrating factor of the form
V = exp

∫
ξ, where ξ is a closed rational one-form.

We notice that the conditions on the function V given in this theorem
can be restated as dω = ξ ∧ ω and dξ = 0.

Taking into account Theorem 4, Christopher [10] gives the following
result, which makes precise the form of the inverse integrating factor.

Theorem 5 [10]. If system (2) has an inverse integrating factor of
the form exp

∫
ξ with dξ = 0 and ξ = ξ1 dx+ξ2 dy where ξi, i = 1, 2, are

rational functions in x and y, then there exists an inverse integrating
factor of system (2) of the form

V = exp{D/E}
∏

Cli
i ,

where D, E and the Ci are polynomials in x and y, and li ∈ C.

Theorem 5 states that the search for Liouvillian first integrals can
be reduced to the search of invariant algebraic curves and exponential
factors.

In [21], Poincaré stated the following problem concerning the inte-
gration of an equation (1): Give conditions on the polynomials P and
Q to recognize when there exists a rational first integral. As the same
Poincaré noticed, a sufficient condition to solve this problem consists on
finding an upper bound for the degree of the invariant algebraic curves
for a given system (2). From Darboux’s result, it is known that for ev-
ery polynomial vector field, there exists an upper bound for the possible
degrees of irreducible invariant algebraic curves. However, it is a hard
problem to explicitly determine such an upper bound. Some bounds
have been given under certain conditions on the invariant curves, see
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the work of Cerveau and Lins Neto [5], or on the local behavior of
critical points, see Carnicer’s work [4].

In this sense, Lins Neto conjectured [16] that a polynomial system
(2) of degree d with an invariant algebraic curve of degree high enough
(where this bound only depends on d) would have a rational first in-
tegral. This conjecture has been shown to be false by several coun-
terexamples. Moulin-Ollagnier [19] gives a family of quadratic Lotka-
Volterra systems, each with an invariant algebraic curve of degree 2�,
where � is the parameter of the family, without rational first integral.
A simpler example is given by Christopher and Llibre in [11]. In [8]
a family of quadratic systems with an invariant algebraic curve of ar-
bitrarily high degree without a Darboux first integral nor a Darboux
inverse integrating factor is given. All these counterexamples exhibit a
Liouvillian first integral.

The natural conjecture at this step, also given by Lins Neto, see
[17], after the counterexample of Moulin-Ollagnier appeared, is that
a polynomial system (2) of degree d with an invariant algebraic curve
of degree high enough (where this bound only depends on d) has a
Liouvillian first integral.

In this work we show a relationship between solutions of a class of
systems (2) and linear homogeneous ordinary differential equations of
order 2 of the form

(4) A2(x) w′′(x) + A1(x) w′(x) + A0(x) w(x) = 0,

where x ∈ R, w′(x) = dw(x)/dx and w′′(x) = dw′(x)/dx. We only
consider equations (4) where Ai(x) ∈ R[x] for 0 ≤ i ≤ 2 and A2(x) �≡ 0.

By means of a change of variable we rewrite an equation (4) as a
polynomial differential system such that it has an invariant related to
w(x). In case w(x) is a polynomial we get an invariant algebraic curve.

Moreover, we give an explicit first integral for all the systems built
up by this method by means of two independent solutions of equation
(4).

We give analogous results for a linear homogeneous ordinary differ-
ential equation of order 1 such as

(5) w′(x) + A(x)w(x) = 0,
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where x ∈ R, w′(x) = dw(x)/dx and A(x) ∈ R(x). All these results
are given in Section 2.

In Section 3 we consider all the families of quadratic systems with
an algebraic curve of arbitrarily high degree known until the moment
of composition of this paper and we show that they all belong to the
construction explained in Section 2. The families of quadratic systems
with an algebraic curve of arbitrarily high degree studied in this paper
are the ones appearing in [7, 8, 11, 19] and one example more first
appearing in this work. This new example consists of a biparametrical
family of quadratic systems, which we give an explicit expression of a
first integral for, such that when one of the parameters is a natural
number, say n, the system exhibits an irreducible invariant algebraic
curve of degree n.

We give the explicit expression for the first integral of a certain
system (2) by means of invariant functions for it, and applying the
Generalized Darboux’s theory as explained in [14] where a new kind
of first integrals, not only the Liouvillian ones as in classical theories,
is described. We exemplify this result with the families of systems
depending on parameters described in Section 3. We remark that the
first integrals that we give in Section 2 are not, in general, of Liouvillian
type. However, these first integrals are Liouvillian at the values of
parameters which correspond to the systems with algebraic solutions.
In the subsection 3.4, we give an example of a 3-parameter family of
quadratic systems with a center at the origin which can be constructed
by the method appearing in Section 2 from an equation (5).

A question suggested by these examples is whether there are polyno-
mial systems which are not reversible nor Liouvillian integrable which
have a center and can be integrated by means of Theorem 6, see Sec-
tion 2. The work [3] is related to this question as it gives an example
of an analytic system, not polynomial, with a center which is not re-
versible nor Liouvillian integrable. All the known families of polynomial
vector fields with a center at the origin are either Liouvillian integrable
or reversible, see [27, 28] for the definition of reversibility. In [27, 28],
Żo�la̧dek classifies all the reversible cubic systems with a center. The
reversible systems may have a first integral not given by Liouvillian
functions or no explicit form of a first integral may be known. For
instance the reversible system ẋ = −y + x4, ẏ = x has a first integral
composed by Airy functions, see [14], and no Liouvillian first integral
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exists. The system ẋ = −y3 + x2y2/2, ẏ = x3 is an example given by
Moussu, see [20], which has a center at the origin since it is a mon-
odromic and reversible singular point and no explicit first integral is
known for this system.

Since some examples of polynomial systems, which can be integrated
by the method described in Section 2, appear after a birational trans-
formation, another suggested open question is if all the polynomial
systems with a center are birationally equivalent to one derived from
Theorem 6 or from Theorem 11.

2. Homogeneous linear differential equations of order ≤ 2
and planar polynomial systems. Let us consider a homogeneous
linear differential equation of order 2:

(6) A2(x) w′′(x) + A1(x) w′(x) + A0(x) w(x) = 0,

where w′(x) = dw(x)/dx, w′′(x) = dw′(x)/dx, Ai(x)∈R[x], i = 0, 1, 2,
and A2(x) �≡ 0.

Theorem 6. Given g(x, y) = g0(x, y)/g1(x, y) with gi(x, y) ∈
R[x, y], g1(x, y) �≡ 0 and ∂g/∂y �≡ 0, each nonzero solution w(x) of
equation (6) is related to a finite number of solutions y = y(x) of the
rational equation

(7)
dy

dx

=
A0(x)g2

1 +A1(x)g1g0+A2(x)g2
0 +A2(x) (g1(∂g0/∂x)−g0(∂g1/∂x))

A2(x) (g0(∂g1/∂y) − g1(∂g0/∂y))
,

by the functional change dw/dx = g(x, y)w(x), which implicitly defines
y as a function of x.

Proof. Let us consider equation (6) and the functional change
dw/dx = g(x, y)w(x) where y = y(x), that is, y is implicitly defined
as a function of x. This change may also be written as w(x) =
exp(

∫ x

x0
g(s, y(s)) ds), where x0 is any constant, and it is injective. We

see that it is not necessarily bijective unless the maximum degree of
g1(x, y) and g0(x, y) in the variable y equals 1. But it defines a finite
number of functions y(x).
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By this functional change, equation (6) becomes

w(x)
(

A0(x) + g A1(x) + g2A2(x) + A2(x)
dy

dx

∂g

∂y
+ A2(x)

∂g

∂x

)
= 0.

We have that w(x) is a nonzero solution of (6) so this equation
is equivalent to the ordinary differential equation of first order (7).
Therefore, each non-zero solution w(x) of equation (6) corresponds to
a finite number of solutions y = y(x) of the planar polynomial system
(7).

Theorem 7. We consider the 1-form related to equation (7)

ω =
(
A0(x)g2

1 + A1(x)g1 g0 + A2(x)g2
0 + A2(x)

(
g1

∂g0

∂x
− g0

∂g1

∂x

))
dx

− A2(x)
(

g0
∂g1

∂y
− g1

∂g0

∂y

)
dy.

Let w(x) be any nonzero solution of equation (6). Then the curve
defined by f(x, y) = 0, with f(x, y) := g1(x, y)w′(x) − g0(x, y)w(x) is
invariant for system (7) and has the polynomial cofactor

k(x, y) =
(

A0(x)
∂g1

∂y
+ A1(x)

∂g0

∂y

)
g1 + A2(x) g0

∂g0

∂y

+ A2(x)
(

∂g1

∂y

∂g0

∂x
− ∂g0

∂y

∂g1

∂x

)
.

Proof. Let us consider f(x, y) as defined above, and let us compute
ω ∧ df :

ω ∧ df =
(

∂g1

∂x
w′(x) + g1w

′′(x) − ∂g0

∂x
w(x) − g0w

′(x)
)

A2(x)

·
(

g0
∂g1

∂y
− g1

∂g0

∂y

)
+

(
∂g1

∂y
w′(x) − ∂g0

∂y
w(x)

)

·
[
A0(x)g2

1 +A1(x)g1 g0+A2(x)g2
0 +A2(x)

(
g1

∂g0

∂x
− g0

∂g1

∂x

)]
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= g1

(
g0

∂g1

∂y
− g1

∂g0

∂y

)
A2(x) w′′(x)

+ g1 (A1(x) g0 + A0(x) g1)
(

∂g1

∂y
w′(x) − ∂g0

∂y
w(x)

)

+
(

A2(x)
(

∂g0

∂x

∂g1

∂y
− ∂g1

∂x

∂g0

∂y

)
+ A2(x) g0

∂g0

∂y

)
× (g1w

′(x) − g0w(x))

Since w(x) is a solution of (6), we can substitute A2(x)w′′(x) by
−A1(x)w′(x) − A0(x)w(x). Therefore,

ω ∧ df =
[(

A0(x)
∂g1

∂y
+ A1(x)

∂g0

∂y

)
g1

+ A2(x) g0
∂g0

∂y
+ A2(x)

(
∂g1

∂y

∂g0

∂x
− ∂g0

∂y

∂g1

∂x

)]
f(x, y).

Then, we have that the function f(x, y) is an invariant for system (7)
and has the written polynomial cofactor.

Theorem 8. Let {w1(x), w2(x)} be a set of fundamental solutions
of equation (6). We define fi(x, y) := g1(x, y)w′

i(x) − g0(x, y)wi(x),
i = 1, 2. Then, system (7) has a first integral H(x, y) defined by

H(x, y) :=
f1(x, y)
f2(x, y)

=
g1(x, y) w′

1(x) − g0(x, y) w1(x)
g1(x, y) w′

2(x) − g0(x, y) w2(x)
.

Proof. By Theorem 7, we have that fi(x, y) := g1(x, y)w′
i(x) −

g0(x, y)wi(x), i = 1, 2, are invariants for system (7), both with the
polynomial cofactor

k(x, y) =
(

A0(x)
∂g1

∂y
+ A1(x)

∂g0

∂y

)
g1 + A2(x) g0

∂g0

∂y

+ A2(x)
(

∂g1

∂y

∂g0

∂x
− ∂g0

∂y

∂g1

∂x

)
.

We remark that f1/f2 cannot be constant since the two solutions wi(x),
i = 1, 2, are independent. Therefore,

ω ∧ dH =
f2(ω ∧ df1) − f1(ω ∧ df2)

f2
2

=
f2kf1 − f1kf2

f2
2

≡ 0.
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So, H(x, y) is a first integral of system (7).

Lemma 9. The function defined by

q(x) := A2(x) exp
(∫ x

x0

A1(s)
A2(s)

ds

)

is an invariant for system (7), with cofactor

(A1(x) + A′
2(x))

(
g0

∂g1

∂y
− g1

∂g0

∂y

)
.

We notice that q(x) is a product of invariant algebraic curves and
exponential factors for system (8), with complex exponents.

Proof. We compute ω ∧ dq and we have

ω ∧ dq = ω ∧ A1(x) + A′
2(x)

A2(x)
q dx

= (A1(x) + A′
2(x))

(
g0

∂g1

∂y
− g1

∂g0

∂y

)
q.

We notice that this algebraic cofactor has degree ≤ d−1 provided that
system (7) has degree d.

Proposition 10. We use the same notation as in Theorem 6.
Let w(x) be a nonzero solution of (6), and we define f(x, y) :=
w′(x) − g(x, y)w(x) and q(x) as in Lemma 9. The function V (x, y) =
q(x)f(x, y)2 is an inverse integrating factor of system (7).

Proof. We only need to verify that ω ∧ dV + V dω = 0. We have that

dω = −
[
2 A0(x) g1

∂g1

∂y
+ A1(x)

(
g0

∂g1

∂y
+ g1

∂g0

∂y

)
+ 2 A2(x) g0

∂g0

∂y

+2 A2(x)
(

∂g1

∂y

∂g0

∂x
− ∂g0

∂y

∂g1

∂x

)
+ A′

2(x)
(

g0
∂g1

∂y
− g1

∂g0

∂y

)]
.
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Then,

ω ∧ dV = ω ∧ (2 q f df + f2 dq)
= 2 q f (ω ∧ df) + f2 (ω ∧ dq)

=
[
2 A0(x) g1

∂g1

∂y
+ 2 A1(x) g1

∂g0

∂y

+ 2 A2(x) g0
∂g0

∂y
+2 A2(x)

(
∂g1

∂y

∂g0

∂x
− ∂g0

∂y

∂g1

∂x

)

+ A1(x) g0
∂g1

∂y
− A1(x) g1

∂g0

∂y

+A′
2(x)

(
g0

∂g1

∂y
− g1

∂g0

∂y

)]
V

=
[
2 A0(x) g1

∂g1

∂y
+ A1(x)

(
g0

∂g1

∂y
+ g1

∂g0

∂y

)

+ 2 A2(x) g0
∂g0

∂y
+2 A2(x)

(
∂g1

∂y

∂g0

∂x
− ∂g0

∂y

∂g1

∂x

)

+A′
2(x)

(
g0

∂g1

∂y
− g1

∂g0

∂y

)]
V

= −V dω.

We remark that Theorem 8 gives, in general, a non-Liouvillian first
integral for the planar polynomial systems (7). In Section 3 we analyze
some polynomial systems constructed from Theorem 8 that have no
Liouvillian first integral.

We consider now a linear homogeneous ordinary differential equation
of order 1 such as

(8) w′(x) + A(x) w(x) = 0,

where x ∈ R, w′(x) = dw(x)/dx and A(x) = A0(x)/A1(x) with
Ai(x) ∈ R[x] and A1(x) �≡ 0. We give analogous results for this case
whose proofs are not given to avoid non-useful repetitions.

Theorem 11. Given g(x, y) = g0(x, y)/g1(x, y) with gi(x, y) ∈
R[x, y], g1(x, y) �≡ 0 and ∂g/∂y �≡ 0 and h(x) = h0(x)/h1(x) with
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hi(x) ∈ R[x] and h1(x) �≡ 0, each nonzero solution w(x) of equation
(8) is related to a finite number of solutions y = y(x) of the rational
equation

(9)
dy

dx

=
A1(x)h0(x)g2

1−A0(x)h1(x)g0g1−A1(x)h1(x) (g1(∂g0/∂x)−g0(∂g1/∂x))

A1(x) h1(x) (g1(∂g0/∂y) − g0(∂g1/∂y))
,

by the functional change

w(x) = g(x, y) − exp
(
−

∫ x

0

A(s) ds

)[∫ x

0

exp
(∫ s

0

A(r) dr

)
h(s) ds

]
.

Theorem 12. We consider the 1-form related to equation (9)

ω =
[
A1(x)h0(x)g2

1−A0(x)h1(x)g0g1−A1(x)h1(x)
(

g1
∂g0

∂x
−g0

∂g1

∂x

)]
dx

− A1(x) h1(x)
(

g1
∂g0

∂y
− g0

∂g1

∂y

)
dy.

Let w(x) be any nonzero solution of equation (8), that is, for C ∈
R − {0} we have w(x) = C exp

(− ∫ x

0
A(s) ds

)
.

Then, the function

f(x, y) := g1 w(x) − g0

+ g1 exp
(
−

∫ x

0

A(s) ds

)[∫ x

0

exp
(∫ s

0

A(r) dr

)
h(s) ds

]

is invariant for the polynomial system (9), with the polynomial cofactor

k(x, y) = −A0(x) h1(x) g1
∂g0

∂y
+ A1(x) h0(x) g1

∂g1

∂y

+ A1(x) h1(x)
(

∂g0

∂y

∂g1

∂x
− ∂g1

∂y

∂g0

∂x

)
.

Lemma 13. The function q(x, y) = g1(x, y) exp
(∫ x

0
−A(s) ds

)
is an

invariant for system (9) with the same polynomial cofactor as f(x, y).
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Theorem 14. We use the same notation as in Theorem 12 and
Lemma 13. The function H(x, y) defined by H(x, y) := f(x, y)/q(x, y)
is a first integral for system (9) and the function V (x, y) := A1(x)×
h1(x)g1(x, y) q(x, y) is an inverse integrating factor.

We remark that H(x, y) is a Liouvillian function and, therefore, a
system (9) has always a Liouvillian first integral.

In Section 3 we give an example of a 3-parameter family of quadratic
systems with a center at the origin which can be constructed following
Theorem 11.

3. Examples of families of quadratic systems.

3.1 Quadratic systems with invariant algebraic curves of
arbitrarily high degree linear in one variable. We first consider
the examples of families of quadratic systems with algebraic solutions
of arbitrarily high degree appearing in [7]. In that work all the
invariant algebraic curves linear in the variable y, that is, defined
by f(x, y) = p1(x)y + p2(x), where p1 and p2 are polynomials, are
determined.

The example appearing in [8] is a further study of an example
appearing in [7], and the example given in [11] is also described in [7].
We show that all these quadratic systems, with an invariant algebraic
curve of arbitrary degree can be constructed by the method explained
in the previous section. Moreover, we give the explicit expression of a
first integral for any value of the parameter n, even in the case when
n is not a natural number. If n is a natural number, we obtain the
invariant algebraic curves of arbitrary degree and a Liouvillian first
integral. However, when n /∈ N we obtain polynomial systems with a
non Liouvillian first integral.

As it is shown in [7], all these families of systems can be written, after
an affine change of variables if necessary, in the form

(10)
ẋ = Ω1(x),

ẏ = (2n +1) L′(x) Ω1(x) − n(n+1)
2

Ω1(x) Ω′′
1(x) − L(x)2+ y2,

where Ω1(x) is any quadratic polynomial, L(x) is any linear polynomial
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and ′ = d/dx. We have that system (10) has an invariant curve
f(x, y) = 0, where f(x, y) := p1(x)y + Ω1(x)p′1(x) − L(x)p1(x), with a
cofactor y + L(x), where p1(x) is a solution of the second order linear
differential equation

(11)
Ω1(x) w′′(x) + (Ω′

1(x) − 2L(x)) w′(x)

+
n

2
(4 L′(x) − (n + 1) Ω′′

1(x)) w(x) = 0.

In [7] it is shown that, in case n ∈ N, an irreducible polynomial
of degree n belonging to a family of orthogonal polynomials is a
solution of equation (11). For instance, when Ω1(x) = 1, we get the
Hermite polynomials, when Ω1(x) = x, we get the Generalized Laguerre
polynomials and when Ω1(x) = 1 − x2, we get the Jacobi polynomials.

We consider again the general case in which n ∈ R, and we define
A2(x) := Ω1(x), A1(x) := Ω′

1(x)−2L(x) and A0(x) := n(4L′(x)− (n +
1)Ω′′

1(x))/2. We have the linear differential equation (11) in the same
notation as in Theorem 6 and we consider

g(x, y) :=
L(x) − y

A2(x)
.

The system obtained by the method explained in Section 2 exactly
coincides with system (10). We consider a set of fundamental solutions
of equation (11) {w1(x), w2(x)} and applying Theorem 8, we have a
first integral for system (10) for any value of the parameter n ∈ R.

In case n ∈ N we have that w1(x) degenerates to a polynomial and
w′

1(x) − g(x, y)w1(x) = 0 coincides with the algebraic curve given in
the work [7].

We explicitly give the first integral for each of the families described
in [7] and for n ∈ R. We have that A2(x) is a non null quadratic
polynomial in this case and, depending on its number of roots, we can
transform it by a real affine change of variable to one of the following
forms: A2(x) = 1, x, x2, 1 − x2, 1 + x2.

If A2(x) = 1, we can choose L(x) = x by an affine change of
coordinates. A set of fundamental solutions {w1(x), w2(x)} for (11)
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with n ∈ R is

w1(x) = 2n
√

π

(
1

Γ ((1 − n)/2) 1F1

(
− n

2
;

1
2

; x2

)
− 2x

Γ (−n/2)

× 1F1

(
1 − n

2
;

3
2

; x2

))
,

w2(x) = 2n
√

π

(
1

Γ ((1 − n)/2) 1F1

(
− n

2
;

1
2

; x2

)
+

2x

Γ (−n/2)

× 1F1

(
1 − n

2
;

3
2

; x2

))
,

where Γ(x) is the Euler’s-Gamma function defined by Γ(x) =∫ ∞
0

tx−1e−t dt and 1F1(a; b; x) is the confluent hypergeometric function
defined by the series

1F1(a; b; x) =
∞∑

k=0

(a)k

(b)k

xk

k!
,

with (a)k = a(a+1)(a+2) · · · (a+k−1), the Pochhammer symbol. See
[1] for further information about these functions. So, a first integral
for this system is the expression given in Theorem 8: H(x, y) :=
f1(x, y)/f2(x, y), where

f1,2(x, y) = ±Γ
(

1 − n

2

) [
6 (xy − x2 + 1) 1F1

(
1 − n

2
;

3
2

; x2

)

− 4(n − 1)x2
1F1

(
3 − n

2
;

5
2

; x2

)]

+ 3Γ
(
−n

2

)
×

[
2nx 1F1

(
1 − n

2
;

3
2

; x2

)
+ (x − y) 1F1

(
− n

2
;

1
2

; x2

)]
.

When n ∈ N, we have that (11) corresponds to the equation for
Hermite polynomials and w1(x) coincides with the Hermite polynomial
of degree n. The invariant algebraic curve given in [7] corresponds to
f1(x, y) = 0.
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If A2(x) = x, we choose L(x) = (x − α)/2, where α is an arbitrary
real constant, and a set of fundamental solutions for (11) is:

w1(x) =
(α + 1)n

Γ(n + 1) 1F1 (−n; α + 1; x) ,

w2(x) = x−α
1F1 (−α − n; 1 − α; x) .

The first integral for this system is H(x, y) = xαh1(x, y)/h2(x, y) with

h1(x, y) = (2y − x + α) (α + 1) 1F1 (−n; α + 1; x)
− 2 n x 1F1 (1 − n; α + 2; x) ,

h2(x, y) = (2y − x + α) (α − 1) 1F1 (−α − n; 1 − α; x)
− 2 (α + n) x 1F1 (1 − α − n; 2 − α; x) .

The first integral as given in Theorem 8 is f1(x, y)/f2(x, y) and we
notice that H(x, y) = cf1(x, y)/f2(x, y) where c ∈ R− {0}. We do not
write c in terms of the parameters of the system to simplify notation.

When n ∈ N, we have that (11) corresponds to the equation of gener-
alized Laguerre polynomials and w1(x) coincides with the generalized
Laguerre polynomial L

(α)
n . The invariant algebraic curve given in [7]

corresponds to f1(x, y) = 0, where f1(x, y) := w′
1(x) − g(x, y)w1(x).

If A2(x) = x2, the birrational transformation yet described in [7],
x = 1/X and y = (1/X)(1/2 − Y ) makes this case equivalent to the
previous one.

If A2(x) = 1−x2, we choose L(x) = ((α+β)x+(α−β))/2, where α, β
are two arbitrary real constants, and a set of fundamental solutions for
(11) is:

w1(x) =
(α + 1)n

Γ(n + 1) 2F1

(
−n, 1 + α + β + n; α + 1;

1 − x

2

)
,

w2(x) = (1 − x)−α
2F1

(
−α − n, 1 + β + n; 1 − α;

1 − x

2

)
,

where 2F1 (a1, a2; b; x) is the hypergeometric function defined by

2F1 (a1, a2; b; x) =
∞∑

k=0

(a1)k(a2)k

(b)k

xk

k!
.
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The first integral given in Theorem 8 is H(x, y) = (1 − x)αh1(x, y)/
h2(x, y), where

h1 = n (1 + α + β + n) (x2 − 1)

× 2F1

(
1 − n, 2 + α + β + n; 2 + α;

1 − x

2

)
+ (α + 1) ((α + β)x + (α − β) − 2y)

× 2F1

(
−n, 1 + α + β + n; 1 + α;

1 − x

2

)
,

h2 = (α − 1) ((α − β)x + (α + b) + 2y)

× 2F1

(
−α − n, 1 + β + n; 1 − α;

1 − x

2

)
+ (α + n) (1 + β + n) (x2 − 1)

× 2F1

(
1 − α − n, 2 + β + n; 2 − α;

1 − x

2

)
.

The first integral as given in Theorem 8 is f1(x, y)/f2(x, y), and we
notice that H(x, y) = cf1(x, y)/f2(x, y) where c ∈ R − {0}. As before,
we do not write c in terms of the parameters of the system to simplify
notation.

When n ∈ N, we have that (11) corresponds to the equation of
Jacobi polynomials and w1(x) coincides with the Jacobi polynomial
P

(α,β)
n (x), and the invariant algebraic curve given in [7] corresponds to

f1(x, y) = 0, where f1(x, y) := w′
1(x) − g(x, y)w1(x).

If A2(x) = 1+x2 the complex affine change of variable x = iX makes
this case equivalent to the previous one, as it is shown in [7].

We have re-encountered by this method all the examples appearing in
[7] from a unified point of view. In addition, in this work we have given
an explicit expression of a first integral for each case and for any value
of the parameter n ∈ R. To this end, we have found invariants for the
system and we have applied the generalization of Darboux’s method
as explained in [14] to be able to construct a first integral which is, in
general, of non-Liouvillian type.
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3.2 A Lotka-Volterra system. As it has been explained in the
introduction, the first counterexample to Lins Neto conjecture was
given by Moulin-Ollagnier in [19]. His example is a quadratic system
with two invariant straight lines and an irreducible invariant algebraic
curve f(x, y) = 0 of degree 2� when � ∈ N. This gives a family of
systems depending on the parameter � which have a Darboux inverse
integrating factor when � ∈ N but no rational first integral. The
method used in [19] only shows the existence of such invariant algebraic
curve but no closed formula to compute it is given. We give an explicit
expression for an invariant by means of Bessel functions for any value
of � ∈ R − {1/2} which, in the particular case � ∈ N, degenerates to
the algebraic curve encountered in [19].

We show that, after a birrational transformation, this example co-
incides with a system constructed with the method explained in Sec-
tion 2. A birrational transformation is a rational change of variables
whose inverse is also rational. This kind of transformation brings poly-
nomial systems such as (2) to polynomial systems and do not change
the Liouvillian or non-Liouvillian character of the first integral.

Let us consider the system appearing in [19] but assuming that
� ∈ R − {1/2}

(12) ẋ = x
(

1 − x

2
+ y

)
, ẏ = y

(
−2� + 1

2� − 1
+

x

2
− y

)
.

We make the birrational transformation

x =
4uv

1 − 2�
, y =

1 − 2�

4v
,

whose inverse is
u = xy, v =

1 − 2�

4y
.

By this transformation, system (12) becomes

(13) u̇ =
2u

1 − 2�
, v̇ =

1 − 2�

4
+

2� + 1
2� − 1

v +
2u

2� − 1
v2.

We notice that the equation for the orbits satisfied by the variable v as
a function of u is a Ricatti equation.
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Let us consider g(u, v) := v and the linear differential equation of
order 2 given by

(14) u w′′(u) +
1
2

(1 + 2�) w′(u) − 1
8

(1 − 2�)2 w(u) = 0.

Applying the method given in the previous section, this linear differ-
ential equation gives system (13) modulus a change of time.

A set of two fundamental solutions for equation (14) is given by

(15)
w1(u) = u(1−2�)/4 I(1/2)−�

(
(1 − 2�)

√
u

2

)
,

w2(u) = u(1−2�)/4 I�−(1/2)

(
(1 − 2�)

√
u

2

)
,

provided that � is not of the form (1−2r)/2, with r an integer number,
because in this case w1 and w2 are linearly dependent. The function
Iν(u) is the Modified Bessel function defined by the solution of the
second order differential equation

(16) u2 w′′(u) + u w′(u) − (u2 + ν2) w(u) = 0,

and being bounded when u → 0 in any bounded range of arg (u) with
Re(u) ≥ 0. See [1] for further information about this function.

Hence, by Theorem 8 we have that H(u, v) = f1(u, v)/f2(u, v), where
fi(u, v) := w′

i(u) − vwi(u) for i = 1, 2, is a first integral for system
(13). For the sake of simplicity, we consider the following renaming of
the independent variable u = 2z2/(1 − 2�)2. This is not a birrational
transformation and that’s why we only use it to simplify notation. The
function H becomes:

(17) H =
(1 − 2�)2I((1+2�)/2)(z) − 4vz I((2�−1)/2)(z)

(1 − 2�)2I−((1+2�)/2)(z) − 4vz I−((2�−1)/2)(z)
.

By Theorem 7 we have that fi(u, v), i = 1, 2 are invariants with the
same polynomial cofactor k for system (13), so the curve f(u, v) = 0
given by f(u, v) = πz2�+1(f2

1 (u, v) − f2
2 (u, v)) is also an invariant. We

multiply by π only for esthetic reasons.
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Now we assume that � ∈ N and we show that f = 0 defines an
invariant algebraic curve. To this end we use the following formulas
appearing in [1, 26]. When ν − 1/2 = n ∈ Z, we define c(n) =
−nπ

√−1/2 and the following relation is satisfied:

(18)

Iν(z) = − 1√
z

ec(n)

√
2
π

⎧⎨
⎩sinh (c(n) − z)

�(2|ν|−1)/4�∑
k=0

× (|ν| + 2k − (1/2))!
(2k)!(|ν| − 2k − (1/2))!(2z)2k

+ cosh (c(n) − z)

×
�(2|ν|−3)/4�∑

k=0

(|ν| + 2k + (1/2))!
(2k + 1)!(|ν| − 2k − (3/2))!(2z)2k+1

}
,

where 
x� stands for the greatest integer k such that k ≤ x and |ν|
stands for the absolute value.

From the former equation we obtain the following two equalities, with
ν − (1/2) = n ∈ Z and � ∈ N,

(19)

I2
ν (z) − I2

−ν(z) =
2
πz

n∑
k=0

(−1)k+1 (2n − k)!(2n − 2k)!
k!((n − k)!)2

(
1
2z

)2(n−k)

,

(20)

I�+(1/2)(z) I�−(1/2)(z) − I−(�+(1/2))(z) I−(�−(1/2))(z)

= (−1)� 2
πz

⎡
⎣
⎛
⎝��/2�∑

i=0

(� + 2i)!
(2i)!(� − 2i)!

(
1
2z

)2i
⎞
⎠

×
⎛
⎝�(�−2)/2�∑

j=0

(� + 2j)!
(2j + 1)!(� − 2j − 2)!

(
1
2z

)2j−1
⎞
⎠

−
⎛
⎝�(�−1)/2�∑

i=0

(� + 2i + 1)!
(2i + 1)!(� − 2i − 1)!

(
1
2z

)2i−1
⎞
⎠

×
⎛
⎝�(�−1)/2�∑

j=0

(� + 2j − 1)!
(2j)!(� − 2j − 1)!

(
1
2z

)2j
⎞
⎠

⎤
⎦ .
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Then, we have that f1(z, v) = (1−2�)2 I�+(1/2)(z)−4vz I�−(1/2)(z) and
f2(z, v) = (1 − 2�)2 I−(�+(1/2))(z) − 4vz I−(�−(1/2))(z), and we write f
arranged in powers of v:

f(z, v) = πz2�+1
(

(1 − 2�)4(I2
�+(1/2)(z) − I2

−(�+(1/2))(z))

− 8vz(1 − 2�)2(I�+(1/2)(z) I�−(1/2)(z)
− I−(�+(1/2))(z) I−(�−(1/2))(z))

+ 16v2z2(I2
�−(1/2)(z) − I2

−(�−(1/2))(z))
)
.

Let us consider each coefficient of v in f(z, v) separately, and we will
show that it is an even polynomial in the variable z. The coefficient in
f(z, v) of v0 is:

πz2�+1(1 − 2�)4(I2
�+(1/2)(z) − I2

−(�+(1/2))(z)),

which by equation (19) is an even polynomial in the variable z of degree
2�. The coefficient in f(z, v) of v2 is:

16πz2�+3(I2
�−(1/2)(z) − I2

−(�−(1/2))(z)),

which also by equation (19) is an even polynomial in the variable z of
degree 2� + 2. Finally, the coefficient in f(z, v) of v1 is:

(21)

8π(1 − 2�)2z2�+2(I�+(1/2)(z)I�−(1/2)(z) − I−(�+(1/2))(z)I−(�−(1/2))(z)),

which by equation (20) is an even polynomial in the variable z of degree
2�.

Hence, we have that f(z, v) is an even polynomial in the variable z
of total degree 2� + 4. When rewriting z = (1 − 2�)

√
u/

√
2 we have

that f(u, v) is a polynomial of total degree � + 2 which is irreducible.
The fact of being irreducible is easily seen because it is a polynomial
of degree two in v and it cannot be decomposed in linear factors (the
discriminant is not a polynomial raised to an even power) and the
coefficients of v0 and v2 do not have any root in common.



PLANAR POLYNOMIAL DIFFERENTIAL SYSTEMS 479

Undoing the birrational change of variables we get that f(x, y) is an
irreducible polynomial of degree 2� given by:

f(x, y)

= x�+(1/2) y�−(1/2)
[
2y

(
I2
�+(1/2)(z) − I2

−(�+(1/2))(z)
)

− 2
√

2
√

xy
(
I�+(1/2)(z) I�−(1/2)(z) − I−(�+(1/2))(z) I−(�−(1/2))(z)

)
+ x

(
I2
�−(1/2)(z) − I2

−(�−(1/2))(z)
)]

,

where z is the same variable as before, that is, z = ((1 − 2�)
√

xy)/
√

2.

By equation (17) we can write the first integral for system (12) for
any value of � ∈ R − {(1/2)(1 − 2r) | r ∈ N}:

H(x, y) =
√

2y I((1+2�)/2)(z) −√
x I((2�−1)/2)(z)√

2y I−((1+2�)/2)(z) −√
x I−((2�−1)/2)(z)

.

We have studied system (12) for any value of the parameter � ∈
R − {(1/2)(1 − 2r) | r ∈ N} giving an explicit expression for a
first integral using Theorem 6 and the generalized Darboux’s theory
as explained in [14]. This first integral is not of Liouvillian type.
Moreover, we give one of its invariants with a polynomial cofactor.
In the particular case � ∈ N, this invariant is the invariant algebraic
curve whose existence was proved in [19].

3.3 A new example of a family of quadratic systems with an
invariant algebraic curve of arbitrarily high degree. We give
another example of a family of quadratic systems with an irreducible
invariant algebraic curve of degree 2� when � ∈ N, where � is a
parameter of the family. This family also depends on the parameter
a ∈ R.

Let us consider the quadratic system
(22)

ẋ = (2a − 1)�x − a(2� − 1)y + 2a(a − �)(2� − 1)x2 − 2a2(2� − 1)2xy,

ẏ = y(2(2a − 1)� + 2a(2a − 2� − 1)(2� − 1)x − 4a2(2� − 1)2y),

where a, � ∈ R which satisfy a �= 0, � �= 1/2 and (2� − 1)a2 − 2� �= 0.
A straightforward computation shows that system (22) has y = 0 and
y − x2 = 0 as invariant algebraic curves.
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Let us consider the following birrational transformation x = Y ,
y = XY 2 whose inverse is X = y/x2 and Y = x. In these new variables
system (22) becomes

(23)

Ẋ = 2a(2� − 1)(X − 1)XY,

Ẏ =
(
(2a − 1)� + a(2� − 1)(2a − 2� − X)Y − 2a2(2� − 1)2XY 2

)
Y.

By a change of the time variable we can divide this system by Y , and
the resulting system coincides with the one described in Theorem 6
taking A2(X) := 2X(X − 1)2, A1(X) := (2� − 2a + 3X)(X − 1),
A0(X) := �(1 − 2a) and g(X, Y ) := a(2� − 1)Y/(X − 1). The equation
A2(X)w′′(X) + A1(X)w′(X) + A0(X)w(X) = 0 has the following set
of fundamental solutions in this case:

w1(X) = (X − 1)−�
2F1

(
1
2
− �,−�; a − �; X

)
,

w2(X) = (X − 1)−�X1−a+�
2F1

(
1 − a,

3
2
− �; 2 − a + �; X

)
.

By Theorem 7, fi(X, Y ) = w′
i(X) − g(X, Y )wi(X), i = 1, 2, define

invariants with a polynomial cofactor for system (23). Moreover, by
Theorem 8 we have a non-Liouvillian first integral given by H(X, Y ) =
f1(X, Y )/f2(X, Y ).

In the particular case � ∈ N, we notice that f1(X, Y ) = 0 is a rational
function. It is an easy computation to show that this rational function
is a polynomial when rewritten in coordinates x and y. This polynomial
gives place to an invariant algebraic curve of degree 2� for system (22).
That is, by undoing the birrational transformation, we deduce that
f1(x, y) is an irreducible invariant algebraic curve for system (22), given
by:

f1(x, y) = 2(a − �)(� + (2� − 1)ax)x2�−1
2F1

(
1
2
− �,−�; a − �;

y

x2

)

+ �(2� − 1)x2�−3(x2 − y) 2F1

(
3
2
− �, 1 − �; 1 + a − �;

y

x2

)
.

It is easy to see that the polynomial f1(x, y) has degree 2�, and the
cofactor associated to the invariant algebraic curve f1(x, y) = 0 is
�(2� − 1)((2a − 1) + 4a(a − �)x − 4(2� − 1)a2y).
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The first integral for (22) is given by H(x, y) = ya−�f1(x, y)/h(x, y),
where

h(x, y) = 2 (a − � − 2)
[
(a − � − 1) x2

+ (1 − a − a(2� − 1)x) y] x7−2a

× 2F1

(
1 − a,

3
2
− a; 2 − a − �;

y

x2

)
+ (a − 1) (2a − 3) x5−2a (x2 − y) y

× 2F1

(
2 − a,

5
2
− a; 3 − a + �;

y

x2

)
.

We notice that when both a and � belong to the set of natural
numbers, we have that h(x, y) = 0 is an invariant algebraic curve
different from f1(x, y) = 0. Then we have a quadratic system with
a rational first integral H(x, y) with arbitrary degree.

3.4 A complete family of quadratic systems with a center at
the origin. In this subsection we give an example of a 3-parameter
family of quadratic systems with a center at the origin which can be
constructed using Theorem 11. The family encountered corresponds to
the reversible case, see [23].

The family of quadratic systems depends on 12 parameters but, up
to affine transformations and positive time rescaling, we get a family
of 5 essential parameters. We have taken a system (9) and we have
chosen g(x, y) := y2, h(x) := 2x(d x − 1)/(1 + ax) and A(x) :=
2b/(1 + ax), where a, b, d are real parameters. Using Theorem 11, we
have encountered the three-parameter family of quadratic systems next
described. We remark that, in spite of the simplicity of the chosen
polynomials g(x, y), A(x) and h(x), we amazingly obtain the complete
family of quadratic systems with a reversible center at the origin. We
notice that other choices of the functions g(x, y), A(x) and h(x) would
give place to other families of polynomial systems.

Let us recall that a center is an isolated singular point of an equation
(2) with a neighborhood foliated of periodic orbits. When the linear
approximation of an equation (2) near a singular point has non null
purely imaginary eigenvalues, the point can be a center or a focus.
To distinguish between these two possibilities is the so-called center
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problem. Poincaré gave a method to solve it by defining a numerable
set of values, called Liapunov-Poincaré constants, which are all zero
when the singular point is a center and at least one of them is not
null when it is a focus. When these constants are computed from
a family of systems, they are polynomials on the coefficients of the
family. Hilbert’s Nullstellensatz ensures that there always exists a finite
number of independent polynomials which generates the whole ideal
made up with all these Liapunov-Poincaré polynomials. The zero-set
of these independent polynomials gives place to the center subfamilies.
The reader is referred to [23, 24] for a survey on this subject.

The computation of these center cases for the family of quadratic
systems was done by Dulac [13] for the case of complex systems and
a proof for real systems is given in [18]. We also refer to Bautin [2]
who showed the existence of only three independent constants. The
computation of the zero set of these three independent values gives
place to four complete families of quadratic systems with a center at
the origin which are described in [24].

Let us now consider an equation (9) such as (1+ax) w′(x)+2b w(x) =
0 and g(x, y) and h(x) as formerly defined. The rational equation as
constructed in Theorem 11 is

dy

dx
=

−x + dx2 − by2

y + axy
,

which gives the corresponding quadratic planar system

(24) ẋ = y + axy, ẏ = −x + dx2 − by2.

We suppose that ab(a + b)(a + 2b)(a + b + d) �= 0. In case this value
is zero, the origin of system (24) is still a center but with a Darboux
integrating factor instead of a Darboux first integral. This particular
case can also be studied by our method, but we do not write it to avoid
giving examples without essential differences.

By Theorem 12 we have that f(x, y) is an invariant of system (24)
with cofactor −2by, where f(x, y) is given by

(25)
f(x, y) = b (a + b) (a + 2b) w(x) − (a + b + d) (1 + ax)−2b/a

− b (a + b) (a + 2b) y2 + b (a + 2b) d x2

− 2 b (a + b + d) x + a + b + d,
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with w(x) any nonzero solution of (1 + ax)w′(x) + 2bw(x) = 0, that is,
w(x) = C(1 + ax)−2b/a.

Choosing C = (a + b + d) (b(a + b)(a + 2b))−1 we get an invariant
conic. System (24) has two invariant algebraic curves, the former conic
with cofactor −2by and an invariant straight line given by 1 + ax = 0
with cofactor y. The Darboux first integral

H(x, y) = (1 + ax)2b/af(x, y)

coincides with the first integral described in Theorem 14.

The origin of this system is a center since it is a monodromic singular
point with a continuous first integral defined in a neighborhood of it.
This example addresses the issue that other families of polynomial
systems of higher degree with a center at the origin can be easily
obtained by this method, avoiding the cumbersome computation of
Poincaré-Liapunov constants.
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Éc. Norm. Sup. 35 (2002), 231 266.
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27. H. Żo�la̧dek, The classification of reversible cubic systems with center, Topol.
Methods Nonlinear Anal. 4 (1994), 79 136.

28. , Remarks on: “The classification of reversible cubic systems with
center,” Topol. Methods Nonlinear Anal. 8 (1996), 335 342.



PLANAR POLYNOMIAL DIFFERENTIAL SYSTEMS 485
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