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MOUFANG LOOPS THAT SHARE
ASSOCIATOR AND THREE QUARTERS
OF THEIR MULTIPLICATION TABLES

ALEŠ DRÁPAL AND PETR VOJTĚCHOVSKÝ

ABSTRACT. Two constructions due to Drápal produce
a group by modifying exactly one quarter of the Cayley
table of another group. We present these constructions in
a compact way, and generalize them to Moufang loops, using
loop extensions. Both constructions preserve associators, the
associator subloop and the nucleus. We conjecture that two
Moufang 2-loops of finite order n with equivalent associator
can be connected by a series of constructions similar to ours
and offer empirical evidence that this is so for n = 16, 24, 32,
the only interesting cases with n ≤ 32. We further investigate
the way the constructions affect code loops and loops of
type M(G, 2). The paper closes with several conjectures and
research questions concerning the distance of Moufang loops,
classification of small Moufang loops, and generalizations of
the two constructions.

1. Introduction. Moufang loops, i.e., loops satisfying the Moufang
identity ((xy)x)z = x(y(xz)), are surely the most extensively studied
loops. Despite this fact, the classification of Moufang loops is finished
only for orders less than 64, and several ingenious constructions are
needed to obtain all these loops. The purpose of this paper is to initiate
a new approach to finite Moufang 2-loops. Namely, we intend to decide
whether all Moufang 2-loops of given order with equivalent associator
can be obtained from just one of them, using only group-theoretical
constructions. (See below for details). We prove that this is the case
for n = 16, 24, and 32, which are the only orders n ≤ 32 for which
there are at least two non-isomorphic nonassociative Moufang loops (5,
5, and 71, respectively). We also show that for every m ≥ 6 there exist
classes of loops of order 2m that satisfy our hypothesis. Each of these
classes consists of code loops whose nucleus has exactly two elements,
cf. Theorem 8.8.
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As it turns out, we will only need two constructions that were
introduced in [7] and that we call cyclic and dihedral. They are recalled
in Sections 3 and 4 and generalized to Moufang loops in Sections 6 and
7. The main feature of both constructions is that, given a Moufang
loop (G, ·), they produce a generally non-isomorphic Moufang loop
(G, ∗) that has the same associator and nucleus as (G, ·), and whose
multiplication table agrees with the multiplication table of (G, ·) in 3/4
of positions.

The constructions allow a very compact description with the help
of simple modular arithmetic, developed in Section 2. Nevertheless, in
order to prove that the constructions are meaningful for Moufang loops
(Theorems 6.3, 7.3), one benefits from knowing some loop extension
theory, Section 5. (An alternative proof using only identities is available
as well [17], but is much longer.)

We then turn our attention to two classes of Moufang loops: code
loops, Section 8, and loops of type M(G, 2), Section 9.

Up to isomorphism, code loops can be identified with maps P : V →
F whose third derived form is trilinear, where F = GF (2) and V is a
finite vector space over F . Section 8 explains how P is modified under
our constructions. These modifications can be described in terms of
linear and quadratic forms, and it is not difficult to see how one can
gradually transform a code loop to any other code loop with equivalent
associator, cf. Proposition 8.7.

The loops of type M(G, 2) play a prominent role in the classification
of Moufang loops, chiefly thanks to their abundance among small loops.
In Section 9 we describe how the loops M(G, 2) behave under both
constructions.

It has been conjectured [6] that from each finite 2-group one can
obtain all other 2-groups of the same order by repeatedly applying a
construction that preserves exactly 3/4 of the corresponding multipli-
cation tables. For n ≤ 32, this conjecture is known to be true, and for
such n it suffices to use only the cyclic and dihedral constructions [20].

For n = 64, these constructions yield two blocks of groups, and it is
not known at this moment if there exists a similar construction that
would connect these two blocks [2].
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In view of these results about 2-groups, it was natural to ask how
universal the cyclic and dihedral constructions remain for Moufang
loops of small order. A computer search, cf. Section 10, has shown
that for orders n = 16, 24, 32 the blocks induced by cyclic and
dihedral constructions coincide with blocks of Moufang loops with
equivalent associator. This is the best possible result since none of the
constructions changes the associator and since the two constructions
are not sufficient even for groups when n = 64.

The search for pairs of 2-groups that can be placed at quarter distance
(a phrase expressing that 3/4 of the multiplication tables coincide)
stems from the discovery that two 2-groups which differ in less than a
quarter of their multiplication tables are isomorphic [6]. We conjecture
that this property remains true for Moufang 2-loops. Additional
conjectures, together with suggestions for future work, can be found
at the end of the paper.

We assume basic familiarity with calculations in nonassociative loops
and in Moufang loops in particular. The inexperienced reader should
consult [14].

A word about the notation. The dihedral group 〈a, b; an = b2 =
1, aba = b〉 of order 2n will be denoted by D2n, although some of the
authors we cite use Dn; see for instance [11]. We count the Klein 4-
group among dihedral groups, and denote it also by V4. The generalized
quaternion group 〈a, b; a2n−1

= 1, a2n−2
= b2, bab−1 = a−1〉 of order

2n will be denoted by Q2n . We often write ab instead of a · b. In
fact, following the custom, we use “ · ” to indicate the order in which
elements are multiplied. For example, a · bc stands for a(bc) = a · (b · c).

2. Modular arithmetic and the function σ. Let m be a positive
integer and M the set {−m + 1, −m + 2, . . . , m − 1, m}. Denote by
⊕ and 	 the addition and subtraction modulo 2m in M , respectively.
More precisely, define σ : Z → {−1, 0, 1} by

σ(i) =

⎧⎨
⎩

1 i > m,
0 i ∈M ,
−1 i < 1 −m,

and let

i⊕ j = i+ j − 2mσ(i+ j), i	 j = i− j − 2mσ(i− j),
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for any i, j ∈ M . In order to eliminate parentheses, we postulate that
⊕ and 	 are more binding than + and −. Observe that 1 − i belongs
to M whenever i does, and that σ(1 − i) = −σ(i).

We will need the following identities for σ in Sections 3 and 4:

σ(i+ j) + σ(i⊕ j + k) = σ(j + k) + σ(i+ j ⊕ k),(1)

−σ(i+ j) + σ(1 − i⊕ j + k) = σ(1 − j + k) − σ(i+ j 	 k).
(2)

The identity (1) follows immediately from (i ⊕ j) ⊕ k = i ⊕ (j ⊕ k).
To establish (2), consider (i ⊕ j) 	 k = i ⊕ (j 	 k). This yields
−σ(i+j)−σ(i⊕j−k) = −σ(j−k)−σ(i+j	k). Since −σ(i⊕j−k) =
σ(1 − i⊕ j + k) and −σ(j − k) = σ(1 − j + k), we are done.

3. The cyclic construction. Let us start with the less technical
of the two constructions the cyclic one. We will work in the more
general setting of Moufang loops and take full advantage of the function
σ defined in Section 2.

Let G be a Moufang loop. Recall that Z(G), the center of G, consists
of all elements that commute and associate with all elements of G.
In more detail, given x, y, z ∈ G, the commutator [x, y] of x, y,
respectively the associator [x, y, z] of x, y, z, is the unique element
w ∈ G satisfying xy = yx · w, respectively (xy)z = x(yz) · w. When
three elements of a Moufang loop associate in some order, they associate
in any order. Hence Z(G) = {x ∈ G; [x, y] = [x, y, z] = 1 for every y,
z ∈ G}.

We say that (G, S, α, h) satisfies condition C if

• G is a Moufang loop,

• S �G, and G/S = 〈α〉 is a cyclic group of order 2m,

• 1 �= h ∈ S ∩ Z(G).

Then we can view G as the disjoint union ∪i∈Mαi, and define a new
multiplication ∗ on G by

(3) x ∗ y = xyhσ(i+j),

where x ∈ αi, y ∈ αj , and i, j ∈M .
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The resulting loop (that is Moufang, as we shall see) will be denoted
by (G, ∗). Whenever we say that (G, S, α, h) satisfies C, we assume
that (G, ∗) is defined by (3).

The following proposition is a special case of Theorem 6.3. We present
it here because the associative case is much simpler than the Moufang
case.

Proposition 3.1. When G is a group and (G, S, α, h) satisfies C
then (G, ∗) is a group.

Proof. Let x ∈ αi, y ∈ αj , z ∈ αk, for some i, j, k ∈ M . Since
h ∈ Z(G), we have

(4)
(x ∗ y) ∗ z = (xy)z · hσ(i+j)+σ(i⊕j+k),

x ∗ (y ∗ z) = x(yz) · hσ(j+k)+σ(i+j⊕k).

This follows from (3) and from the fact that xy ∈ αi⊕j , yz ∈ αj⊕k. By
(1), (G, ∗) is associative.

4. The dihedral construction. We proceed to the dihedral
construction. Let G be a Moufang loop, and let N(G) be the nucleus
of G. Recall that N(G) = {x ∈ G; [x, y, z] = 1 for every y, z ∈ G}, and
that [x, y, z] = 1 implies [y, x, z] = [x, y, z] = 1 for every x, y, z ∈ G.

We say that (G, S, β, γ, h) satisfies condition D if

• G is a Moufang loop,

• S �G and G/S is a dihedral group of order 4m (where we allow
m = 1),

• β, γ are involutions of G/S such that α = βγ is of order 2m,

• 1 �= h ∈ S ∩Z(G0)∩N(G) and hxh = x for some, and hence every,
x ∈ G1, where G0 = ∪i∈Mαi, G1 = G \G0.

We can then choose e ∈ β and f ∈ γ, view G as the disjoint union
∪i∈M (αi ∪ eαi) or ∪j∈M (αj ∪ αjf), and define a new multiplication ∗
on G by

(5) x ∗ y = xyh(−1)rσ(i+j),

where x ∈ αi ∪ eαi, y ∈ (αj ∪ αjf) ∩Gr, i, j ∈M , and r ∈ {0, 1}.
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The resulting loop (again always Moufang) will be denoted by (G, ∗).
As in the cyclic case, whenever we say that (G, S, β, γ, h) satisfies D,
we assume that (G, ∗) is defined by (5).

Note that ∗ does not depend on the choice of e ∈ β and f ∈ γ. Also
note that when (G, S, β, γ, h) satisfies D, then (G0, S, α = βγ, h)
satisfies C.

Since G/S is dihedral, α, β and γ satisfy

βαi = α�iβ, γαi = α�iγ, βαi = α1−iγ, αiγ = βα1−i,

for any i ∈ M , where we write 	i rather than −i to make sure that
the exponents remain in M .

Remark 4.1. Although α, G0, G1, e and f are not explicitly mentioned
in condition D, we will often refer to them. Strictly speaking, we did
not need to include S among the parameters of any of the constructions,
as it can always be calculated from the remaining parameters. Finally,
we will sometimes find ourselves in a situation when we do not want
to treat C and D separately. Let us therefore agree that G0 = G1 = G,
e = f = 1, and that β, γ are meaningless when C applies.

Lemma 4.2. Assume that (G, S, β, γ, h) satisfies D. Then (ex) ∗
y = e(x ∗ y) and (x ∗ y)f = x ∗ (yf) whenever y ∈ N(G).

Proof. Choose x ∈ αi ∪ eαi, y ∈ (αj ∪ αjf) ∩ Gr, and note that ex
belongs to αi∪eαi, while yf belongs to (αj ∪αjf)∩Gr+1. For the sake
of brevity, set t = h(−1)rσ(i+j). Then (ex) ∗ y = (ex)y · t = e(xy) · t =
e(xy · t) = e(x ∗ y), and (x ∗ y)f = (xy · t)f = xy · tf = xy · ft−1 =
(xy)f · t−1 = x(yf) · t−1 = x ∗ (yf), where we used y ∈ N(G) and
h ∈ N(G) several times.

Similarly as in the cyclic case, Proposition 4.3 is a special case of
Theorem 7.3:

Proposition 4.3. When G is a group and (G, S, β, γ, h) satisfies
D, then (G, ∗) is a group.
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Proof. If (x∗y)∗z = x∗(y∗z), Lemma 4.2 implies that ((ex)∗y)∗z =
(ex)∗ (y ∗z) and (x∗y)∗ (zf) = x∗ (y ∗ (zf)). We can therefore assume
that x ∈ αi, z ∈ αk, and y ∈ αj ∪ αjf , for some i, j, k ∈M .

When y ∈ αj , the definition (5) of ∗ coincides with the cyclic case
(3), and x, y and z associate in (G, ∗) by Proposition 3.1. Assume that
y ∈ αjf ⊆ G1, and recall the coset relations αjγ = βα1−j . Then

(6)
(x ∗ y) ∗ z = (xy)z · h−σ(i+j)+σ(1−i⊕j+k),

x ∗ (y ∗ z) = x(yz) · hσ(1−j+k)−σ(i+j�k),

because xy ∈ αiαjγ = αi⊕jγ = βα1−i⊕j , and yz ∈ αjγαk = αj�kγ.
By (2), (G, ∗) is associative.

5. Factor sets. Before we prove that (G, ∗) is a Moufang loop if C
or D is satisfied, let us briefly review extensions of abelian groups by
Moufang loops. We follow closely the group-theoretical approach, cf.
[15, Chapter 11].

Let Q be a Moufang loop and A a Q-module. Since, later on, we will
deal with two extensions at the same time, we shall give a name to the
action of Q on A, say ϕ : Q→ AutA. Consider a map η : Q×Q→ A,
and define a new multiplication on the set product Q×A by

(x, a)(y, b) = (xy, aϕ(y) + b+ η(x, y)),

where we use additive notation for the abelian group A. The resulting
quasi-group will be denoted by E = (Q, A, ϕ, η).

It is easy to see that E is a loop if and only if there exists c ∈ A such
that

(7) η(x, 1) = c, η(1, x) = cϕ(x),

for every x ∈ Q. The neutral element of E is then (1, −c).
From now on, we will assume that E satisfies (7) with c = 0 and

speak of E as an extension of A by Q. Verify that E is a group if and
only if Q is a group and

(8) η(x, y)ϕ(z) + η(xy, z) = η(y, z) + η(x, yz)
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holds for every x, y, z ∈ Q. Moreover, using the Moufang identity
(xy · x)z = x(y · xz), one can check by straightforward calculation that
E is a Moufang loop if and only if
(9)

η(x, y)ϕ(xz)+η(xy, x)ϕ(z)+η(xy ·x, z) = η(x, z)+η(y, xz)+η(x, y ·xz)
holds for every x, y, z ∈ Q. (Note that ϕ(y · xz) = ϕ(yx · z) even if x,
y, z do not associate.)

Every pair (ϕ, η) satisfying (7) with c = 0 is called a factor set. If
it also satisfies (8), respectively (9), we call it associative factor set,
respectively Moufang factor set.

Given two factor sets (ϕ, η) and (ϕ, μ), we can obtain another factor
set, their sum (ϕ, η+μ), by letting (η+μ)(x, y) = η(x, y)+μ(x, y) for
every x, y ∈ Q. Since A is an abelian group, the sum of two associative
factor sets, respectively Moufang factor sets, is associative, respectively
Moufang. As every group is a Moufang loop, it must be the case that
every associative factor set is Moufang. Here is a proof that only refers
to factor sets:

Lemma 5.1. Every associative factor set is Moufang.

Proof. Let (ϕ, η) be an associative factor set. Substituting xz for z
in (8) yields

(10) η(x, y)ϕ(xz) + η(xy, xz) = η(y, xz) + η(x, y · xz),
while substituting xy for x, and simultaneously x for y in (8) yields

(11) η(xy, x)ϕ(z) + η(xy · x, z) = η(x, z) + η(xy, xz).

The identity (9) is obtained by adding (10) to (11) and subtracting
η(xy, xz) from both sides.

Assume that (ϕ, η) is a Moufang factor set. Then the right in-
verse of (x, a) in (Q, A, ϕ, η) is (x−1, −aϕ(x−1) − η(x, x−1)), as
a short calculation reveals. Similarly, the left inverse of (x, a) is
(x−1, −aϕ(x−1) − η(x−1, x)ϕ(x−1)). Since (Q, A, ϕ, η) is a Moufang
loop, the two inverses coincide, and we have

(12) η(x, x−1) = η(x−1, x)ϕ(x−1),
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for any Moufang factor set (ϕ, η) and x ∈ Q. (Alternatively, and
more naturally, the identity (12) follows immediately from (9) when we
substitute x−1 for x, x for y, and 1 for z.)

Lemma 5.2. Assume that (ϕ, η) is a Moufang factor set and (ϕ, μ)
is an associative factor set. Then the associators in (Q, A, ϕ, η) and
(Q, A, ϕ, η + μ) coincide if and only if

(13) μ((x · yz)−1, xy · z) = μ(x · yz, (x · yz)−1)ϕ(xy·z)

for every x, y, z ∈ Q. This happens if and only if

(14) μ(x · yz, [x, y, z]) = 0

for every x, y, z ∈ Q. In particular, the associators coincide if Q is a
group.

Proof. Let (x, a), (y, b), (z, c) ∈ (Q, A, ϕ, η). Then

u = (x, a)(y, b) · (z, c) = (xy · z, s+ t),
v = (x, a) · (y, b)(z, c) = (x · yz, s),

where

s = aϕ(yz) + bϕ(z) + c+ η(y, z) + η(x, yz),

t = η(x, y)ϕ(z) + η(xy, z) − η(y, z) − η(x, yz).

The associator [(x, a), (y, b), (z, c)] in (Q, A, ϕ, η) is therefore equal
to v−1u = ([x, y, z], d), where

d = t+ η((x · yz)−1, xy · z) − η(x · yz, (x · yz)−1)ϕ(xy·z).

Similarly, the same associator in (Q, A, ϕ, η+μ) is ([x, y, z], d+e+f),
where

e = μ(x, y)ϕ(z) + μ(xy, z) − μ(y, z) − μ(x, yz),

f = μ((x · yz)−1, xy · z) − μ(x · yz, (x · yz)−1)ϕ(xy·z).
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Since (ϕ, μ) satisfies (8), e vanishes. Therefore the two associators
coincide for all x, y, z ∈ Q if and only if (13) is satisfied for every x, y,
z ∈ Q.

Substituting x · yz for x, (x · yz)−1 for y, and xy · z for z into (8)
yields

μ(x · yz, (x · yz)−1)ϕ(xy·z) = μ((x · yz)−1, xy · z) + μ(x · yz, [x, y, z]).

Hence (13) is satisfied if and only if (14) holds. The latter condition is
of course satisfied when Q is a group.

6. The cyclic construction for Moufang loops. Throughout
this section, assume that (G, S, α, h) satisfies C and that A is the
subloop of S generated by h. Using loop extensions, we prove that
(G, ∗) is a Moufang loop with the same associators, associator subloop
and nucleus as (G, ·). Recall that the associator subloop of a loop L
is the subloop A(L) generated by all associators [x, y, z], where x, y,
z ∈ L.

Lemma 6.1. A is a normal subloop of both (G, ·) and (G, ∗).
Moreover, (G, ·)/A = (G, ∗)/A.

Proof. Since h ∈ Z(G, ·), the subgroup A = 〈h〉 ⊆ Z(G, ·) is normal
in (G, ·). In fact, x ∗ h = xh, h ∗ x = hx for every x ∈ G, since
h ∈ S = α0, and thus A is normal in (G, ∗) as well.

Write the elements of G/A as cosets xA. Since, for some t, we have
xA ·yA = (xy)A and xA∗yA = (x∗y)A = (xyht)A = (xy)A, the loops
(G, ·)/A and (G, ∗)/A coincide.

Let Q be the Moufang loop (G, ·)/A = (G, ∗)/A. Let ι be the trivial
homomorphism Q → AutA, ι(q) = idA, for every q ∈ Q. We want to
construct two factor sets (ι, η), (ι, η∗) such that (Q, A, ι, η) � (G, ·)
and (Q, A, ι, η∗) � (G, ∗). In order to save space, we keep writing the
operation in A multiplicatively.

Let π : Q = G/A → G be a transversal, i.e., a map satisfying
π(xA) ∈ xA for every x ∈ G. Then, for every xA, yA, there is an
integer τ (xA, yA) such that π((xy)A) = π(xA)π(yA)hτ(xA, yA).
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Proposition 6.2. Assume that (G, S, α, h) satisfies C, and that A
is the subloop of S generated by h. With Q = (G, ·)/A = (G, ∗)/A
and τ as above, define η, η∗ : Q×Q→ A by

η(xA, yA) = h−τ(xA, yA),

η∗(xA, yA) = η(xA, yA)hσ(i+j),

where x ∈ αi, y ∈ αj, and i, j ∈ M . Then (Q, A, ι, η) � (G, ·) and
(Q, A, ι, η∗) � (G, ∗).

Proof. First of all, when x belongs to αi then every element of xA
belongs to αi, and so η∗ is well-defined.

Let θ : (Q, A, ι, η) → (G, ·) be defined by θ(xA, ha) = π(xA)ha.
Note that θ is well-defined, and that it is clearly a bijection. Since

θ((xA, ha)(yA, hb)) = θ((xy)A, ha+bη(xA, yA))
= π((xy)A)ha+bη(xA, yA)

= π(xA)π(yA)hτ(xA, yA)ha+bh−τ(xA, yA)

= π(xA)haπ(yA)hb = θ(xA, ha)θ(yA, hb),

θ is an isomorphism.

Similarly, let θ∗ : (Q, A, ι, η∗) → (G, ∗) be defined by θ∗(xA, ha) =
π(xA)ha. This is again a bijection. Pick x ∈ αi, y ∈ αj . Since

θ∗((xA, ha)(yA, hb)) = θ∗((xy)A, ha+bη∗(xA, yA))
= π((xy)A)ha+bη∗(xA, yA)

= π(xA)π(yA)hτ(xA, yA)ha+bh−τ(xA, yA)hσ(i+j)

= π(xA)π(yA)ha+bhσ(i+j)

= π(xA)ha ∗ π(yA)hb

= θ∗(xA, ha) ∗ θ∗(yA, hb),

θ∗ is an isomorphism.

We are now ready to prove the main theorem for the cyclic construc-
tion:
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Theorem 6.3. The Moufang factor sets (ι, η) and (ι, η∗) introduced
in Proposition 6.2 differ by an associative factor set (ι, μ) that satisfies
(13). Consequently, (G, ∗) is a Moufang loop, the associators in
(G, ·) and (G, ∗) coincide, A(G, ·) = A(G, ∗) coincide as loops, and
N(G, ·) = N(G, ∗) coincide as sets.

Proof. With μ = η∗ − η and x ∈ αi, y ∈ αj , we have μ(xA, yA) =
hσ(i+j). Since μ(xA, A) = μ(A, xA) = hσ(i) = h0 = 1, (ι, μ) is a factor
set. Pick further z ∈ αk. We must verify that (ι, μ) is associative, i.e.,
that

μ(xA, yA)μ(xAyA, zA) = μ(yA, zA)μ(xA, yAzA).

But this follows immediately from (1), as xAyA ∈ αi⊕j and yAzA ∈
αj⊕k. Thus (ι, μ) is associative, in particular Moufang. Then (ι,
η∗) = (ι, η) + (ι, μ) is a Moufang factor set.

It is easy to verify that all associators of (G, ·) belong to α0. This
means that μ(xAyA · zA, [xA, yA, zA]) vanishes, and hence the asso-
ciators in (G, ·) and (G, ∗) coincide by Lemma 5.2. The associator
subloops A(G, ·) and A(G, ∗) are therefore generated by the same el-
ements. In fact, the multiplication in A(G, ·) coincides with the mul-
tiplication in A(G, ∗) because, once again, every associator belongs to
α0. Finally, since an element belongs to the nucleus if and only if it
associates with all other elements, we must have N(G, ·) = N(G, ∗).

7. The dihedral construction for Moufang loops. We are now
going to prove that the dihedral construction works for Moufang loops,
too. The reasoning is essentially that of Section 6; however, we decided
that it deserves a separate treatment since it differs in several details.
The confident reader can proceed directly to the next section.

Throughout this section, we assume that (G, S, β, γ, h) satisfies D
and that A is the subloop of S generated by h.

Lemma 7.1. A is a normal subloop of both (G, ·) and (G, ∗).
Moreover, (G, ·)/A = (G, ∗)/A.

Proof. We claim that A is a normal subloop of (G, ·). It suffices to
prove that xA = Ax, x(Ay) = (xA)y and x(yA) = (xy)A for every x,
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y ∈ G. Since A ≤ N(G), we only have to show that xA = Ax for every
x ∈ G. When x ∈ G0, there is nothing to prove as h ∈ Z(G0). When
x ∈ G1, we have xA = {xha; 0 ≤ a < 2m} = {h−ax; 0 ≤ a < 2m} =
Ax, because hxh = x. Thus A is normal in (G, ·). In fact, x ∗ h = xh,
h ∗ x = hx for every x ∈ G (since h ∈ S = α0), and thus A is normal
in (G, ∗) as well.

Write the elements of G/A as cosets xA. Since, for some t, we have
xA ·yA = (xy)A and xA∗yA = (x∗y)A = (xyht)A = (xy)A, the loops
(G, ·)/A and (G, ∗)/A coincide.

We let Q be the Moufang loop (G, ·)/A = (G, ∗)/A and continue to
construct two factor sets (ϕ, η), (ϕ, η∗) such that (Q, A, ϕ, η) � (G, ·)
and (Q, A, ϕ, η∗) � (G, ∗).

Fix a transversal π : Q = G/A → G. Then, for every xA, yA, there
is an integer τ (xA, yA) such that π((xy)A) = π(xA)π(yA)hτ(xA, yA).

Proposition 7.2. Assume that (G, S, β, γ, h) satisfies D and that
A is the subloop of S generated by h. With Q = (G, ·)/A = (G, ∗)/A
and τ as above, define ϕ : Q→ AutA by aϕ(y) = a(−1)r

, where y ∈ Gr,
r ∈ {0, 1}. Furthermore, define η, η∗ : Q×Q→ A by

η(xA, yA) = h−τ(xA, yA),

η∗(xA, yA) = η(xA, yA)h(−1)rσ(i+j),

where x ∈ αi ∪ eαi, y ∈ (αj ∪ αjf) ∩ Gr, i, j ∈ M , r ∈ {0, 1}. Then
(Q, A, ϕ, η) � (G, ·) and (Q, A, ϕ, η∗) � (G, ∗).

Proof. Since GrGs = Gr+s (mod 2) for every r, s ∈ {0, 1}, ϕ is a
homomorphism.

When x belongs to αi ∪ eαi, then every element of xA belongs to
αi ∪ eαi. When y belongs to (αj ∪αjf)∩Gr, then every element of yA
belongs to (αj ∪ αjf) ∩Gr. Hence η∗ is well-defined.

Let θ : (Q, A, ϕ, η) → (G, ·) be defined by θ(xA, ha) =
π(xA)ha. This is clearly a well-defined bijection. When y ∈ Gr,
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we have

θ((xA, ha)(yA, hb)) = θ((xy)A, h(−1)rahbη(xA, yA))

= π((xy)A)h(−1)rahbη(xA, yA)

= π(xA)π(yA)hτ(xA, yA)h(−1)rahbh−τ(xA, yA)

= π(xA)π(yA)h(−1)rahb

= π(xA)haπ(yA)hb = θ(xA, ha)θ(yA, hb),

and θ is an isomorphism.

Similarly, let θ∗ : (Q, A, ϕ, η∗) → (G, ∗) be defined by θ∗(xA, ha) =
π(xA)ha. This is again a bijection. With x ∈ αi∪eαi, y ∈ (αj ∪αjf)∩
Gr, we have

θ∗((xA, ha)(yA, hb))

= θ∗((xy)A, h(−1)rahbη∗(xA, yA))

= π((xy)A)h(−1)rahbη∗(xA, yA)

= π(xA)π(yA)hτ(xA, yA)h(−1)rahbh−τ(xA, yA)h(−1)rσ(i+j)

= π(xA)haπ(yA)hbh(−1)rσ(i+j)

= π(xA)ha ∗ π(yA)hb = θ∗(xA, ha) ∗ θ∗(yA, hb),

and θ∗ is an isomorphism.

Theorem 7.3. The Moufang factor sets (ϕ, η) and (ϕ, η∗) intro-
duced in Proposition 7.2 differ by an associative factor set (ϕ, μ) that
satisfies (13). Consequently, (G, ∗) is a Moufang loop, the associators
in (G, ·) and (G, ∗) coincide, A(G, ·) = A(G, ∗) coincide as loops, and
N(G, ·) = N(G, ∗) coincide as sets.

Proof. Let μ = η∗−η. For x ∈ αi ∪ eαi, y ∈ (αj ∪αjf)∩Gr, we have
μ(xA, yA) = h(−1)rσ(i+j).

Since μ(xA, A) = μ(A, xA) = h0 = 1, (ϕ, μ) is a factor set.
By the first two paragraphs of the proof of Proposition 4.3, (ϕ, μ)
is associative, hence Moufang. Then (ϕ, η∗) = (ϕ, η) + (ϕ, μ) is a
Moufang factor set.

It is easy to verify that every associator of (G, ·) belongs to α0. We
can therefore reach the same conclusion as in Theorem 6.3.
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8. Code loops. Now when we know that (G, ∗) is a Moufang loop
for both constructions, we will focus on the effect the constructions
have on two important classes of Moufang loops: code loops and loops
of type M(G, 2). These loops are abundant among small Moufang
loops, as we will see in Section 10. The results of Sections 8 and 9 are
not needed elsewhere in this paper. Let us get started with code loops.

A loop G is called symplectic if it possesses a central subloop Z of
order 2 such that G/Z is an elementary abelian 2-group. When G
is symplectic, we can define P : G/Z → Z, C : G/Z × G/Z → Z,
A : G/Z × G/Z × G/Z → Z by P (aZ) = a2, C(aZ, bZ) = [a, b],
A(aZ, bZ, cZ) = [a, b, c], for every a, b, c ∈ G. Note that the three
maps are well defined. For obvious reasons, we will often call P the
power map, C the commutator map and A the associator map.

Every symplectic loop G is an extension (V, F, ι, η) of the 2-element
field F = {0, 1} by a finite vector space V over F , where η : V ×V → F
satisfies η(u, 0) = η(0, u) = 0 for every u ∈ V , i.e., (ι, η) is a factor set
as defined in Section 5. We can then identify F with Z, V with G/Z
and consider P , C and A as maps P : V → F , C : V × V → F and
A : V × V × V → F .

It is known that the triple (P, C, A) determines the isomorphism type
of G, cf. [1, Theorem 12.13].

Before we introduce code loops, we must define derived forms and
combinatorial degree. We will restrict the definitions to the two-element
field F ; more general definitions can be found in [1] and [19].

Let f : V → F be a map satisfying f(0) = 0. Then the nth derived
form fn : V n → F of f is defined by

fn(v1, . . . , vn) =
∑

{i1, ... , im}⊆{1, ... , n}
f(vi1 + · · · + vim

),

where the summation runs over all nonempty subsets of {1, . . . , n}.
Although it is not immediately obvious, fn(v1, . . . , vn) vanishes when-
ever v1, . . . , vn are linearly dependent, and it makes sense to define the
combinatorial degree of f , cdeg f , as the smallest nonnegative integer
n such that fn+1 = 0.
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Every form fn is symmetric, and two consecutive derived forms are
related by polarization, i.e.,

fn+1(v1, . . . , vn+1) = fn(v1, v3, . . . , vn+1) + fn(v2, . . . , vn+1)
+ fn(v1 + v2, v3, . . . , vn+1),

for every v1, . . . , vn+1 ∈ V . Thus fn is n-linear if and only if cdeg f ≤ n.
Since f(0) = 0, the form f2 is alternating. Recall that every alternating
bilinear form over the two-element field is symmetric. When f is a
quadratic form, f2 is an alternating, thus symmetric, bilinear form.
Therefore the subspace of all forms f : V → F with cdeg f ≤ 2 coincides
with the subspace of all quadratic forms.

A symplectic loop G defined on V × F is called a code loop if the
power map P : V → F has cdegP ≤ 3, the commutator map C
coincides with P2, and the associator map A coincides with P3. The
power map therefore determines a code loop up to an isomorphism, and
we will use the notation G = (V, F, P ).

Remark 8.1. Code loops were discovered by Griess [12], who used
them to elucidate the construction of the Parker loop, that is in turn
involved in the construction of the Monster group. We completely
ignore the code aspect of code loops here and model our approach on
[1] and [13].

Of course, not every symplectic loop is a code loop, however, as
Aschbacher proved in [1, Lemma 13.1], Chein and Goodaire in [4] and
Hsu in [13]:

Theorem 8.2. Code loops are exactly symplectic Moufang loops.

Thus our two constructions apply to code loops and we proceed to
have a closer look at them. Recall that the radical Rad f of an n-linear
form f : V n → F is the subspace consisting of all vectors v1 ∈ V such
that f(v1, . . . , vn) = 0 for every v2, . . . , vn ∈ V .

The radical of P3 determines the nucleus of the associated code loop,
and vice versa. We offer a complete description of the situation when
P3 has trivial radical, i.e., RadP3 = F . Then there is only one choice
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of h for C and D, see below. We expect to return to code loops with
nontrivial radical in a future paper.

Remark 8.3. Code loops with nontrivial radical are not closed under
the two constructions, cf. Example 10.2. In fact, all code loops of
order 32 have this property.

Lemma 8.4. Let G = (V, F, P ) be a code loop. Assume that C or D
is satisfied with some h, S. Then:

(i) If G is not a group or if h ∈ F , then S ⊇ F , and G/S � C2 or
G/S � V4.

(ii) If h ∈ F , then the resulting loop (G, ∗) is a code loop with the
same radical as G.

(iii) If RadP3 = F , then h ∈ N(G) = Z(G) = F .

Proof. Since G = (V, F, P ) is a code loop, we have A(G) ⊆ F . Let
us prove (i). First assume that G is not a group. Since |F | = 2, we
must have A(G) = F . As G/S is associative, the subloop S contains
A(G) = F . Now assume that 1 �= h ∈ F . Since h belongs to S, we
immediately obtain S ⊇ F . Hence, in any case, G/S ≤ G/F , and G/S
is an elementary abelian 2-group. The only two elementary abelian
2-groups satisfying C or D are C2 and V4, respectively.

To prove (ii), assume that h ∈ F . Then (F, ∗) is a subloop of
(G, ∗), by (3) and (5). Now, x ∗ a = xa and a ∗ x = ax for every
x ∈ G, a ∈ F . Since F is central in G, (F, ∗) is also central in (G, ∗).
Finally, x ∗ x belongs to F for every x ∈ G, thus (G, ∗)/(F, ∗) is an
elementary abelian 2-group. By Theorems 6.3 and 7.3, (G, ∗) is a
Moufang loop. Then Theorem 8.2 implies that (G, ∗) is a code loop.
Another consequence of Theorems 6.3 and 7.3 is that N(G) = N(G, ∗).
Hence the radical of the associator map P3 in G coincides with the
radical of the associator map P ∗

3 , where P ∗ is the power map in (G, ∗).
To prove (iii), suppose that RadP3 = F . Then h ∈ N(G) ⊆ F ⊆

Z(G) ⊆ N(G), where the only nontrivial inclusion N(G) ⊆ F follows
from the fact that RadP3 is trivial.
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Consider this general result about Moufang loops and code loops with
trivial radical.

Lemma 8.5. Suppose that L is a Moufang loop whose associator is
equivalent to the associator of a code loop G with trivial radical. Then
L is a code loop with trivial radical.

Proof. By the assumptions, A(G) ≤ N(G) = Z(G), therefore
A(L) ≤ N(L) = Z(L), and L/N(L) is a group. Let R be the associator
map in L, and let x, y, z ∈ L. Then R(x, y, z) = 0 if and only if
R(x−1, y, z) = 0, by the Moufang theorem. Since |A(L)| ≤ 2, we
obtain

(15) R(x, y, z) = R(x−1, y, z)

for every x, y, z ∈ L. Because R is equivalent to the associator map of
the code loop G, it is trilinear and RadR = N(L). Then (15) implies
xN(L) = x−1N(L) in L/N(L), and L/N(L) is an elementary abelian
2-group.

Lemma 8.6. Assume that h ∈ F and that (G, ∗) is constructed
from a code loop G = (V, F, P ) as in Lemma 8.4. Let P ∗ be the power
map of (G, ∗). When G/S � C2 then

(16) P ∗(xF ) =
{
P (xF ) x ∈ S,
P (xF ) + h x ∈ G \ S,

and P ∗ − P is linear.

Else G/S � V4,

(17) P ∗(xF ) =
{
P (xF ) x �∈ α,
P (xF ) + h x ∈ α,

(where α = βγ is as usual), and P ∗ − P is a quadratic form.

Proof. Since x ∗ y ∈ {xy, xyh}, the addition in G/F coincides with
the addition in (G, ∗)/F , and we can let G/F = (G, ∗)/F = V . By
Lemma 8.4(i), G/S � C2 or G/S � V4. If G/S � C2, we have (16).
Thus P ∗ − P is linear.
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If G/S � V4, we have (17). We claim that R = P ∗−P is a quadratic
form. First of all, R2(xF, yF ) = R(xF )+R(yF )+R(xF+yF ) does not
vanish if and only if x, y belong to α∪β∪γ but not to the same coset at
the same time. Then R3(xF, yF, zF ) = R2(xF, zF ) + R2(yF, zF ) +
R2(xF + yF, zF ) always vanishes, as one easily checks.

We are ready to characterize all loops obtainable from code loops
with trivial radical via both of the constructions. We will also show
how to connect all code loops with the same associator maps.

Proposition 8.7. Let G = (V, F, P ) be a code loop with power
map P . Let H0 = G, H1, . . . , Hs be a sequence of loops, where Hi+1

is obtained from Hi by the cyclic or the dihedral construction, for
i = 0, . . . , s−1. If RadP3 is trivial, then Hs is a code loop with power
map R satisfying cdeg (R− P ) ≤ 2. Whether RadP3 is trivial or not,
every code loop Hs with power map R satisfying cdeg (R− P ) ≤ 2 can
be obtained from H0 in this way.

Proof. Denote by P ∗ the power map in H1. For the rest of this
paragraph, assume that P3 has trivial radical. By Lemma 8.4, H1 is a
code loop with trivial radical, and, by Lemma 8.6, cdeg (P ∗ − P ) ≤ 2.
By induction, Hs is a code loop and cdeg (R− P ) ≤ 2.

In fact, the two maps P ∗−P from (16) and (17) are available as long
as h ∈ F , no matter what RadP3 is.

In order to obtain all code loops with cdeg (R− P ) ≤ 2 from H0,
we must show that the forms P ∗ − P from (16) and (17) generate all
forms with cdeg ≤ 2, i.e., all quadratic forms. Every quadratic form
Q determines an alternating bilinear form Q2, and when Q2 = T2 for
two quadratic forms Q and T , their difference Q − T is a linear form.
We must therefore show how to obtain all linear forms, and also all
alternating bilinear forms as second derived forms of maps stemming
from (16) and (17).

Note that the difference P ∗−P in (16) determines a hyperplane S∩V
of V . Conversely, if W ≤ V is a hyperplane, then W + F is a normal
subloop of V + F . In this way, we obtain all linear forms.
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In (17), Q = P ∗− P is a quadratic form such that RadQ2 = S has
codimension 2, since |G/S| = 4. Moreover, Q2(γ, γ) = Q2(β, β) = 0,
Q2(β, γ) �= 0 so that Q = U ⊕ S for a hyperbolic plane U = 〈x, y〉,
x ∈ β, y ∈ γ. In this way, we can obtain all hyperbolic planes. Every
alternating bilinear form f can be expressed as U1 ⊕ · · · ⊕Uk ⊕Rad f ,
where every Ui is a hyperbolic plane. Thus, by summing up the
differences Q from repeated applications of the dihedral construction,
we can obtain any alternating bilinear form.

Let us summarize the results about code loops obtained in this
section:

Theorem 8.8. If G is a code loop with trivial radical and C or
D is satisfied for some S ≤ G, then G/S is isomorphic to C2 or V4.
The resulting loop (G, ∗) is a code loop with trivial radical, and the
associators of G and (G, ∗) are equivalent. Every Moufang loop whose
associator is equivalent to the associator of a code loop with trivial
radical is itself a code loop with trivial radical. Finally, any two code
loops with equivalent associators can be connected by the cyclic and
dihedral constructions, possibly repeated.

Remark 8.9. It is not hard to check that trilinear alternating forms
with trivial radical exist in dimension n if and only if n = 3 or n ≥ 5.
(There are many nonequivalent trilinear alternating forms with trivial
radical when n ≥ 9.) Consequently, there are code loops with trivial
radical, i.e., with two-element nucleus, of order 2n if and only if n = 4
or n ≥ 6.

9. Loops of type M(G, 2). Chein [3] discovered the following way
of building up nonassociative Moufang loops from nonabelian groups:
Let G be a finite group, and denote by G the set of new elements
{x̄; x ∈ G}. Then M(G, 2) = (G∪G, ◦) with multiplication ◦ defined
by

(18) x ◦ y = xy, x ◦ ȳ = yx, x̄ ◦ y = xy−1, x̄ ◦ ȳ = y−1x

is a Moufang loop that is associative if and only if G is abelian. As the
restriction of the multiplication ◦ onG coincides with the multiplication
in G, we will usually denote the multiplication in M(G, 2) by · , too.
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Many small Moufang loops are of this type; for instance 16/k for
k ≤ 2, and 32/k for k ≤ 9, where n/k is the kth nonassociative Moufang
loop of order n. (See Section 10 for details. Table 1 in [11, p. A-3] lists
all loops M(G, 2) of order at most 63.)

In this section we are going to explore the effects of our constructions
on loops M(G, 2). The results are summarized in Corollary 9.3 for the
cyclic construction and in Proposition 9.4 for the dihedral construction.

The following lemma gives some basic properties of loops M(G, 2):

Lemma 9.1. Let G be a group, and let L = M(G, 2) be the Moufang
loop defined above. Then:

(i) If G is an abelian group, then N(L) = L, else N(L) = Z(G).

(ii) If G is an elementary abelian 2-group, then Z(L) = L, else
Z(L) = Z(G) ∩ {x ∈ G; x2 = 1}.

(iii) If S ≤ L, then S ≤ G or |S ∩G| = |S ∩G|.
(iv) If S �G, then S �L.

(v) If S �L, then S �G, or both G/(S∩G) and L/S are elementary
abelian 2-groups.

Proof. We know that N(L) = L if and only if G is abelian.
Assume that G is not abelian. Then there are x, y, z ∈ G such
that x̄ · yz = x(yz)−1 �= xy−1z−1 = x̄y · z, and thus no element of
G belongs to N(L). We have x · yz̄ = zyx, while xy · z̄ = zxy. Also,
x(ȳ · z̄) = xz−1y, while xȳ · z̄ = z−1yx. Hence x ∈ G belongs to N(L)
if and only if x ∈ Z(G). This proves (i).

When G is an elementary abelian 2-group, we have L � G× C2. As
xȳ = yx and ȳx = yx−1, an element x ∈ G commutes with all elements
of L if and only if x ∈ Z(G) and x2 = 1. This proves (ii).

Part (iii) is an easy exercise (or see [16, Proposition 4.5]).

Let S �G, and let ϕ : G→ H be a group homomorphism with kernel
S. It is then easy to see that ψ : M(G, 2) → M(H, 2) defined by
ψ(g) = ϕ(g), ψ(ḡ) = ϕ(g), for g ∈ G, is a homomorphism of Moufang
loops with kernel S. Thus S �M(G, 2), and (iv) is proved.
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Finally, assume that S �L and S �≤ G. Then there is y ∈ G such
that ȳ ∈ S. For every x ∈ G, the element xȳx−1 · ȳ belongs to S, since
S �L. However, xȳx−1 · ȳ = yxx · ȳ = y−1yxx = xx. That is why S∩G
contains all squares x2, for x ∈ G, and the group G/(S ∩ G) must be
an elementary abelian 2-group. Also, x̄ · x̄ = 1 for every x ∈ G. Hence
L/S is an elementary abelian 2-group.

We now investigate the two constructions for loops M(G, 2).

Lemma 9.2. Let G be a group, and let L = M(G, 2) be the Moufang
loop defined above. Then:

(i) If (G, S, α, h) satisfies C then L/S is dihedral, h ∈ N(L), and
hxh = x for every x ∈ L \G.

(ii) If L/S is cyclic then L/S � C2 and either S = G or G/S∩G �
C2.

Proof. Assume that S �G and G/S = 〈α〉 is cyclic of order m. Set
a = α, b = S = α0. Then 〈a, b〉 = L/S and, thanks to diassociativity,
L/S is a group. Moreover, am = S, b2 = S · S = S and aba = αα0α =
αα = α0 = b. We know from Lemma 9.1(i) that h ∈ S ∩ Z(G) belongs
to N(L). Pick ḡ ∈ G. Then hḡh = ghh = ghh−1 = ḡ. This proves (i).

We proceed to prove (ii). Assume that L/S = 〈α〉 is cyclic. There
must be some x ∈ G such that x̄ ∈ α, else α ⊆ G, which is impossible.
As x̄ · x̄ = 1, we have α2 = S, and L/S � C2 follows. The rest is
obvious.

Consider this generalization of loops M(G, 2), also found in [3,
Theorem 2′]: Let G be a group, θ an antiautomorphism of G, and
1 �= h ∈ Z(G) such that θ is an involution, θ(h) = h and xθ(x) ∈ Z(G)
for every x ∈ G. Then the loop M(G, θ, h) = (G ∪ G, ◦) with
multiplication ◦ defined by

(19) x ◦ y = xy, x ◦ ȳ = yx, x̄ ◦ y = xθ(y), x̄ ◦ ȳ = θ(y)xh,

is a Moufang loop that is associative if and only if G is abelian.

Notice how the multiplication in M(G, −1, h) differs from that of
M(G, 2) only at G×G.
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We claim that M(G, −1, h) is never isomorphic to M(H, 2), for
any groups G, H: Every element of H in M(H, 2) is an involution.
Calculating in M(G, −1, h), we get x̄ ∗ x̄ = h for every x ∈ G. Thus
every element of G in M(G, −1, h) is of order 2|h|, where |h| is the
order of h. Then there are simply not enough elements of order 2|h| in
M(H, 2) for M(H, 2) to be isomorphic to M(G, −1, h).

Using Lemma 9.2 and the definitions (18) and (19), we get:

Corollary 9.3. Let G be a group, and let L = M(G, 2) be the
Moufang loop defined above. Assume that (L, S, α, h) satisfies C.
Then S = G or G/(S ∩ G) � C2. When S = G, the Moufang loop
(L, ∗) is isomorphic to M(G, −1, h). Every loop M(G, −1, h) with
h2 = 1 can be obtained in this way. When G/(S ∩ G) � C2, then the
multiplication in (L, ∗) is given by

(20) x ∗ y =
{
x · y if x ∈ S or y ∈ S,
(x · y)h otherwise,

where x, y ∈ L, and where · is the multiplication in L.

With the classification [11] available, one can often determine the
isomorphism type of (L, ∗) from Corollary 9.3. To illustrate this point,
assume that (L = M(G, 2), S, α, h) satisfies C and that S = G. When
G = D8, the loop L = M(D8, 2) contains 2 elements of order 4. Hence
(L, ∗) must contain 2 + 8 = 10 elements of order 4, and it turns out
that the only such nonassociative Moufang loop of order 16 is 16/5,
according to [11]. Similarly, 16/2 = M(Q8, 2) always yields 16/2,
the octonion loop of order 16. If L = 24/1 = M(D12, 2), (L, ∗) is
isomorphic to 24/4; if L = 32/9 = M(Q16, 2), (L, ∗) is 32/38, etc.

Now for the dihedral construction:

Proposition 9.4. Let G be a group, and let L = M(G, 2) be the
Moufang loop defined above. Assume that (L, S, β, γ, h) satisfies D.
Then (L, ∗) is isomorphic to M(H, 2) for some group H. Moreover,
S �G, or L/S � G/(S ∩G) � V4. When S �G, then (G, S, G \ S, h)
satisfies C, and the loop (L, ∗) is equal to M((G, ∗), 2).
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Proof. Assume that (L, S, β, γ, h) satisfies D. Since the only
elementary abelian 2-group that is also dihedral is V4, Lemma 9.1(v)
implies that S �G, or L/S � G/S ∩ G � V4. When S �G, the group
G/S is obviously cyclic.

Suppose that S �G and α = G \ S. Then (G, S, α, h) satisfies C,
and we can construct the group (G, ∗). We are going to show that the
loop (L, ∗) obtained from L by the dihedral construction is equal to
(L, ◦) = M((G, ∗), 2), where we have denoted the operation by ◦ to
avoid confusion.

Write G = ∪i∈Mαi. Without loss of generality, suppose that αi =
αiγ = βα1−i for every i ∈ M . Let x ∈ αi and y ∈ αj . We must show
carefully that x ∗ y = x ◦ y, x ∗ ȳ = x ◦ ȳ, x̄ ∗ y = x̄ ◦ y, and x̄ ∗ ȳ = x̄ ◦ ȳ.
Clearly, x ∗ y = x ◦ y. Also, x ∗ ȳ = (x · ȳ) · h−σ(i+j) = yx · h−σ(i+j) =
yxhσ(i+j) = y ∗ x = x ◦ ȳ. Similarly, x̄ ∗ y = (x̄ · y) · hσ(1−i+j) = xy−1 ·
hσ(1−i+j) = xy−1h−σ(1−i+j) = xy−1hσ(i−j) = x ∗ y−1 = x̄ ◦ y, where
we have used the coset relation αiγ = βα1−i, and −σ(t) = σ(1 − t).
Finally, x̄ ∗ ȳ = (x̄ · ȳ) · h−σ(1−i+j) = y−1xh−σ(1−i+j) = y−1xhσ(i−j) =
y−1 ∗ x = x̄ ◦ ȳ.

It remains to show that (L, ∗) = M(H, 2) for some H whenever
L/S is dihedral. We take advantage of [3, Theorem 0]: If Q is a
nonassociative Moufang loop such that every minimal generating set of
Q contains an involution, then Q = M(H, 2) for some group H.

Pick x ∈ eα1−i = αif . If x ∈ G, then α2 = S and x ∗ x = x · x = 1.
If x /∈ G, then x ∗ x = x · x · hσ(1−i+i) = 1. Because 〈α〉 is a subloop
of (L, ∗), we have just shown that every (minimal) generating set of
(L, ∗) contains an involution.

We conclude this section with an example generalizing [5].

Example 9.5. It is demonstrated in [5] that D2n can be ob-
tained from Q2n via the cyclic construction, for n > 2. Indeed, if
G = D2n = 〈a, b〉, then 〈a〉 = S �G, G/S � C2, h = a2n−2 ∈ Z(G)
and (G, S, a, h) satisfies C. The inverse of b in (G, ∗) is hb, as
b∗hb = bhbh = 1. Thus a2n−1

= 1, b∗b = bbh = a2n−2
, (b∗a)∗(a2n−2

b) =
ba ∗ a2n−2

b = baa2n−2
ba2n−2

= bab = a−1 and (G, ∗) � Q2n follows.
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Then, by Lemma 9.2(ii), L/S = M(D2n , 2)/S is dihedral of order 4 and
(L, S, β, γ, h) satisfies D, where we can choose β, γ so that α = βγ =
G\S. Proposition 9.4 then yields (L, ∗) = M((G, ∗), 2) �M(Q2n , 2).

10. Small Moufang loops. Both the cyclic and dihedral construc-
tions were studied for small 2-groups. In particular, using computers,
the following question was answered positively for groups of order 8,
16 and 32 in [20]: Given two groups G, H of order n, is it possible to
construct a sequence of groups G0 � G, G1, . . . , Gs � H so that Gi+1

is obtained from Gi by means of the cyclic or the dihedral construction?
The purpose of this section is to study an analogous question for small
Moufang loops, not necessarily of order 2n.

We will rely heavily on [11], where one finds multiplication tables of
all nonassociative Moufang loops of order less than 64, one for each
isomorphism type. The book [11] is based on Chein’s classification [3].

Following the notational conventions of [11] closely, the kth Moufang
loop of order n will be denoted by n/k. Whenever we refer to a
multiplication table of n/k, we always mean the one given in [11].

As we have mentioned in the introduction, the only orders n ≤ 32 for
which there are at least two non-isomorphic nonassociative Moufang
loops are n = 16, 24, and 32, with 5, 5, and 71 loops, respectively.

For n = 24 and n = 32, all nonassociative Moufang loops of order n
can be split into two subsets according to the size of their associator
subloop (or nucleus). Namely,

A24 = {24/1, 24/3, 24/4, 24/5},

B24 = {24/2},

A32 = {32/1, . . . , 32/6, 32/10, . . . , 32/26, 32/29, 32/30,
32/35, 32/36, 32/39, . . . , 32/71},

B32 = {32/7, . . . , 32/9, 32/27, 32/28, 32/31, . . . , 32/34, 32/37,
32/38}.
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The size of the nucleus and the size of the associator subloop for loops
in the subsets Ai, Bi are as follows:

class size of nucleus size of associator subloop
A24 2 3
B24 1 4
A32 4 2
B32 2 4

All loops 16/k, for 1 ≤ k ≤ 5, have associator subloop and nucleus of
cardinality 2. Since the associator subloops do not change under our
constructions, cf. Theorems 6.3 and 7.3, a loop from set Ai cannot be
transformed to a loop from set Bi via any of the two constructions.
The striking result is that the converse is also true:

Theorem 10.1. For n = 16, 24, 32, let G(n) be a graph whose
vertices are all isomorphism types of nonassociative Moufang loops of
order n, and where two vertices form an edge if a representative of the
second type can be obtained from a representative of the first type by
one of the two constructions. (Lemmas 6.1 and 7.1 guarantee that G(n)
is not directed.) Then:

(i) The graph G(16) is connected.

(ii) There are two connected components in G(24), namely A24 and
B24.

(iii) There are two connected components in G(32), namely A32 and
B32.

In all cases, the connected components correspond to blocks of loops with
the equivalent associator, and also to blocks of loops that have nucleus
of the same size.

Proof. The proof depends on machine computation that, together
with detailed information about the exhaustive search for edges in
G(n), will be presented elsewhere. Our GAP libraries are available
online [10].
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It is possible to select representatives of each connected component so
that they can be described in a uniform way. For instance, select rep-
resentatives 16/1 = M(D8, 2), 24/1 = M(D12, 2), 24/2 = M(A4, 2),
32/1 = M(D8 × C2, 2), and 32/7 = M(D16, 2). See Section 9 for the
definition of loops M(G, 2).

It is certainly of interest that, although the groups D16 and D8 ×C2

are connected, the loops M(D16, 2) = 32/7 and M(D8×C2, 2) = 32/1
are not. This, in view of Proposition 9.4, means that the groups D16

and D8 × C2 cannot be connected via the cyclic construction.

TABLE 1. Multiplication table of 32/1 = M(D8 × C2, 2).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
2 3 4 1 6 7 8 5 10 11 12 9 14 15 16 13 18 19 20 17 24 21 22 23 26 27 28 25 32 29 30 31
3 4 1 2 7 8 5 6 11 12 9 10 15 16 13 14 19 20 17 18 23 24 21 22 27 28 25 26 31 32 29 30
4 1 2 3 8 5 6 7 12 9 10 11 16 13 14 15 20 17 18 19 22 23 24 21 28 25 26 27 30 31 32 29
5 8 7 6 1 4 3 2 13 16 15 14 9 12 11 10 21 22 23 24 17 18 19 20 29 30 31 32 25 26 27 28
6 5 8 7 2 1 4 3 14 13 16 15 10 9 12 11 22 23 24 21 20 17 18 19 30 31 32 29 28 25 26 27
7 6 5 8 3 2 1 4 15 14 13 16 11 10 9 12 23 24 21 22 19 20 17 18 31 32 29 30 27 28 25 26
8 7 6 5 4 3 2 1 16 15 14 13 12 11 10 9 24 21 22 23 18 19 20 17 32 29 30 31 26 27 28 25
9 10 11 12 13 14 15 16 1 2 3 4 5 6 7 8 25 26 27 28 29 30 31 32 17 18 19 20 21 22 23 24

10 11 12 9 14 15 16 13 2 3 4 1 6 7 8 5 26 27 28 25 32 29 30 31 18 19 20 17 24 21 22 23
11 12 9 10 15 16 13 14 3 4 1 2 7 8 5 6 27 28 25 26 31 32 29 30 19 20 17 18 23 24 21 22
12 9 10 11 16 13 14 15 4 1 2 3 8 5 6 7 28 25 26 27 30 31 32 29 20 17 18 19 22 23 24 21
13 16 15 14 9 12 11 10 5 8 7 6 1 4 3 2 29 30 31 32 25 26 27 28 21 22 23 24 17 18 19 20
14 13 16 15 10 9 12 11 6 5 8 7 2 1 4 3 30 31 32 29 28 25 26 27 22 23 24 21 20 17 18 19
15 14 13 16 11 10 9 12 7 6 5 8 3 2 1 4 31 32 29 30 27 28 25 26 23 24 21 22 19 20 17 18
16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 32 29 30 31 26 27 28 25 24 21 22 23 18 19 20 17
17 20 19 18 21 22 23 24 25 28 27 26 29 30 31 32 1 4 3 2 5 6 7 8 9 12 11 10 13 14 15 16
18 17 20 19 22 23 24 21 26 25 28 27 30 31 32 29 2 1 4 3 8 5 6 7 10 9 12 11 16 13 14 15
19 18 17 20 23 24 21 22 27 26 25 28 31 32 29 30 3 2 1 4 7 8 5 6 11 10 9 12 15 16 13 14
20 19 18 17 24 21 22 23 28 27 26 25 32 29 30 31 4 3 2 1 6 7 8 5 12 11 10 9 14 15 16 13
21 22 23 24 17 20 19 18 29 30 31 32 25 28 27 26 5 8 7 6 1 2 3 4 13 16 15 14 9 10 11 12
22 23 24 21 18 17 20 19 30 31 32 29 26 25 28 27 6 5 8 7 4 1 2 3 14 13 16 15 12 9 10 11
23 24 21 22 19 18 17 20 31 32 29 30 27 26 25 28 7 6 5 8 3 4 1 2 15 14 13 16 11 12 9 10
24 21 22 23 20 19 18 17 32 29 30 31 28 27 26 25 8 7 6 5 2 3 4 1 16 15 14 13 10 11 12 9
25 28 27 26 29 30 31 32 17 20 19 18 21 22 23 24 9 12 11 10 13 14 15 16 1 4 3 2 5 6 7 8
26 25 28 27 30 31 32 29 18 17 20 19 22 23 24 21 10 9 12 11 16 13 14 15 2 1 4 3 8 5 6 7
27 26 25 28 31 32 29 30 19 18 17 20 23 24 21 22 11 10 9 12 15 16 13 14 3 2 1 4 7 8 5 6
28 27 26 25 32 29 30 31 20 19 18 17 24 21 22 23 12 11 10 9 14 15 16 13 4 3 2 1 6 7 8 5
29 30 31 32 25 28 27 26 21 22 23 24 17 20 19 18 13 16 15 14 9 10 11 12 5 8 7 6 1 2 3 4
30 31 32 29 26 25 28 27 22 23 24 21 18 17 20 19 14 13 16 15 12 9 10 11 6 5 8 7 4 1 2 3
31 32 29 30 27 26 25 28 23 24 21 22 19 18 17 20 15 14 13 16 11 12 9 10 7 6 5 8 3 4 1 2
32 29 30 31 28 27 26 25 24 21 22 23 20 19 18 17 16 15 14 13 10 11 12 9 8 7 6 5 2 3 4 1
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Example 10.2. Let us return to code loops. Their multiplication
tables are easy to spot thanks to this result of Chein and Goodaire [4,
Theorem 5]: A loop L is a code loop if and only if it is a Moufang loop
with |L2| ≤ 2. Here, L2 denotes the set of all squares in L.

All loops 16/k, 1 ≤ k ≤ 5, are code loops with trivial radical, i.e., with
nucleus of cardinality 2. In view of Proposition 8.7 and Theorem 10.1,
it suffices to establish this just for one loop 16/k; for example, the
octonion loop of order 16 is a code loop.

The loops 32/k are code loops for k ∈ {1, . . . , 3, 10, . . . , 22}, all with
nontrivial radical. Markedly, it is possible to obtain a code loop from
a loop that is not code. Consider the loops 32/1 = M(D8 × C2, 2)
(its multiplication table is given in Table 1), and the loop 32/4 =
M(16Γ2c1, 2) (its multiplication table is given in Table 2). The group
16Γ2c1 has presentation 〈a, b; a4 = b4 = (ab)2 = [a2, b] = 1〉. The loop
32/1 is a code loop, while the loop 32/4 is not, by the result of Chein
and Goodaire. They are connected, however, by Theorem 10.1.

11. Conjectures and prospects. Recall that, given two Moufang
loops (or groupoids) (G, ◦), (G, ∗) defined on the same set G, their
distance d(◦, ∗) is the cardinality of the set {(a, b) ∈ G×G; a◦b �= a∗b}.

Assume that (G, ∗) is constructed from the Moufang loop (G, ◦) via
one of the constructions. Then, as we hinted in the title, d(◦, ∗) = n2/4,
where n = |G|. We conjecture that, similarly as for groups, this is the
smallest possible distance:

Conjecture 11.1. Every two Moufang 2-loops of order n in distance
less than n2/4 are isomorphic.

Since A(G, ∗) = A(G, ◦) if C or D is satisfied, we wonder what is the
minimum distance of two Moufang loops with nonequivalent associator.

Conjecture 11.2. Two Moufang loops of order n with nonequivalent
associator are in distance at least 3n2/8.

This is illustrated in Table 2 for n = 32, where one can find
multiplication tables of 32/4 = M(16Γ2c1, 2) and 32/7 = M(D16, 2)
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the way they are listed in [11]. To obtain the multiplication table for
32/7, permute the 8 · 8 = 64 framed triangular regions by switching
region (2k, j) with region (2k + 1, j), for k = 0, . . . , 3, j = 0, . . . , 7.

This does not mean that two loops with nonequivalent associator
cannot be closer. In fact, if a group multiplication table contains a
subsquare

a b
b a

and if the group is sufficiently large (n ≥ 6), then the loop obtained by
switching a and b in (21) cannot be associative.

TABLE 2. Multiplication tables of 32/4 = M(16Γ2c1, 2)

and 32/7 = M(D16,2).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
2 3 4 1 6 7 8 5 10 11 12 9 14 15 16 13 18 19 20 17 22 23 24 21 32 29 30 31 28 25 26 27
3 4 1 2 7 8 5 6 11 12 9 10 15 16 13 14 19 20 17 18 23 24 21 22 27 28 25 26 31 32 29 30
4 1 2 3 8 5 6 7 12 9 10 11 16 13 14 15 20 17 18 19 24 21 22 23 30 31 32 29 26 27 28 25
5 6 7 8 1 2 3 4 13 14 15 16 9 10 11 12 21 22 23 24 17 18 19 20 29 30 31 32 25 26 27 28
6 7 8 5 2 3 4 1 14 15 16 13 10 11 12 9 22 23 24 21 18 19 20 17 28 25 26 27 32 29 30 31
7 8 5 6 3 4 1 2 15 16 13 14 11 12 9 10 23 24 21 22 19 20 17 18 31 32 29 30 27 28 25 26
8 5 6 7 4 1 2 3 16 13 14 15 12 9 10 11 24 21 22 23 20 17 18 19 26 27 28 25 30 31 32 29
9 16 11 14 13 12 15 10 1 8 3 6 5 4 7 2 25 26 27 28 29 30 31 32 17 18 19 20 21 22 23 24

10 13 12 15 14 9 16 11 2 5 4 7 6 1 8 3 26 27 28 25 30 31 32 29 24 21 22 23 20 17 18 19
11 14 9 16 15 10 13 12 3 6 1 8 7 2 5 4 27 28 25 26 31 32 29 30 19 20 17 18 23 24 21 22
12 15 10 13 16 11 14 9 4 7 2 5 8 3 6 1 28 25 26 27 32 29 30 31 22 23 24 21 18 19 20 17
13 12 15 10 9 16 11 14 5 4 7 2 1 8 3 6 29 30 31 32 25 26 27 28 21 22 23 24 17 18 19 20
14 9 16 11 10 13 12 15 6 1 8 3 2 5 4 7 30 31 32 29 26 27 28 25 20 17 18 19 24 21 22 23
15 10 13 12 11 14 9 16 7 2 5 4 3 6 1 8 31 32 29 30 27 28 25 26 23 24 21 22 19 20 17 18
16 11 14 9 12 15 10 13 8 3 6 1 4 7 2 5 32 29 30 31 28 25 26 27 18 19 20 17 22 23 24 21
17 20 19 18 21 24 23 22 25 30 27 32 29 26 31 28 1 4 3 2 5 8 7 6 9 14 11 16 13 10 15 12
18 17 20 19 22 21 24 23 26 31 28 29 30 27 32 25 2 1 4 3 6 5 8 7 16 9 14 11 12 13 10 15
19 18 17 20 23 22 21 24 27 32 25 30 31 28 29 26 3 2 1 4 7 6 5 8 11 16 9 14 15 12 13 10
20 19 18 17 24 23 22 21 28 29 26 31 32 25 30 27 4 3 2 1 8 7 6 5 14 11 16 9 10 15 12 13
21 24 23 22 17 20 19 18 29 26 31 28 25 30 27 32 5 8 7 6 1 4 3 2 13 10 15 12 9 14 11 16
22 21 24 23 18 17 20 19 30 27 32 25 26 31 28 29 6 5 8 7 2 1 4 3 12 13 10 15 16 9 14 11
23 22 21 24 19 18 17 20 31 28 29 26 27 32 25 30 7 6 5 8 3 2 1 4 15 12 13 10 11 16 9 14
24 23 22 21 20 19 18 17 32 25 30 27 28 29 26 31 8 7 6 5 4 3 2 1 10 15 12 13 14 11 16 9
25 30 27 32 29 26 31 28 17 20 19 18 21 24 23 22 9 12 11 10 13 16 15 14 1 6 3 8 5 2 7 4
26 31 28 29 30 27 32 25 18 17 20 19 22 21 24 23 10 9 12 11 14 13 16 15 8 1 6 3 4 5 2 7
27 32 25 30 31 28 29 26 19 18 17 20 23 22 21 24 11 10 9 12 15 14 13 16 3 8 1 6 7 4 5 2
28 29 26 31 32 25 30 27 20 19 18 17 24 23 22 21 12 11 10 9 16 15 14 13 6 3 8 1 2 7 4 5
29 26 31 28 25 30 27 32 21 24 23 22 17 20 19 18 13 16 15 14 9 12 11 10 5 2 7 4 1 6 3 8
30 27 32 25 26 31 28 29 22 21 24 23 18 17 20 19 14 13 16 15 10 9 12 11 4 5 2 7 8 1 6 3
31 28 29 26 27 32 25 30 23 22 21 24 19 18 17 20 15 14 13 16 11 10 9 12 7 4 5 2 3 8 1 6
32 25 30 27 28 29 26 31 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 2 7 4 5 6 3 8 1
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We conclude the paper with a few suggestions for future research:

1. Decide whether two Moufang loops M0, Ms of order n with
equivalent associator can be connected by a series of Moufang loops
M0, M1, . . . , Ms so that the distance of Mi+1 from Mi is n2/4, for
i = 0, . . . , s−1. (Note that additional constructions are needed already
for n = 64.)

2. The main result of [9] says that when the parameters of any of
the constructions are varied in a certain way, the isomorphism type of
the resulting group will not be affected. Can this be generalized to
Moufang loops? (See [18] for a step in this direction.)

3. Is there a general construction that preserves three quarters of
the multiplication table yet yields a Moufang loop with nonequivalent
associator?

4. This paper attempts to launch a new approach to Moufang 2-
loops, by obtaining them using group-theoretical constructions. One
can envision a similar program for Bol loops modulo Moufang loops,
for instance.

5. While this paper was under review, one of the authors has deter-
mined by computer search that there are 4262 nonassociative Moufang
loops of order 64 that can be obtained from loops M(G, 2) by the two
constructions, where G is a nonabelian group of order 32. See [18] for
more details. Are there other nonassociative Moufang loops of order
64?
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2. M. Bálek, A. Drápal, and N. Zhukavets, The neighbourhood of dihedral 2-
groups, submitted.

3. Orin Chein, Moufang loops of small order, Mem. Amer. Math. Soc. 13 (1978).



MOUFANG LOOPS THAT SHARE ASSOCIATOR 455

4. Orin Chein and Edgar G. Goodaire, Moufang loops with a unique nonidentity
commutator (associator, square), J. Algebra 130 (1990), 369 384.

5. Diane Donovan, Sheila Oates-Williams and Cheryl Praeger, On the distance
between distinct group Latin squares, J. Combin. Des. 5 (1997), 235 248.
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